Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Xuangui Huang's presentation, Scribe: Chin Ho Lee

1.1 Robustifying polynomials

In this lecture, we show how to make a polynomial robust to noise by proving the following theorem by Sherstov [She13].

Theorem 1. Let $p: \{-1,1\}^n \to [-1,1]$ be a degree-*d* polynomial. There exists an explicit degree-O(d) polynomial $\tilde{p}: \mathbb{R}^n \to \mathbb{R}$ such that for every $x \in X^n$, where $X = [-4/3, -2/3] \cup [2/3, 4/3]$,

$$|p(\operatorname{sgn}(x_1), \operatorname{sgn}(x_2), \dots, \operatorname{sgn}(x_n)) - \tilde{p}(x)| \le 2^{-\Omega(d)}$$

We will prove Theorem 1 in 3 steps: where (1) p is a monomial, (2) p is a homogeneous polynomial of degree d, i.e., every monomial of p has degree exactly d, and (3) p is a general polynomial. We first prove (1), then prove (3) assuming (2), and defer the proof of (2) to the end.

1.2 Monomial

Let us now consider the case when $p(x) := \prod_{i=1}^{d} x_j$ is the parity function. We will use the following Taylor's expansion of the function $(1+t)^{\alpha}$.

Claim 2. For every $t \in (-1, 1)$ and $\alpha \in \mathbb{R}$, we have $(1 + t)^{\alpha} = \sum_{i=0}^{\infty} {\alpha \choose i} t^{i}$, where ${\alpha \choose i} := \frac{\alpha(\alpha-1)\cdots(\alpha-i+1)}{1\cdot 2\cdots i}$ is the extension of the binomial coefficients to the real numbers.

Using Claim 2, we obtain the follow Taylor's expansion for $\operatorname{sgn}(t)$. Claim 3. For $0 < |t| < \sqrt{2}$, $\operatorname{sgn}(t) = t \sum_{i=0}^{\infty} {\binom{-1/2}{i}} (t^2 - 1)^i$.

Proof.

$$\operatorname{sgn}(t) = \frac{t}{\sqrt{t^2}} = \frac{t}{\sqrt{(1 + (t^2 - 1))}} = t \sum_{i=0}^{\infty} {\binom{-1/2}{i}} (t^2 - 1)^i.$$

We can now derive the Taylor approximation of $\prod_{j=1}^{d} \operatorname{sgn}(x_j)$:

$$\prod_{j=1}^{d} \operatorname{sgn}(x_j) = \prod_{j=1}^{d} \left(x_j \sum_{i=0}^{\infty} {\binom{-1/2}{i}} (x_j^2 - 1)^i \right)$$
$$= \left(\prod_{j=1}^{d} x_j \right) \sum_{0 \le i_1, \dots, i_d \le \infty} \prod_{j=1}^{d} {\binom{-1/2}{i_j}} (x_j^2 - 1)^{i_j}.$$

We now define \tilde{p} . Let d' = Cd for a sufficiently large constant C. We define $\tilde{p} \colon \mathbb{R}^n \to \mathbb{R}$ to be the truncation of the above infinite series up to the indices that satisfy $i_1 + \cdots + i_d \leq d'$, that is,

$$\tilde{p}(x_1, \dots, x_d) := \left(\prod_{j=1}^d x_j\right) \sum_{i_1 + \dots + i_d \le d'} \prod_{j=1}^d \binom{-1/2}{i_j} (x_j^2 - 1)^{i_j}.$$

Clearly, \tilde{p} has degree d + 2d' = O(d). It remains to analyze the approximation error. First we need a simple bound for $\binom{-1/2}{i_j}$.

Claim 4. For every $k \ge 1$, $\binom{-1/2}{k} = (-4)^{-k} \binom{2k}{k} \le 1/2$.

Proof. By definition,

$$\binom{-1/2}{k} = \frac{(-1/2) \cdot (-3/2) \cdots (-1/2 - k + 1)}{k!}$$

$$= 2^{-k} \cdot \frac{1 \cdot 3 \cdots (2k - 1)}{k!}$$

$$= 2^{-k} \cdot \frac{1}{2^k k!} \cdot \frac{(2k)!}{k!}$$

$$= (-4)^{-k} \binom{2k}{k}.$$

The inequality follows from $\binom{2k}{k} \leq 2^{2k}/2$.

Note that the approximation error $\delta(x) := \prod_{j=1}^d \operatorname{sgn}(x_j) - \tilde{p}(x_1, \ldots, x_d)$ is simply the remaining sum in the infinite series after the truncation, that is

$$\delta(x) = \left(\prod_{j=1}^{d} x_j\right) \sum_{i_1 + \dots + i_d > d'} \prod_{j=1}^{d} \binom{-1/2}{i_j} (x_j^2 - 1)^{i_j}.$$
 (1)

The R.H.S. is at most

$$\begin{split} \left| \prod_{j=1}^{d} x_{j} \right| \cdot \left| \sum_{i_{1}+\dots+i_{d} > d'} \prod_{j=1}^{d} \binom{-1/2}{i_{j}} (x_{j}^{2}-1)^{i_{j}} \right| &\leq (4/3)^{d} \sum_{i_{1}+\dots+i_{d} > d'} \prod_{j=1}^{d} \binom{-1/2}{i_{j}} |x_{j}^{2}-1|^{i_{j}} \\ &\leq (4/3)^{d} \cdot (1/2)^{d} \sum_{i_{1}+\dots+i_{d} > d'} \prod_{j=1}^{d} |x_{j}^{2}-1|^{i_{j}} \\ &\leq \sum_{i_{1}+\dots+i_{d} > d'} (7/9)^{i_{1}+\dots+i_{d}}, \end{split}$$

The first inequality is because $|x_i| \leq 4/3$ for $x \in X$. The second inequality is because of Claim 4, and the last inequality is because $|x_j^2 - 1| \le 7/9$ for $x \in X$.

Now, for every k, there are $\binom{k+d-1}{d}$ choices of i_1, \ldots, i_d for which $i_1 + \cdots + i_d$ $i_d = k$. Hence, the summation is equal to

$$\sum_{k=d'+1}^{\infty} \sum_{i_1+\dots+i_d=k} (7/9)^k = \sum_{k=d'+1}^{\infty} \binom{k+d-1}{k} (7/9)^k$$
$$\leq \sum_{k=d'+1}^{\infty} (2k)^d (7/9)^k$$
$$= 2^{-\Omega(d')}.$$

This finishes the proof for the case when p is a monomial.

1.3General case assuming homogeneous case

We now prove Theorem 1 assuming the same conclusion holds for case (2),

when p is a homogeneous polynomial. First we can rewrite p as $p = \sum_{i=0}^{d} p_i$, where p_i is the degree-*i* homogeneous polynomial of p. Note that while p is bounded by 1, p_i may not be. So, we instead apply Theorem 1 to $p_i/||p_i||_{\infty}$, where $||p_i||_{\infty} := \max_{x \in \{-1,1\}} |p_i(x)|$, and obtain \tilde{p}_i such that

$$\max_{x \in X^n} |\tilde{p}_i(x) - p_i(\operatorname{sgn}(x_1), \operatorname{sgn}(x_2), \dots, \operatorname{sgn}(x_n))| \le ||p_i||_{\infty} \cdot 2^{-\Omega(d)}.$$

If we assume $\sum_{i=0}^{d} \|p_i\|_{\infty} \leq 2^{O(d)}$ and define $\tilde{p} := \sum_{i=0}^{d} \tilde{p}_i$, then we have

$$|p(\operatorname{sgn}(x_1), \dots, \operatorname{sgn}(x_n)) - \tilde{p}(x)| \le \sum_{i=0}^d |p_i(\operatorname{sgn}(x_1), \dots, \operatorname{sgn}(x_n)) - \tilde{p}(x)|$$
$$\le \sum_{i=0}^d ||p_i||_{\infty} \cdot 2^{-\Omega(d)}$$
$$\le (d+1) \cdot 4^d \cdot 2^{-\Omega(d)}$$
$$\le 2^{-\Omega(d)}.$$

We now prove that $\sum_{i=0}^{d} ||p_i||_{\infty} \leq 2^{O(d)}$ whenever p has output [-1, 1]. We first prove the result for *univariate* polynomials and then reduce the above problem to it. The univariate version in fact follows by a theorem due to Vladimir Markov which gives a tight upper bound [?]:

Theorem 5. If $p: [-1,1] \to [-1,1]$ is a univariate degree-*d* polynomial, then the sum of its d+1 coefficients in absolute values is bounded by $O((1+\sqrt{2})^d/\sqrt{d})$.

We now prove the theorem above with the upper bound replaced by the crude bound of $2^{O(d)}$, which is sufficient for our purpose.

Claim 6. If $p: [-1,1] \to [-1,1]$ is a univariate degree-*d* polynomial, then the sum of its coefficients in absolute values is at most $2^{O(d)}$.

Proof. Let t_0, t_1, \ldots, t_d be the d + 1 points that are evenly spaced in the interval [-1, 1], so $t_i := -1 + 2i/t$. By interpolation, we can write p as

$$p(t) = \sum_{i=0}^{d} p(t_i) \frac{\prod_{j \neq i} (t - t_j)}{\prod_{j \neq i} (t_i - t_j)}.$$

We first bound below $\prod_{j\neq i}^{d} (t_i - t_j)$. Since every distinct pair t_i and t_j differ by 2/d, This product is smallest when t_i is closest to 0, and so is at least $(2/d)^d (\frac{d}{2})!^2$ when d is even and is at least $(2/d)^d (\frac{d+1}{2})(\frac{d-1}{2})!^2$ when d is odd. By Stirling's formula, in both cases we have

$$\prod_{j \neq i}^{d} (t_i - t_j) \ge (2/d)^d (d/2e)^d \ge e^{-d}.$$

Hence the sum of the coefficients in absolute values is at most

$$e^d \sum_{i=0}^d \prod_{j \neq i} (1+|t_j|) \le (d+1)(2e)^d \le 2^{O(d)}.$$

We now bound above $\sum_{i=0}^{d} ||p_i||_{\infty}$ by a reduction to Claim 6. Claim 7. $\sum_{i=0}^{d} ||p_i||_{\infty} \leq 2^{O(d)}$.

Proof. Fix any $x \in \{-1, 1\}^n$. Define the univariate polynomial $q_x : [-1, 1] \rightarrow [-1, 1]$ by $q_x(t) := \sum_{i=0}^d p_i(x) \cdot t^i$. We will show that $|q_x(t)| \leq 1$ for every $x \in \{-1, 1\}^n$. Then the rest simply follows from Claim 6.

Let $Z = (Z_1, \ldots, Z_n) \in \{-1, 1\}^n$ be independent random variables with $\mathbb{E}[Z_i] = t$. Write p in its Fourier expansion $p(x) = \sum_{|S| \le d} \hat{p}(S) \prod_{i \in S} x_i$. We have

$$\mathbb{E}_{Z}[p(x_{1}Z_{1},\ldots,x_{n}Z_{n})] = \mathbb{E}_{Z}\Big[\sum_{|S|\leq d}\hat{p}(S)\prod_{i\in S}x_{i}Z_{i}\Big]$$
$$= \sum_{|S|\leq d}\hat{p}(S)\prod_{i\in S}x_{i}\cdot\prod_{i\in S}\mathbb{E}_{Z}[Z_{i}]$$
$$= \sum_{|S|\leq d}\hat{p}(S)\prod_{i\in S}x_{i}\cdot t^{|S|}$$
$$= \sum_{i=0}^{d}p_{i}(x)t^{i}$$
$$= q_{x}(t).$$

This shows $|q_x(t)| \leq 1$ as the L.H.S. is at most $\max_{y \in \{-1,1\}^n} |p(y)| \leq 1$. \Box

1.4 Homogeneous polynomial

Let $p: \{-1,1\}^n \to [-1,1]$ be a homogeneous polynomial of degree d. We can write p as $p(x) = \sum_{|S|=d} \hat{p}(S)\chi_S(x)$, where $\chi_S(x) := \prod_{j \in S} x_j$. In this way we can regard p as a function from \mathbb{R}^n to \mathbb{R} . We will apply the robustification in the monomial case to each χ_S . More specifically, we define \tilde{p} to be $\tilde{p}(x) :=$ $\sum_{|S|=d} \hat{p}(S)\tilde{\chi}_S(x)$. Let $\delta(x_S)$ be the approximation error of $\tilde{\chi}_S$, i.e., the expression in Equation (1). Then $\forall x \in X^n$,

$$|p(\operatorname{sgn}(x_1), \operatorname{sgn}(x_2), \dots, \operatorname{sgn}(x_n)) - \tilde{p}(x)| = \Big| \sum_{|S|=d} \hat{p}(S) \Big(\prod_{j \in S} \operatorname{sgn}(x_j) - \prod_{j \in S} x_j \Big) \Big|$$
$$= \Big| \sum_{|S|=d} \hat{p}(S) \delta(x_S) \Big|.$$

Therefore to prove Theorem 1 in the homogeneous case we need to show $\max_{x \in X^n} \left| \sum_{|S|=d} \hat{p}(S) \delta(x_S) \right| \leq 2^{-\Omega(d)}.$

We first show that one cannot get anything just by naïvely summing up all the error $\delta(x_S)$ for each S.

Claim 8. There exists a homogeneous degree-*d* polynomial $p: \{-1, 1\}^n \rightarrow [-1, 1]$ such that $\hat{p}(S) = \pm (2n \binom{n}{d})^{-1/2}$.

The error of \tilde{p} for the polynomial p in the claim would be $\sum_{|S|=d} |\hat{p}(S)| \cdot 2^{-\Omega(d)} = \binom{n}{d} (2n\binom{n}{d})^{-1/2} \cdot 2^{-\Omega(d)} > 1.$

1.4.1 Error cancellation

We now do a more refined analysis on the error by proving the following theorem, showing that the errors in different terms in fact cancel out each other.

Theorem 9.(Warm-up) Let $p: \{-1, 1\}^n \to [-1, 1]$ be a homogeneous degreed polynomial. Let $\delta: \{-1, 1\}^d \to \mathbb{R}$ be a symmetric function. Then

$$\max_{x \in \{-1,1\}^n} \Big| \sum_{|S|=d} \hat{p}(S) \delta(x_S) \Big| \le \frac{d^d}{d!} \|\hat{\delta}\|_1,$$

where $\|\hat{\delta}\|_1 = \sum_S |\hat{\delta}(S)|$ is the sum of the magnitude of the coefficients in the Fourier expansion of $\delta(x) = \sum_S \hat{\delta}(S) \prod_{j \in S} x_j$.

For the specific δ given in Equation (1) we have $\|\hat{\delta}\|_1 \leq 2^{-Cd}$. Hence the maximum error is $d^d/d! \cdot 2^{-Cd} \leq 2^{-\Omega(d)}$ for a sufficiently large constant C.

But this is only a warm-up theorem: the maximum is taken over $\{-1, 1\}^n$ instead of X^n . At the end we will briefly mention the changes required to prove Theorem 1 in the homogeneous case.

The crucial tool in proving Theorem 9 is the following operator.

Definition 10. For every $v \in \{0,1\}^d$, we define the operator $A_v \colon \mathbb{R}^{\{-1,1\}^n} \to \mathbb{R}^{\{-1,1\}^n}$ by

$$(A_v f)(x) = \mathbb{E}_{z \sim \{-1,1\}^d} \left[z_1 \cdots z_d f\left(\frac{1}{d} \sum_{i=1}^d z_i x_1^{v_i}, \dots, \frac{1}{d} \sum_{i=1}^d z_i x_n^{v_i}\right) \right].$$

Note that we can identify f with its multilinear extension on $[-1,1]^n$ using its Fourier expansion so the term " $f\left(\frac{1}{d}\sum_{i=1}^d z_i x_1^{v_i}, \ldots, \frac{1}{d}\sum_{i=1}^d z_i x_n^{v_i}\right)$ " makes sense. We will use the following properties of A_v .

Claim 11. The operator A_v is

(1) linear;

- (2) for every f we have $||A_v f||_{\infty} \leq ||f||_{\infty}$, and
- (3) for every subset $S \subseteq \{1, \ldots, n\}$ of size d,

$$A_{v}\chi_{S}(x) = \frac{d!}{d^{d}} \cdot \mathbb{E}_{\tau: S \to \{1, \dots d\} \text{ bijective}} \left[\prod_{j \in S} x_{j}^{v_{\tau(j)}} \right]$$

Proof. (1) is clear.

For (2), we have for every $x \in \{-1, 1\}^n$,

$$|(A_v f)(x)| = \left| \mathbb{E}_{z \sim \{-1,1\}^d} \left[z_1 \cdots z_d f\left(\frac{1}{d} \sum_{i=1}^d z_i x_1^{v_i}, \dots, \frac{1}{d} \sum_{i=1}^d z_i x_n^{v_i}\right) \right] \right|$$

$$\leq \mathbb{E}_{z \sim \{-1,1\}^d} \left[\left| f\left(\frac{1}{d} \sum_{i=1}^d z_i x_1^{v_i}, \dots, \frac{1}{d} \sum_{i=1}^d z_i x_n^{v_i}\right) \right| \right]$$

$$\leq \max_{x \in [-1,1]^n} |f(x)|.$$

It remains to show that $\max_{x \in [-1,1]^n} f(x) \leq \max_{x \in \{-1,1\}^n} f(x)$. This follows from the following claim, which says for *multilinear* polynomials, the maximum value can always be attained in $\{-1,1\}^n$.

Claim 12. Let $p: [-1,1]^n \to [-1,1]$ be any multilinear polynomial. Then $\max_{x \in [-1,1]^n} |p(x)| = \max_{x \in \{-1,1\}} |p(x)|.$

Proof. It suffices to show that $\max_{x \in [-1,1]^n} |p(x)| \leq \max_{x \in \{-1,1\}} |p(x)|$. Fix any $x = (x_1, \ldots, x_n) \in [-1,1]^n$. Let $X = (X_1, \ldots, X_n) \in \{-1,1\}^n$ be nindependent random variables with $\mathbb{E}[X_i] = x_i$ for each $i \in \{1, 2, \ldots, n\}$. Since p is multilinear, we have that $\mathbb{E}[p(X)] = p(x)$. Hence there exists a fixing of $X \in \{-1,1\}^n$ such that $p(x) \leq p(X)$. \Box

For (3), without loss of generality assume $S = \{1, \ldots, d\}$. Then

$$A_{v}\chi_{S}(x) = \mathbb{E}_{z \in \{-1,1\}^{d}} \left[z_{1} \cdots z_{d} \prod_{j=1}^{d} \left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{j}^{v_{i}} \right) \right]$$
$$= \frac{1}{d^{d}} \cdot \mathbb{E}_{z \in \{-1,1\}^{d}} \left[z_{1} \cdots z_{d} \sum_{1 \le i_{1}, \dots, i_{d} \le d} z_{i_{1}} \cdots z_{i_{d}} \cdot \prod_{j=1}^{d} x_{j}^{v_{i_{j}}} \right].$$

If some z_k does not appear in the product $z_{i_1} \cdots z_{i_d}$, then we can factor out $E[z_k]$ from the expression and so the whole summand is zero. Hence the summation only contains terms that are distinct, i.e., $z_{i_j} = z_{\tau(j)}$ for some permutation τ . So the expression becomes

$$\frac{1}{d^d} \cdot \mathbb{E}_{z \in \{-1,1\}^d} \left[z_1 \cdots z_d \sum_{\tau \text{ bijective}} z_{\tau(1)} \cdots z_{\tau(d)} \cdot \prod_{j=1}^d x_j^{v_{\tau(j)}} \right]$$

$$= \frac{1}{d^d} \sum_{\tau \text{ bijective}} \prod_{j=1}^d x_j^{v_{\tau(j)}}$$

$$= \frac{d!}{d^d} \cdot \mathbb{E}_{\tau \text{ bijective}} \left[\prod_{j=1}^d x_j^{v_{\tau(j)}} \right],$$

where the first equality is because each $z_i \in \{-1, 1\}$ appears twice and $z_i^2 = 1$.

We now prove Theorem 9.

Proof of Theorem 9. First we apply Claim 11 (3) with $v = 1^k 0^{d-k}$. We have

$$\frac{d^d}{d!} \cdot A_{1^k 0^{d-k}} \chi_S(x) = \mathbb{E}_{\tau \text{ bijective}} \left[\prod_{j \in S} x_j^{v_{\tau(j)}} \right] = \frac{1}{\binom{d}{k}} \sum_{T \subseteq S : |T| = k} \chi_T(x).$$

Because δ is symmetric, the coefficients $\hat{\delta}(T)$ are equal for subsets T of the same size. So,

$$\sum_{k=0}^{d} \hat{\delta}(\{1,\ldots,k\}) \sum_{T \subseteq S: |T|=k} \chi_T(x) = \sum_{k=0}^{d} \hat{\delta}(\{1,\ldots,k\}) \binom{d}{k} \cdot \frac{d^d}{d!} A_{1^{k}0^{d-k}} \chi_S(x).$$

Hence we can express the error term as

$$\sum_{|S|=d} \hat{p}(S)\delta(x_S) = \sum_{|S|=d} \hat{p}(S) \sum_{k=0}^d \binom{d}{k} \hat{\delta}(\{1,\dots,k\}) \sum_{T \subseteq S,|S|=k} \chi_T(x)$$
$$= \sum_{|S|=d} \hat{p}(S) \sum_{k=0}^d \binom{d}{k} \hat{\delta}(\{1,\dots,k\}) \cdot \frac{d^d}{d!} \cdot A_{1^k 0^{d-k}} \chi_S(x)$$
$$= \frac{d^d}{d!} \sum_{k=0}^d \binom{d}{k} \hat{\delta}(\{1,\dots,k\}) \cdot A_{1^k 0^{d-k}} \Big(\sum_{|S|=d} \hat{p}(S) \chi_S(x)\Big)$$
$$= \frac{d^d}{d!} \sum_{k=0}^d \binom{d}{k} \hat{\delta}(\{1,\dots,k\}) \cdot A_{1^k 0^{d-k}} p(x).$$

where the last equality is because $A_{1^k0^{d-k}}$ is linear. Since $||A_vp||_{\infty} \leq ||p||_{\infty} \leq 1$, we have

$$\Big|\sum_{|S|=d} \hat{p}(S)\delta(x_S)\Big| \le \frac{d^d}{d!} \|\hat{\delta}\|_1.$$

To generalize the proof to real-valued inputs X'^n , where $X' = [-1.1, -0.9] \cup [0.9, 1.1]$. In the definition of the operator A_v , we replace $v \in \{0, 1\}^d$ with $v \in \mathbb{N}^d$, and the *j*-th argument of the input for *f* becomes

$$\frac{1}{d} \sum_{i=1}^{d} z_i x_j (x_j^2 - 1)^{v_i} \cdot 4^{v_i}.$$

This term is bounded by 1 in absolute value for $x \in X'^n$, hence Property (2) in Claim 11 still holds. Finally, Property (3) in Claim 11 becomes

$$A_{v}\chi_{S}(x) = \frac{d!}{d^{d}} \mathbb{E}_{\tau: S \to \{1, \dots, d\} \text{ bijective}} \left[\prod_{j \in S} x_{j} (x_{j}^{2} - 1)^{v_{\tau(j)}} \right] \cdot 4^{v_{1} + \dots + v_{d}}.$$

Similarly, for the specific δ in Equation (1) we can prove

$$\sum_{|S|=d} \hat{p}(S)\delta(x_S) = \sum_{|S|=d} \hat{p}(S) \sum_{v_1+\dots+v_d>d'} \binom{-1/2}{v_1} \cdots \binom{-1/2}{v_d} 4^{-(v_1+\dots+v_d)} \frac{d^d}{d!} A_v \chi_S(x)$$
$$= \sum_{v_1+\dots+v_d>d'} \binom{-1/2}{v_1} \cdots \binom{-1/2}{v_d} 4^{-(v_1+\dots+v_d)} \frac{d^d}{d!} A_v p(x),$$

which can be bounded by $2^{-\Omega(d)}$ given $d' = C \cdot d$ for sufficiently large C.

References

[She13] Alexander A. Sherstov. Making polynomials robust to noise. *Theory* of Computing, 2013.