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1.1 Robustifying polynomials

In this lecture, we show how to make a polynomial robust to noise by proving
the following theorem by Sherstov [She13].

Theorem 1. Let p : {−1, 1}n → [−1, 1] be a degree-d polynomial. There
exists an explicit degree-O(d) polynomial p̃ : Rn → R such that for every
x ∈ Xn, where X = [−4/3,−2/3] ∪ [2/3, 4/3],

|p(sgn(x1), sgn(x2), . . . , sgn(xn))− p̃(x)| ≤ 2−Ω(d).

We will prove Theorem 1 in 3 steps: where (1) p is a monomial, (2) p is
a homogeneous polynomial of degree d, i.e., every monomial of p has degree
exactly d, and (3) p is a general polynomial. We first prove (1), then prove
(3) assuming (2), and defer the proof of (2) to the end.

1.2 Monomial

Let us now consider the case when p(x) :=
∏d

i=1 xj is the parity function.
We will use the following Taylor’s expansion of the function (1 + t)α.

Claim 2. For every t ∈ (−1, 1) and α ∈ R, we have (1 + t)α =
∑∞

i=0

(
α
i

)
ti,

where
(
α
i

)
:= α(α−1)···(α−i+1)

1·2···i is the extension of the binomial coefficients to
the real numbers.

Using Claim 2, we obtain the follow Taylor’s expansion for sgn(t).

Claim 3. For 0 < |t| <
√

2, sgn(t) = t
∑∞

i=0

(−1/2
i

)
(t2 − 1)i.

Proof.

sgn(t) =
t√
t2

=
t√

(1 + (t2 − 1))
= t

∞∑
i=0

(
−1/2

i

)
(t2 − 1)i.

�
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We can now derive the Taylor approximation of
∏d

j=1 sgn(xj):

d∏
j=1

sgn(xj) =
d∏
j=1

(
xj

∞∑
i=0

(
−1/2

i

)
(x2

j − 1)i

)

=
( d∏
j=1

xj

) ∑
0≤i1,...,id≤∞

d∏
j=1

(
−1/2

ij

)
(x2

j − 1)ij .

We now define p̃. Let d′ = Cd for a sufficiently large constant C. We
define p̃ : Rn → R to be the truncation of the above infinite series up to the
indices that satisfy i1 + · · ·+ id ≤ d′, that is,

p̃(x1, . . . , xd) :=
( d∏
j=1

xj

) ∑
i1+···+id≤d′

d∏
j=1

(
−1/2

ij

)
(x2

j − 1)ij .

Clearly, p̃ has degree d + 2d′ = O(d). It remains to analyze the approxi-
mation error. First we need a simple bound for

(−1/2
ij

)
.

Claim 4. For every k ≥ 1,
(−1/2

k

)
= (−4)−k

(
2k
k

)
≤ 1/2.

Proof. By definition,(
−1/2

k

)
=

(−1/2) · (−3/2) · · · (−1/2− k + 1)

k!

= 2−k · 1 · 3 · · · (2k − 1)

k!

= 2−k · 1

2kk!
· (2k)!

k!

= (−4)−k
(

2k

k

)
.

The inequality follows from
(

2k
k

)
≤ 22k/2. �

Note that the approximation error δ(x) :=
∏d

j=1 sgn(xj) − p̃(x1, . . . , xd)
is simply the remaining sum in the infinite series after the truncation, that
is

δ(x) =
( d∏
j=1

xj

) ∑
i1+···+id>d′

d∏
j=1

(
−1/2

ij

)
(x2

j − 1)ij . (1)
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The R.H.S. is at most∣∣∣ d∏
j=1

xj

∣∣∣ · ∣∣∣ ∑
i1+···+id>d′

d∏
j=1

(
−1/2

ij

)
(x2

j − 1)ij
∣∣∣ ≤ (4/3)d

∑
i1+···+id>d′

d∏
j=1

(
−1/2

ij

)
|x2
j − 1|ij

≤ (4/3)d · (1/2)d
∑

i1+···+id>d′

d∏
j=1

|x2
j − 1|ij

≤
∑

i1+···+id>d′
(7/9)i1+···+id ,

The first inequality is because |xj| ≤ 4/3 for x ∈ X. The second inequality
is because of Claim 4, and the last inequality is because |x2

j − 1| ≤ 7/9 for
x ∈ X.

Now, for every k, there are
(
k+d−1
d

)
choices of i1, . . . , id for which i1 + · · ·+

id = k. Hence, the summation is equal to

∞∑
k=d′+1

∑
i1+···+id=k

(7/9)k =
∞∑

k=d′+1

(
k + d− 1

k

)
(7/9)k

≤
∞∑

k=d′+1

(2k)d(7/9)k

= 2−Ω(d′).

This finishes the proof for the case when p is a monomial.

1.3 General case assuming homogeneous case

We now prove Theorem 1 assuming the same conclusion holds for case (2),
when p is a homogeneous polynomial.

First we can rewrite p as p =
∑d

i=0 pi, where pi is the degree-i homoge-
neous polynomial of p. Note that while p is bounded by 1, pi may not be. So,
we instead apply Theorem 1 to pi/‖pi‖∞, where ‖pi‖∞ := maxx∈{−1,1} |pi(x)|,
and obtain p̃i such that

max
x∈Xn

|p̃i(x)− pi(sgn(x1), sgn(x2), . . . , sgn(xn))| ≤ ‖pi‖∞ · 2−Ω(d).
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If we assume
∑d

i=0‖pi‖∞ ≤ 2O(d) and define p̃ :=
∑d

i=0 p̃i, then we have

|p(sgn(x1), . . . , sgn(xn))− p̃(x)| ≤
d∑
i=0

|pi(sgn(x1), . . . , sgn(xn))− p̃(x)|

≤
d∑
i=0

‖pi‖∞ · 2−Ω(d)

≤ (d+ 1) · 4d · 2−Ω(d)

≤ 2−Ω(d).

We now prove that
∑d

i=0‖pi‖∞ ≤ 2O(d) whenever p has output [−1, 1]. We
first prove the result for univariate polynomials and then reduce the above
problem to it. The univariate version in fact follows by a theorem due to
Vladimir Markov which gives a tight upper bound [?]:

Theorem 5. If p : [−1, 1] → [−1, 1] is a univariate degree-d polynomial,
then the sum of its d+ 1 coefficients in absolute values is bounded by O((1 +√

2)d/
√
d).

We now prove the theorem above with the upper bound replaced by the
crude bound of 2O(d), which is sufficient for our purpose.

Claim 6. If p : [−1, 1] → [−1, 1] is a univariate degree-d polynomial, then
the sum of its coefficients in absolute values is at most 2O(d).

Proof. Let t0, t1, . . . , td be the d + 1 points that are evenly spaced in the
interval [−1, 1], so ti := −1 + 2i/t. By interpolation, we can write p as

p(t) =
d∑
i=0

p(ti)

∏
j 6=i(t− tj)∏
j 6=i(ti − tj)

.

We first bound below
∏d

j 6=i(ti − tj). Since every distinct pair ti and tj differ
by 2/d, This product is smallest when ti is closest to 0, and so is at least
(2/d)d(d

2
)!2 when d is even and is at least (2/d)d(d+1

2
)(d−1

2
)!2 when d is odd.

By Stirling’s formula, in both cases we have

d∏
j 6=i

(ti − tj) ≥ (2/d)d(d/2e)d ≥ e−d.
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Hence the sum of the coefficients in absolute values is at most

ed
d∑
i=0

∏
j 6=i

(1 + |tj|) ≤ (d+ 1)(2e)d ≤ 2O(d).

�

We now bound above
∑d

i=0‖pi‖∞ by a reduction to Claim 6.

Claim 7.
∑d

i=0‖pi‖∞ ≤ 2O(d).

Proof. Fix any x ∈ {−1, 1}n. Define the univariate polynomial qx : [−1, 1]→
[−1, 1] by qx(t) :=

∑d
i=0 pi(x) · ti. We will show that |qx(t)| ≤ 1 for every

x ∈ {−1, 1}n. Then the rest simply follows from Claim 6.
Let Z = (Z1, . . . , Zn) ∈ {−1, 1}n be independent random variables with

E[Zi] = t. Write p in its Fourier expansion p(x) =
∑
|S|≤d p̂(S)

∏
i∈S xi. We

have

EZ [p(x1Z1, . . . , xnZn)] = EZ

[ ∑
|S|≤d

p̂(S)
∏
i∈S

xiZi

]
=
∑
|S|≤d

p̂(S)
∏
i∈S

xi ·
∏
i∈S

EZ [Zi]

=
∑
|S|≤d

p̂(S)
∏
i∈S

xi · t|S|

=
d∑
i=0

pi(x)ti

= qx(t).

This shows |qx(t)| ≤ 1 as the L.H.S. is at most maxy∈{−1,1}n |p(y)| ≤ 1. �

1.4 Homogeneous polynomial

Let p : {−1, 1}n → [−1, 1] be a homogeneous polynomial of degree d. We can
write p as p(x) =

∑
|S|=d p̂(S)χS(x), where χS(x) :=

∏
j∈S xj. In this way we

can regard p as a function from Rn to R. We will apply the robustification
in the monomial case to each χS. More specifically, we define p̃ to be p̃(x) :=
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∑
|S|=d p̂(S)χ̃S(x). Let δ(xS) be the approximation error of χ̃S, i.e., the

expression in Equation (1). Then ∀x ∈ Xn,

|p(sgn(x1), sgn(x2), . . . , sgn(xn))− p̃(x)| =
∣∣∣ ∑
|S|=d

p̂(S)
(∏
j∈S

sgn(xj)−
∏
j∈S

xj
)∣∣∣

=
∣∣∣ ∑
|S|=d

p̂(S)δ(xS)
∣∣∣.

Therefore to prove Theorem 1 in the homogeneous case we need to show

maxx∈Xn

∣∣∣∑|S|=d p̂(S)δ(xS)
∣∣∣ ≤ 2−Ω(d).

We first show that one cannot get anything just by näıvely summing up
all the error δ(xS) for each S.

Claim 8. There exists a homogeneous degree-d polynomial p : {−1, 1}n →
[−1, 1] such that p̂(S) = ±(2n

(
n
d

)
)−1/2.

The error of p̃ for the polynomial p in the claim would be
∑
|S|=d |p̂(S)| ·

2−Ω(d) =
(
n
d

)
(2n
(
n
d

)
)−1/2 · 2−Ω(d) > 1.

1.4.1 Error cancellation

We now do a more refined analysis on the error by proving the following
theorem, showing that the errors in different terms in fact cancel out each
other.

Theorem 9.(Warm-up) Let p : {−1, 1}n → [−1, 1] be a homogeneous degree-
d polynomial. Let δ : {−1, 1}d → R be a symmetric function. Then

max
x∈{−1,1}n

∣∣∣ ∑
|S|=d

p̂(S)δ(xS)
∣∣∣ ≤ dd

d!
‖δ̂‖1,

where ‖δ̂‖1 =
∑

S |δ̂(S)| is the sum of the magnitude of the coefficients in

the Fourier expansion of δ(x) =
∑

S δ̂(S)
∏

j∈S xj.

For the specific δ given in Equation (1) we have ‖δ̂‖1 ≤ 2−Cd. Hence the
maximum error is dd/d! · 2−Cd ≤ 2−Ω(d) for a sufficiently large constant C.

But this is only a warm-up theorem: the maximum is taken over {−1, 1}n
instead of Xn. At the end we will briefly mention the changes required to
prove Theorem 1 in the homogeneous case.
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The crucial tool in proving Theorem 9 is the following operator.

Definition 10. For every v ∈ {0, 1}d, we define the operator Av : R{−1,1}n →
R{−1,1}n by

(Avf)(x) = Ez∼{−1,1}d

[
z1 · · · zd f

(1

d

d∑
i=1

zix
vi
1 , . . . ,

1

d

d∑
i=1

zix
vi
n

)]
.

Note that we can identify f with its multilinear extension on [−1, 1]n

using its Fourier expansion so the term “f
(

1
d

∑d
i=1 zix

vi
1 , . . . ,

1
d

∑d
i=1 zix

vi
n

)
”

makes sense. We will use the following properties of Av.

Claim 11. The operator Av is
(1) linear;
(2) for every f we have ‖Avf‖∞ ≤ ‖f‖∞, and
(3) for every subset S ⊆ {1, . . . , n} of size d,

AvχS(x) =
d!

dd
· Eτ : S→{1,...d} bijective

[∏
j∈S

x
vτ(j)
j

]
.

Proof. (1) is clear.
For (2), we have for every x ∈ {−1, 1}n,

|(Avf)(x)| =

∣∣∣∣∣Ez∼{−1,1}d

[
z1 · · · zd f

(1

d

d∑
i=1

zix
vi
1 , . . . ,

1

d

d∑
i=1

zix
vi
n

)]∣∣∣∣∣
≤ Ez∼{−1,1}d

[∣∣∣f(1

d

d∑
i=1

zix
vi
1 , . . . ,

1

d

d∑
i=1

zix
vi
n

)∣∣∣]
≤ max

x∈[−1,1]n
|f(x)|.

It remains to show that maxx∈[−1,1]n f(x) ≤ maxx∈{−1,1}n f(x). This fol-
lows from the following claim, which says for multilinear polynomials, the
maximum value can always be attained in {−1, 1}n.

Claim 12. Let p : [−1, 1]n → [−1, 1] be any multilinear polynomial. Then
maxx∈[−1,1]n |p(x)| = maxx∈{−1,1} |p(x)|.
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Proof. It suffices to show that maxx∈[−1,1]n |p(x)| ≤ maxx∈{−1,1} |p(x)|. Fix
any x = (x1, . . . , xn) ∈ [−1, 1]n. Let X = (X1, . . . , Xn) ∈ {−1, 1}n be n
independent random variables with E[Xi] = xi for each i ∈ {1, 2, . . . , n}.
Since p is multilinear, we have that E[p(X)] = p(x). Hence there exists a
fixing of X ∈ {−1, 1}n such that p(x) ≤ p(X). �

For (3), without loss of generality assume S = {1, . . . , d}. Then

AvχS(x) = Ez∈{−1,1}d

[
z1 · · · zd

d∏
j=1

(1

d

d∑
i=1

zix
vi
j

)]

=
1

dd
· Ez∈{−1,1}d

[
z1 · · · zd

∑
1≤i1,...,id≤d

zi1 · · · zid ·
d∏
j=1

x
vij
j

]
.

If some zk does not appear in the product zi1 · · · zid , then we can factor out
E[zk] from the expression and so the whole summand is zero. Hence the
summation only contains terms that are distinct, i.e., zij = zτ(j) for some
permutation τ . So the expression becomes

1

dd
· Ez∈{−1,1}d

[
z1 · · · zd

∑
τ bijective

zτ(1) · · · zτ(d) ·
d∏
j=1

x
vτ(j)
j

]

=
1

dd

∑
τ bijective

d∏
j=1

x
vτ(j)
j

=
d!

dd
· Eτ bijective

[ d∏
j=1

x
vτ(j)
j

]
,

where the first equality is because each zi ∈ {−1, 1} appears twice and z2
i =

1. �

We now prove Theorem 9.

Proof of Theorem 9. First we apply Claim 11 (3) with v = 1k0d−k. We have

dd

d!
· A1k0d−kχS(x) = Eτ bijective

[∏
j∈S

x
vτ(j)
j

]
=

1(
d
k

) ∑
T⊆S:|T |=k

χT (x).
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Because δ is symmetric, the coefficients δ̂(T ) are equal for subsets T of the
same size. So,

d∑
k=0

δ̂({1, . . . , k})
∑

T⊆S:|T |=k

χT (x) =
d∑

k=0

δ̂({1, . . . , k})
(
d

k

)
· d

d

d!
A1k0d−kχS(x).

Hence we can express the error term as

∑
|S|=d

p̂(S)δ(xS) =
∑
|S|=d

p̂(S)
d∑

k=0

(
d

k

)
δ̂({1, . . . , k})

∑
T⊆S,|S|=k

χT (x)

=
∑
|S|=d

p̂(S)
d∑

k=0

(
d

k

)
δ̂({1, . . . , k}) · d

d

d!
· A1k0d−kχS(x)

=
dd

d!

d∑
k=0

(
d

k

)
δ̂({1, . . . , k}) · A1k0d−k

( ∑
|S|=d

p̂(S)χS(x)
)

=
dd

d!

d∑
k=0

(
d

k

)
δ̂({1, . . . , k}) · A1k0d−kp(x).

where the last equality is because A1k0d−k is linear. Since ‖Avp‖∞ ≤ ‖p‖∞ ≤
1, we have ∣∣∣ ∑

|S|=d

p̂(S)δ(xS)
∣∣∣ ≤ dd

d!
‖δ̂‖1.

�

To generalize the proof to real-valued inputsX ′n, whereX ′ = [−1.1,−0.9]∪
[0.9, 1.1]. In the definition of the operator Av, we replace v ∈ {0, 1}d with
v ∈ Nd, and the j-th argument of the input for f becomes

1

d

d∑
i=1

zixj(x
2
j − 1)vi · 4vi .

This term is bounded by 1 in absolute value for x ∈ X ′n, hence Property (2)
in Claim 11 still holds. Finally, Property (3) in Claim 11 becomes

AvχS(x) =
d!

dd
Eτ : S→{1,...,d} bijective

[∏
j∈S

xj(x
2
j − 1)vτ(j)

]
· 4v1+···+vd .
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Similarly, for the specific δ in Equation (1) we can prove

∑
|S|=d

p̂(S)δ(xS) =
∑
|S|=d

p̂(S)
∑

v1+···+vd>d′

(
−1/2

v1

)
· · ·
(
−1/2

vd

)
4−(v1+···+vd)d

d

d!
AvχS(x)

=
∑

v1+···+vd>d′

(
−1/2

v1

)
· · ·
(
−1/2

vd

)
4−(v1+···+vd)d

d

d!
Avp(x),

which can be bounded by 2−Ω(d) given d′ = C · d for sufficiently large C.
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