Special Topics in Complexity Theory, Fall 2017. Instructor: Emanuele Viola

1 Xuangui Huang's presentation, Scribe: Chin Ho Lee

1.1 Robustifying polynomials

In this lecture, we show how to make a polynomial robust to noise by proving the following theorem by Sherstov She13].

Theorem 1. Let $p:\{-1,1\}^{n} \rightarrow[-1,1]$ be a degree- d polynomial. There exists an explicit degree- $O(d)$ polynomial $\tilde{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that for every $x \in X^{n}$, where $X=[-4 / 3,-2 / 3] \cup[2 / 3,4 / 3]$,

$$
\left|p\left(\operatorname{sgn}\left(x_{1}\right), \operatorname{sgn}\left(x_{2}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)-\tilde{p}(x)\right| \leq 2^{-\Omega(d)}
$$

We will prove Theorem 1 in 3 steps: where (1) p is a monomial, (2) p is a homogeneous polynomial of degree d, i.e., every monomial of p has degree exactly d, and (3) p is a general polynomial. We first prove (1), then prove (3) assuming (2), and defer the proof of (2) to the end.

1.2 Monomial

Let us now consider the case when $p(x):=\prod_{i=1}^{d} x_{j}$ is the parity function. We will use the following Taylor's expansion of the function $(1+t)^{\alpha}$.
Claim 2. For every $t \in(-1,1)$ and $\alpha \in \mathbb{R}$, we have $(1+t)^{\alpha}=\sum_{i=0}^{\infty}\binom{\alpha}{i} t^{i}$, where $\binom{\alpha}{i}:=\frac{\alpha(\alpha-1) \cdots(\alpha-i+1)}{1 \cdot 2 \cdots i}$ is the extension of the binomial coefficients to the real numbers.

Using Claim 2, we obtain the follow Taylor's expansion for $\operatorname{sgn}(t)$.
Claim 3. For $0<|t|<\sqrt{2}, \operatorname{sgn}(t)=t \sum_{i=0}^{\infty}\binom{-1 / 2}{i}\left(t^{2}-1\right)^{i}$.
Proof.

$$
\operatorname{sgn}(t)=\frac{t}{\sqrt{t^{2}}}=\frac{t}{\sqrt{\left(1+\left(t^{2}-1\right)\right)}}=t \sum_{i=0}^{\infty}\binom{-1 / 2}{i}\left(t^{2}-1\right)^{i}
$$

We can now derive the Taylor approximation of $\prod_{j=1}^{d} \operatorname{sgn}\left(x_{j}\right)$:

$$
\begin{aligned}
\prod_{j=1}^{d} \operatorname{sgn}\left(x_{j}\right) & =\prod_{j=1}^{d}\left(x_{j} \sum_{i=0}^{\infty}\binom{-1 / 2}{i}\left(x_{j}^{2}-1\right)^{i}\right) \\
& =\left(\prod_{j=1}^{d} x_{j}\right) \sum_{0 \leq i_{1}, \ldots, i_{d} \leq \infty} \prod_{j=1}^{d}\binom{-1 / 2}{i_{j}}\left(x_{j}^{2}-1\right)^{i_{j}} .
\end{aligned}
$$

We now define \tilde{p}. Let $d^{\prime}=C d$ for a sufficiently large constant C. We define $\tilde{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be the truncation of the above infinite series up to the indices that satisfy $i_{1}+\cdots+i_{d} \leq d^{\prime}$, that is,

$$
\tilde{p}\left(x_{1}, \ldots, x_{d}\right):=\left(\prod_{j=1}^{d} x_{j}\right) \sum_{i_{1}+\cdots+i_{d} \leq d^{\prime}} \prod_{j=1}^{d}\binom{-1 / 2}{i_{j}}\left(x_{j}^{2}-1\right)^{i_{j}} .
$$

Clearly, \tilde{p} has degree $d+2 d^{\prime}=O(d)$. It remains to analyze the approximation error. First we need a simple bound for $\binom{-1 / 2}{i_{j}}$.
Claim 4. For every $k \geq 1,\binom{-1 / 2}{k}=(-4)^{-k}\binom{2 k}{k} \leq 1 / 2$.
Proof. By definition,

$$
\begin{aligned}
\binom{-1 / 2}{k} & =\frac{(-1 / 2) \cdot(-3 / 2) \cdots(-1 / 2-k+1)}{k!} \\
& =2^{-k} \cdot \frac{1 \cdot 3 \cdots(2 k-1)}{k!} \\
& =2^{-k} \cdot \frac{1}{2^{k} k!} \cdot \frac{(2 k)!}{k!} \\
& =(-4)^{-k}\binom{2 k}{k} .
\end{aligned}
$$

The inequality follows from $\binom{2 k}{k} \leq 2^{2 k} / 2$.
Note that the approximation error $\delta(x):=\prod_{j=1}^{d} \operatorname{sgn}\left(x_{j}\right)-\tilde{p}\left(x_{1}, \ldots, x_{d}\right)$ is simply the remaining sum in the infinite series after the truncation, that is

$$
\begin{equation*}
\delta(x)=\left(\prod_{j=1}^{d} x_{j}\right) \sum_{i_{1}+\cdots+i_{d}>d^{\prime}} \prod_{j=1}^{d}\binom{-1 / 2}{i_{j}}\left(x_{j}^{2}-1\right)^{i_{j}} . \tag{1}
\end{equation*}
$$

The R.H.S. is at most

$$
\begin{aligned}
\left|\prod_{j=1}^{d} x_{j}\right| \cdot\left|\sum_{i_{1}+\cdots+i_{d}>d^{\prime}} \prod_{j=1}^{d}\binom{-1 / 2}{i_{j}}\left(x_{j}^{2}-1\right)^{i_{j}}\right| & \leq(4 / 3)^{d} \sum_{i_{1}+\cdots+i_{d}>d^{\prime}} \prod_{j=1}^{d}\binom{-1 / 2}{i_{j}}\left|x_{j}^{2}-1\right|^{i_{j}} \\
& \leq(4 / 3)^{d} \cdot(1 / 2)^{d} \sum_{i_{1}+\cdots+i_{d}>d^{\prime}} \prod_{j=1}^{d}\left|x_{j}^{2}-1\right|^{i_{j}} \\
& \leq \sum_{i_{1}+\cdots+i_{d}>d^{\prime}}(7 / 9)^{i_{1}+\cdots+i_{d}}
\end{aligned}
$$

The first inequality is because $\left|x_{j}\right| \leq 4 / 3$ for $x \in X$. The second inequality is because of Claim 4, and the last inequality is because $\left|x_{j}^{2}-1\right| \leq 7 / 9$ for $x \in X$.

Now, for every k, there are $\binom{k+d-1}{d}$ choices of i_{1}, \ldots, i_{d} for which $i_{1}+\cdots+$ $i_{d}=k$. Hence, the summation is equal to

$$
\begin{aligned}
\sum_{k=d^{\prime}+1}^{\infty} \sum_{i_{1}+\cdots+i_{d}=k}(7 / 9)^{k} & =\sum_{k=d^{\prime}+1}^{\infty}\binom{k+d-1}{k}(7 / 9)^{k} \\
& \leq \sum_{k=d^{\prime}+1}^{\infty}(2 k)^{d}(7 / 9)^{k} \\
& =2^{-\Omega\left(d^{\prime}\right)}
\end{aligned}
$$

This finishes the proof for the case when p is a monomial.

1.3 General case assuming homogeneous case

We now prove Theorem 1 assuming the same conclusion holds for case (2), when p is a homogeneous polynomial.

First we can rewrite p as $p=\sum_{i=0}^{d} p_{i}$, where p_{i} is the degree- i homogeneous polynomial of p. Note that while p is bounded by $1, p_{i}$ may not be. So, we instead apply Theorem 1 to $p_{i} /\left\|p_{i}\right\|_{\infty}$, where $\left\|p_{i}\right\|_{\infty}:=\max _{x \in\{-1,1\}}\left|p_{i}(x)\right|$, and obtain \tilde{p}_{i} such that

$$
\max _{x \in X^{n}}\left|\tilde{p}_{i}(x)-p_{i}\left(\operatorname{sgn}\left(x_{1}\right), \operatorname{sgn}\left(x_{2}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)\right| \leq\left\|p_{i}\right\|_{\infty} \cdot 2^{-\Omega(d)}
$$

If we assume $\sum_{i=0}^{d}\left\|p_{i}\right\|_{\infty} \leq 2^{O(d)}$ and define $\tilde{p}:=\sum_{i=0}^{d} \tilde{p}_{i}$, then we have

$$
\begin{aligned}
\left|p\left(\operatorname{sgn}\left(x_{1}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)-\tilde{p}(x)\right| & \leq \sum_{i=0}^{d}\left|p_{i}\left(\operatorname{sgn}\left(x_{1}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)-\tilde{p}(x)\right| \\
& \leq \sum_{i=0}^{d}\left\|p_{i}\right\|_{\infty} \cdot 2^{-\Omega(d)} \\
& \leq(d+1) \cdot 4^{d} \cdot 2^{-\Omega(d)} \\
& \leq 2^{-\Omega(d)}
\end{aligned}
$$

We now prove that $\sum_{i=0}^{d}\left\|p_{i}\right\|_{\infty} \leq 2^{O(d)}$ whenever p has output $[-1,1]$. We first prove the result for univariate polynomials and then reduce the above problem to it. The univariate version in fact follows by a theorem due to Vladimir Markov which gives a tight upper bound [?]:
Theorem 5. If $p:[-1,1] \rightarrow[-1,1]$ is a univariate degree- d polynomial, then the sum of its $d+1$ coefficients in absolute values is bounded by $O((1+$ $\left.\sqrt{2})^{d} / \sqrt{d}\right)$.

We now prove the theorem above with the upper bound replaced by the crude bound of $2^{O(d)}$, which is sufficient for our purpose.

Claim 6. If $p:[-1,1] \rightarrow[-1,1]$ is a univariate degree- d polynomial, then the sum of its coefficients in absolute values is at most $2^{O(d)}$.

Proof. Let $t_{0}, t_{1}, \ldots, t_{d}$ be the $d+1$ points that are evenly spaced in the interval $[-1,1]$, so $t_{i}:=-1+2 i / t$. By interpolation, we can write p as

$$
p(t)=\sum_{i=0}^{d} p\left(t_{i}\right) \frac{\prod_{j \neq i}\left(t-t_{j}\right)}{\prod_{j \neq i}\left(t_{i}-t_{j}\right)} .
$$

We first bound below $\prod_{j \neq i}^{d}\left(t_{i}-t_{j}\right)$. Since every distinct pair t_{i} and t_{j} differ by $2 / d$, This product is smallest when t_{i} is closest to 0 , and so is at least $(2 / d)^{d}\left(\frac{d}{2}\right)!^{2}$ when d is even and is at least $(2 / d)^{d}\left(\frac{d+1}{2}\right)\left(\frac{d-1}{2}\right)!^{2}$ when d is odd. By Stirling's formula, in both cases we have

$$
\prod_{j \neq i}^{d}\left(t_{i}-t_{j}\right) \geq(2 / d)^{d}(d / 2 e)^{d} \geq e^{-d}
$$

Hence the sum of the coefficients in absolute values is at most

$$
e^{d} \sum_{i=0}^{d} \prod_{j \neq i}\left(1+\left|t_{j}\right|\right) \leq(d+1)(2 e)^{d} \leq 2^{O(d)}
$$

We now bound above $\sum_{i=0}^{d}\left\|p_{i}\right\|_{\infty}$ by a reduction to Claim 6 .
Claim 7. $\sum_{i=0}^{d}\left\|p_{i}\right\|_{\infty} \leq 2^{O(d)}$.
Proof. Fix any $x \in\{-1,1\}^{n}$. Define the univariate polynomial $q_{x}:[-1,1] \rightarrow$ $[-1,1]$ by $q_{x}(t):=\sum_{i=0}^{d} p_{i}(x) \cdot t^{i}$. We will show that $\left|q_{x}(t)\right| \leq 1$ for every $x \in\{-1,1\}^{n}$. Then the rest simply follows from Claim 6 .

Let $Z=\left(Z_{1}, \ldots, Z_{n}\right) \in\{-1,1\}^{n}$ be independent random variables with $\mathbb{E}\left[Z_{i}\right]=t$. Write p in its Fourier expansion $p(x)=\sum_{|S| \leq d} \hat{p}(S) \prod_{i \in S} x_{i}$. We have

$$
\begin{aligned}
\mathbb{E}_{Z}\left[p\left(x_{1} Z_{1}, \ldots, x_{n} Z_{n}\right)\right] & =\mathbb{E}_{Z}\left[\sum_{|S| \leq d} \hat{p}(S) \prod_{i \in S} x_{i} Z_{i}\right] \\
& =\sum_{|S| \leq d} \hat{p}(S) \prod_{i \in S} x_{i} \cdot \prod_{i \in S} \mathbb{E}_{Z}\left[Z_{i}\right] \\
& =\sum_{|S| \leq d} \hat{p}(S) \prod_{i \in S} x_{i} \cdot t^{|S|} \\
& =\sum_{i=0}^{d} p_{i}(x) t^{i} \\
& =q_{x}(t) .
\end{aligned}
$$

1.4 Homogeneous polynomial

Let $p:\{-1,1\}^{n} \rightarrow[-1,1]$ be a homogeneous polynomial of degree d. We can write p as $p(x)=\sum_{|S|=d} \hat{p}(S) \chi_{S}(x)$, where $\chi_{S}(x):=\prod_{j \in S} x_{j}$. In this way we can regard p as a function from \mathbb{R}^{n} to \mathbb{R}. We will apply the robustification in the monomial case to each χ_{S}. More specifically, we define \tilde{p} to be $\tilde{p}(x):=$
$\sum_{|S|=d} \hat{p}(S) \tilde{\chi}_{S}(x)$. Let $\delta\left(x_{S}\right)$ be the approximation error of $\tilde{\chi}_{S}$, i.e., the expression in Equation (1). Then $\forall x \in X^{n}$,

$$
\begin{aligned}
\left|p\left(\operatorname{sgn}\left(x_{1}\right), \operatorname{sgn}\left(x_{2}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)-\tilde{p}(x)\right| & =\left|\sum_{|S|=d} \hat{p}(S)\left(\prod_{j \in S} \operatorname{sgn}\left(x_{j}\right)-\prod_{j \in S} x_{j}\right)\right| \\
& =\left|\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right)\right| .
\end{aligned}
$$

Therefore to prove Theorem 1 in the homogeneous case we need to show $\max _{x \in X^{n}}\left|\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right)\right| \leq 2^{-\Omega(d)}$.

We first show that one cannot get anything just by naïvely summing up all the error $\delta\left(x_{S}\right)$ for each S.

Claim 8. There exists a homogeneous degree-d polynomial $p:\{-1,1\}^{n} \rightarrow$ $[-1,1]$ such that $\hat{p}(S)= \pm\left(2 n\binom{n}{d}\right)^{-1 / 2}$.

The error of \tilde{p} for the polynomial p in the claim would be $\sum_{|S|=d}|\hat{p}(S)|$. $2^{-\Omega(d)}=\binom{n}{d}\left(2 n\binom{n}{d}\right)^{-1 / 2} \cdot 2^{-\Omega(d)}>1$.

1.4.1 Error cancellation

We now do a more refined analysis on the error by proving the following theorem, showing that the errors in different terms in fact cancel out each other.

Theorem 9.(Warm-up) Let $p:\{-1,1\}^{n} \rightarrow[-1,1]$ be a homogeneous degreed polynomial. Let $\delta:\{-1,1\}^{d} \rightarrow \mathbb{R}$ be a symmetric function. Then

$$
\max _{x \in\{-1,1\}^{n}}\left|\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right)\right| \leq \frac{d^{d}}{d!}\|\hat{\delta}\|_{1},
$$

where $\|\hat{\delta}\|_{1}=\sum_{S}|\hat{\delta}(S)|$ is the sum of the magnitude of the coefficients in the Fourier expansion of $\delta(x)=\sum_{S} \hat{\delta}(S) \prod_{j \in S} x_{j}$.

For the specific δ given in Equation (11) we have $\|\hat{\delta}\|_{1} \leq 2^{-C d}$. Hence the maximum error is $d^{d} / d!\cdot 2^{-C d} \leq 2^{-\Omega(d)}$ for a sufficiently large constant C.

But this is only a warm-up theorem: the maximum is taken over $\{-1,1\}^{n}$ instead of X^{n}. At the end we will briefly mention the changes required to prove Theorem 1 in the homogeneous case.

The crucial tool in proving Theorem 9 is the following operator.
Definition 10. For every $v \in\{0,1\}^{d}$, we define the operator $A_{v}: \mathbb{R}^{\{-1,1\}^{n}} \rightarrow$ $\mathbb{R}^{\{-1,1\}^{n}}$ by

$$
\left(A_{v} f\right)(x)=\mathbb{E}_{z \sim\{-1,1\}^{d}}\left[z_{1} \cdots z_{d} f\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{1}^{v_{i}}, \ldots, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{n}^{v_{i}}\right)\right] .
$$

Note that we can identify f with its multilinear extension on $[-1,1]^{n}$ using its Fourier expansion so the term " $f\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{1}^{v_{i}}, \ldots, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{n}^{v_{i}}\right)$ " makes sense. We will use the following properties of A_{v}.
Claim 11. The operator A_{v} is
(1) linear;
(2) for every f we have $\left\|A_{v} f\right\|_{\infty} \leq\|f\|_{\infty}$, and
(3) for every subset $S \subseteq\{1, \ldots, n\}$ of size d,

$$
A_{v} \chi_{S}(x)=\frac{d!}{d^{d}} \cdot \mathbb{E}_{\tau: S \rightarrow\{1, \ldots d\} \text { bijective }}\left[\prod_{j \in S} x_{j}^{v_{\tau(j)}}\right] .
$$

Proof. (1) is clear.
For (2), we have for every $x \in\{-1,1\}^{n}$,

$$
\begin{aligned}
\left|\left(A_{v} f\right)(x)\right| & =\left|\mathbb{E}_{z \sim\{-1,1\}^{d}}\left[z_{1} \cdots z_{d} f\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{1}^{v_{i}}, \ldots, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{n}^{v_{i}}\right)\right]\right| \\
& \leq \mathbb{E}_{z \sim\{-1,1\}^{d}}\left[\left|f\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{1}^{v_{i}}, \ldots, \frac{1}{d} \sum_{i=1}^{d} z_{i} x_{n}^{v_{i}}\right)\right|\right] \\
& \leq \max _{x \in[-1,1]^{n}}|f(x)| .
\end{aligned}
$$

It remains to show that $\max _{x \in[-1,1]^{n}} f(x) \leq \max _{x \in\{-1,1\}^{n}} f(x)$. This follows from the following claim, which says for multilinear polynomials, the maximum value can always be attained in $\{-1,1\}^{n}$.
Claim 12. Let $p:[-1,1]^{n} \rightarrow[-1,1]$ be any multilinear polynomial. Then $\max _{x \in[-1,1]^{n}}|p(x)|=\max _{x \in\{-1,1\}}|p(x)|$.

Proof. It suffices to show that $\max _{x \in[-1,1]^{n}}|p(x)| \leq \max _{x \in\{-1,1\}}|p(x)|$. Fix any $x=\left(x_{1}, \ldots, x_{n}\right) \in[-1,1]^{n}$. Let $X=\left(X_{1}, \ldots, X_{n}\right) \in\{-1,1\}^{n}$ be n independent random variables with $\mathbb{E}\left[X_{i}\right]=x_{i}$ for each $i \in\{1,2, \ldots, n\}$. Since p is multilinear, we have that $\mathbb{E}[p(X)]=p(x)$. Hence there exists a fixing of $X \in\{-1,1\}^{n}$ such that $p(x) \leq p(X)$.

For (3), without loss of generality assume $S=\{1, \ldots, d\}$. Then

$$
\begin{aligned}
A_{v} \chi_{S}(x) & =\mathbb{E}_{z \in\{-1,1\}^{d}}\left[z_{1} \cdots z_{d} \prod_{j=1}^{d}\left(\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{j}^{v_{i}}\right)\right] \\
& =\frac{1}{d^{d}} \cdot \mathbb{E}_{z \in\{-1,1\}^{d}}\left[z_{1} \cdots z_{d} \sum_{1 \leq i_{1}, \ldots, i_{d} \leq d} z_{i_{1}} \cdots z_{i_{d}} \cdot \prod_{j=1}^{d} x_{j}^{v_{i_{j}}}\right] .
\end{aligned}
$$

If some z_{k} does not appear in the product $z_{i_{1}} \cdots z_{i_{d}}$, then we can factor out $E\left[z_{k}\right]$ from the expression and so the whole summand is zero. Hence the summation only contains terms that are distinct, i.e., $z_{i_{j}}=z_{\tau(j)}$ for some permutation τ. So the expression becomes

$$
\begin{aligned}
& \frac{1}{d^{d}} \cdot \mathbb{E}_{z \in\{-1,1\}^{d}}\left[z_{1} \cdots z_{d} \sum_{\tau \text { bijective }} z_{\tau(1)} \cdots z_{\tau(d)} \cdot \prod_{j=1}^{d} x_{j}^{v_{\tau(j)}}\right] \\
= & \frac{1}{d^{d}} \sum_{\tau \text { bijective }} \prod_{j=1}^{d} x_{j}^{v_{\tau(j)}} \\
= & \frac{d!}{d^{d}} \cdot \mathbb{E}_{\tau \text { bijective }}\left[\prod_{j=1}^{d} x_{j}^{v_{\tau(j)}}\right],
\end{aligned}
$$

where the first equality is because each $z_{i} \in\{-1,1\}$ appears twice and $z_{i}^{2}=$ 1.

We now prove Theorem 9.
Proof of Theorem 9. First we apply Claim 11 (3) with $v=1^{k} 0^{d-k}$. We have

$$
\frac{d^{d}}{d!} \cdot A_{1^{k} 0^{d-k}} \chi_{S}(x)=\mathbb{E}_{\tau} \text { bijective }\left[\prod_{j \in S} x_{j}^{v_{\tau(j)}}\right]=\frac{1}{\binom{d}{k}} \sum_{T \subseteq S:|T|=k} \chi_{T}(x)
$$

Because δ is symmetric, the coefficients $\hat{\delta}(T)$ are equal for subsets T of the same size. So,

$$
\sum_{k=0}^{d} \hat{\delta}(\{1, \ldots, k\}) \sum_{T \subseteq S:|T|=k} \chi_{T}(x)=\sum_{k=0}^{d} \hat{\delta}(\{1, \ldots, k\})\binom{d}{k} \cdot \frac{d^{d}}{d!} A_{1^{k} 0^{d-k}} \chi_{S}(x)
$$

Hence we can express the error term as

$$
\begin{aligned}
\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right) & =\sum_{|S|=d} \hat{p}(S) \sum_{k=0}^{d}\binom{d}{k} \hat{\delta}(\{1, \ldots, k\}) \sum_{T \subseteq S,|S|=k} \chi_{T}(x) \\
& =\sum_{|S|=d} \hat{p}(S) \sum_{k=0}^{d}\binom{d}{k} \hat{\delta}(\{1, \ldots, k\}) \cdot \frac{d^{d}}{d!} \cdot A_{1^{k} 0^{d-k}} \chi_{S}(x) \\
& =\frac{d^{d}}{d!} \sum_{k=0}^{d}\binom{d}{k} \hat{\delta}(\{1, \ldots, k\}) \cdot A_{1^{k} 0^{d-k}}\left(\sum_{|S|=d} \hat{p}(S) \chi_{S}(x)\right) \\
& =\frac{d^{d}}{d!} \sum_{k=0}^{d}\binom{d}{k} \hat{\delta}(\{1, \ldots, k\}) \cdot A_{1^{k} 0^{d-k}} p(x) .
\end{aligned}
$$

where the last equality is because $A_{1^{k} 0^{d-k}}$ is linear. Since $\left\|A_{v} p\right\|_{\infty} \leq\|p\|_{\infty} \leq$ 1, we have

$$
\left|\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right)\right| \leq \frac{d^{d}}{d!}\|\hat{\delta}\|_{1} .
$$

To generalize the proof to real-valued inputs $X^{\prime n}$, where $X^{\prime}=[-1.1,-0.9] \cup$ $[0.9,1.1]$. In the definition of the operator A_{v}, we replace $v \in\{0,1\}^{d}$ with $v \in \mathbb{N}^{d}$, and the j-th argument of the input for f becomes

$$
\frac{1}{d} \sum_{i=1}^{d} z_{i} x_{j}\left(x_{j}^{2}-1\right)^{v_{i}} \cdot 4^{v_{i}}
$$

This term is bounded by 1 in absolute value for $x \in X^{\prime n}$, hence Property (2) in Claim 11 still holds. Finally, Property (3) in Claim 11 becomes

$$
A_{v} \chi_{S}(x)=\frac{d!}{d^{d}} \mathbb{E}_{\tau: S \rightarrow\{1, \ldots, d\} \text { bijective }}\left[\prod_{j \in S} x_{j}\left(x_{j}^{2}-1\right)^{v_{\tau(j)}}\right] \cdot 4^{v_{1}+\cdots+v_{d}}
$$

Similarly, for the specific δ in Equation (1) we can prove

$$
\begin{aligned}
\sum_{|S|=d} \hat{p}(S) \delta\left(x_{S}\right) & =\sum_{|S|=d} \hat{p}(S) \sum_{v_{1}+\cdots+v_{d}>d^{\prime}}\binom{-1 / 2}{v_{1}} \cdots\binom{-1 / 2}{v_{d}} 4^{-\left(v_{1}+\cdots+v_{d}\right)} \frac{d^{d}}{d!} A_{v} \chi_{S}(x) \\
& =\sum_{v_{1}+\cdots+v_{d}>d^{\prime}}\binom{-1 / 2}{v_{1}} \cdots\binom{-1 / 2}{v_{d}} 4^{-\left(v_{1}+\cdots+v_{d}\right)} \frac{d^{d}}{d!} A_{v} p(x),
\end{aligned}
$$

which can be bounded by $2^{-\Omega(d)}$ given $d^{\prime}=C \cdot d$ for sufficiently large C.

References

[She13] Alexander A. Sherstov. Making polynomials robust to noise. Theory of Computing, 2013.

