Sub-quadratic reductions

Detecting triangles = cycles of length 3 Input : G=(V,E) Output: True if there is a triangle in G, False otherwise.

Example: (a,b,d) is a triangle in:

Using Matrix Multiplication Input: Adjacency Matrix of G(V,E), M.

Recall: M^t_{i,j} = ?

Using Matrix Multiplication Input: Adjacency Matrix of G(V,E), M.

Recall: $M_{i,j}^{t}$ = number of paths of length t from i to j.

Algorithm: ?

Using Matrix Multiplication Input: Adjacency Matrix of G(V,E), M.

Recall: $M_{i,j}^{t}$ = number of paths of length t from i to j.

- Algorithm:
- Compute M³
- Check $M_{i,i}^3$ for all $1 \le i \le n$

if one of them is not zero return True otherwise return False

Running time: 2 $|V|^{\omega}$ + O(|V|) = O($|V|^{\omega}$).

Recall $\omega \le 2.37$

Can we do better for sparse graphs?

Detecting triangles Input : Adjacency List of G(V,E), Output: True if there is a triangle in G, False otherwise.

Main idea of algorithm:

First we check for a triangle that has a node of degree $\leq \Delta$.

Then we look for a triangle with three nodes of degree > Δ .

We can choose Δ as we please.

Triangles with some node with degree $\leq \Delta$ For each edge (u,v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u,v,w) is a triangle.

Time: ?

Triangles with some node with degree $\leq \Delta$ For each edge (u,v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u,v,w) is a triangle. Time: O(|E| • Δ)

Triangles with every node with degree > Δ Sum of degrees = ?

Triangles with some node with degree $\leq \Delta$ For each edge (u,v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u,v,w) is a triangle. Time: O(|E| • Δ)

Triangles with every node with degree > Δ Sum of degrees = 2|E|. So there are \leq ?????? nodes with degree > Δ

Triangles with some node with degree $\leq \Delta$ For each edge (u,v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u,v,w) is a triangle. Time: O(|E| • Δ)

Triangles with every node with degree > Δ Sum of degrees = 2|E|. So there are \leq 2|E|/ Δ nodes with degree > Δ Hence using matrix multiplication this takes ???

Triangles with some node with degree $\leq \Delta$ For each edge (u,v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u,v,w) is a triangle. Time: O(|E| • Δ)

Triangles with every node with degree > Δ Sum of degrees = 2|E|. So there are \leq 2|E|/ Δ nodes with degree > Δ Hence using matrix multiplication this takes O((|E|/ Δ)^{ω}).

Overall: O(|E| Δ + (|E|/ Δ) ω) = = |E| ^{1 + (ω - 1)/(ω +1) + |E| ω (1 - (ω - 1)/(ω +1)) = |E|^{2 ω / (ω + 1) < |E|^{1.41} using ω < 2.38}} Recap: Can detect triangles in time $O(|E|^{2 \omega / (\omega + 1)})$

So detecting triangles in time $|E|^{4/3}$ reduces to multiplying n x n matrices in time O(n²)

Before trying to prove $\omega = 2$ you may want to try to detect triangles in time $|E|^{4/3}$

3SUM

Input: A set of numbers S, |S|=n. Size of numbers = $n^{O(1)}$ Output: 1, if there are a,b,c \in S such that a+b+c=0, 0, otherwise.

How long to solve 3SUM?

3SUM

- Input: A set of numbers S, |S|=n. Size of numbers = $n^{O(1)}$ Output: 1, if there are a,b,c \in S such that a+b+c=0, 0, otherwise.
- We can solve 3SUM in time $O(n^2)$.
- It is believed that n² is optimal
- Next: detecting triangles in time t reduces to solving 3SUM in time O(t).

So, solving 3SUM in time $n^{1.4}$ would beat best-known triangle-detection algorithms (which run in $n^{1.41}$ time)

Next: detecting triangles in time t reduces to solving 3SUM in time O(t).

- The reduction is randomized.
- We are going to give an algorithm R such that: if there is a triangle, R accepts with probability 1, otherwise R accepts with probability ≤ 1/100
- This gap can be amplified arbitrarily by ????

Next: detecting triangles in time t reduces to solving 3SUM in time O(t).

- The reduction is randomized.
- We are going to give an algorithm R such that: if there is a triangle, R accepts with probability 1, otherwise R accepts with probability ≤ 1/100
- This gap can be amplified arbitrarily by repeating the algorithm a few times and taking Or
- It is possible to make R deterministic; we sketch that later

Detecting Triangles Input: Adjacency list of graph G(V,E). |E|=m. Output: 1 if there is a triangle, 0 otherwise

Algorithm R:

1. Uniformly and independently assign a u-bit number to each node: $\forall \ a \in V, \ X_a \in \{0,1\}^u$

2. For each edge (a,b) \in E, compute $Y_{(a,b)} {=} (X_a - X_b)$ and $Y_{(b,a)} {=} (X_b - X_a).$

3. Return answer of 3SUM on set Y:={ $Y_{(a,b)}, Y_{(b,a)}$ | (a,b) \in E}.

Analysis of R

- Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.
- Note: graph is undirected, but the input is imposing an order which we eliminate by computing both Y_(a,b), Y_(b,a).
- The 3SUM instance contains numbers

$$Y_{(a,b)} + Y_{(b,c)} + Y_{(c,a)} = (X_a - X_b) + (X_c - X_b) + (X_c - X_a)$$

What is the probability that the sum will be 0?

Analysis of R

- Suppose there is a triangle in G, say {(a,b), (c,b), (c,a)}.
- Note: graph is undirected, but the input is imposing an order which we eliminate by computing both Y_(a,b), Y_(b,a).
- The 3SUM instance contains numbers

$$Y_{(a,b)}+Y_{(b,c)}+Y_{(c,a)} = (X_a - X_b) + (X_c - X_b) + (X_c - X_a)$$

Pr[R(G)=1] =1

That is, if there is a triangle we catch it.

Analysis of R

• Assume G does not have triangle We want to show Pr[R(G)=1] <1/100

 S_0 := some 3 numbers in Y sum to zero.

• S(e₁,e₂,e₃) := the values corresponding to three distinct edges $e_1 = (a_1,b_1), e_2 = (a_2,b_2), e_3 = (a_3,b_3)$, sum to zero.

 $Pr[R(G)=1] = Pr[S_0]=$

= Pr[exists $e_1, e_2, e_3 \in E$, S(e_1, e_2, e_3)] ≤∑ Pr[S(e_1, e_2, e_3)] e_1, e_2, e_3 $Pr[S(e_1, e_2, e_3)] = Pr[Y_{e1} + Y_{e2} + Y_{e3} = 0]$ = Pr[X_{a1} + X_{a2} + X_{a3} = X_{b1} + X_{b2} + X_{b3}]

There are no triangles in G \rightarrow some node appears only once \rightarrow one of the variables in $X_{a1}+X_{a2}+X_{a3}=X_{b1}+X_{b2}+X_{b3}$ appears only once. Let that variable be X_{a1}

For any fixed choices of the other variables, there is ≤ 1 choice for X_{a1} that satisfies the equation.

So $Pr[S(e_1, e_2, e_3)] \le 1/2^{u}$

Hence, $\Pr[S_0] \le \sum \Pr[S(e_1, e_2, e_3)] \le |E|^3 / 2^u$

Setting u = 3 log |E| + 7 we have $Pr[R(G)=1] \le 1/100$

Making the reduction deterministic.

Need to construct m numbers X_a such that $(X_a - X_b) + (X_c - X_d) + (X_e - X_f) = 0$ \Rightarrow each number is repeated twice, with opposite signs

This guarantees that they correspond to a triangle.

Note, numbers must have magnitude ≤ poly(m) Otherwise, both easy and uninteresting (exercise: why?)

We are going to sketch the idea and leave details to exercises

Need to construct m numbers X_a such that

$$(X_a - X_b) + (X_c - X_d) + (X_e - X_f) = 0$$

each number is repeated twice, with opposite signs

- Construct m sets S₁, S₂, ..., S_m ⊆ {1, 2, ..., u log m}: |S_a | = c log m, ∀ a | S_a ∩ S_b | < (c/5) log m, ∀ a ≠ b, for some constants u and c
- Then set X_a to be the number with u digits in base 10, where digit i is 1 if $i \in S_a$, 0 otherwise
- Exercise: Show that such X_a satisfy above (hint: no carry)
- Exercise: Construct such sets in time exponential in m (can be made time O(m), which is what is needed)

All-pairs shortest paths Dynamic programming approach: $d_{i,j}^{(m)}$ = shortest paths of lengths \leq m

(Includes
$$k = j, w(j,j) = 0$$
)

Compute $|V| \ge |V|$ matrix $d^{(m)}$ from $d^{(m-1)}$ in time $|V|^3$.

 \rightarrow d^{|V|} computables in time |V|⁴

How to speed up?

All-pairs shortest paths Note: $d_{i,j}^{(m)} = \min_k \{ d_{i,k}^{(m-1)} + w(k,j) \}$

Is just like matrix multiplication: $d^{(m)} = d^{(m-1)} W$, except + \rightarrow min

$$X \rightarrow +$$

Like matrix multiplication, this is associative. So, instead of doing $d^{|V|} = (...)WW$ can do ?

All-pairs shortest paths Note: d_{i,j}^(m) = min_k { d_{i,k}^(m-1) + w(k,j) }

Is just like matrix multiplication: $d^{(m)} = d^{(m-1)} W$, except + \rightarrow min x \rightarrow +

Like matrix multiplication, this is associative. So, instead of doing $d^{|V|} = (...)WW$ can do repeated squaring:

Compute
$$d^{(2)} = W^2$$

 $d^{(4)} = d^{(2)} \times d^{(2)} = W^2 \times W^2$
 $d^{(8)} = d^{(4)} \times d^{(4)}$

To get d^{|V|} need ?

All-pairs shortest paths Note: $d_{i,j}^{(m)} = \min_k \{ d_{i,k}^{(m-1)} + w(k,j) \}$

Is just like matrix multiplication: $d^{(m)} = d^{(m-1)} W$, except + \rightarrow min x \rightarrow +

Like matrix multiplication, this is associative. So, instead of doing $d^{|V|} = (...)WW$ can do repeated squaring:

Compute
$$d^{(2)} = W^2$$

 $d^{(4)} = d^{(2)} \times d^{(2)} = W^2 \times W^2$
 $d^{(8)} = d^{(4)} \times d^{(4)}$

To get $d^{|V|}$ need log |V| multiplications only $\rightarrow |V|^3 \log |V|$ time

• We used (Min,+) Matrix product in time t to solve APSP in time t log |V|

In particular, computing APSP in time $|V|^2 \log |V|$ reduces to computing (Min,+) Matrix product in time $|V|^2$

• Next: Use APSP to solve (Min, +) Matrix product.

(Min, +) Matrix product: Input: Matrices A_{nxn} and B_{nxn} . Output: C_{nxn} such that $C_{i,j} = \min_k \{A_{i,k} + B_{k,j}\}$.

We need to convert A and B to an instance of APSP.

1. Let entries of A and B \in [-M,M] create a tripartite graph G (I,J,K , E), with n nodes in each part I, J and K,

- $\forall i \in I, k \in k, (i,j) \in E \text{ and } w(i,k)=A_{i,k} + 6M.$
- $\forall \ k \in k, j \in J \ , \ (j,k) \in E \ and \ w(k,j) = B_{k,j} + 6M.$
- 2.Run the algorithm for APSP on G. 3.set $C_{i,j} := \{\text{length of the shortest path from i to }j\}-12M.$ I Why ?

Κ

Note:

Any path of length \ge 3 weights \ge 3(-M + 6M) \ge 15M, Any path of length \le 2 weights \le 2(M + 6M) \le 14M.

∀ i ∈ I, j ∈ J there is a path of length 2 from i to j.
Therefore the shortest path from i to j is: min_k {w(i,k)+w(k,j) },
= min_k {A_{i,k}+6M+B_{k,j}+6M},
= min_k {A_{i,k}+B_{k,i}}+12M

- Running time:
- Creating graph G : Takes $O(n^2)$

So we compute (Min,+) Matrix product of nxn matrices in time $O(n^2) + APSP-TIME(3n)$.

- Putting both reductions together:
- APSP and (Min,+) Matrix product are basically the same problem.
- Either both of them can be solved in time $n^{3-\epsilon}$, or neither can