Sub-quadratic reductions

Detecting triangles $=$ cycles of length 3 Input : $G=(V, E)$
Output: True if there is a triangle in G, False otherwise.

Example: $(\mathrm{a}, \mathrm{b}, \mathrm{d})$ is a triangle in:

Using Matrix Multiplication Input: Adjacency Matrix of $G(V, E), M$.

Recall: $\mathrm{M}_{\mathrm{i}, \mathrm{j}}^{\mathrm{t}}=$?

Using Matrix Multiplication Input: Adjacency Matrix of $G(V, E), M$.

Recall: $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=$ number of paths of length t from i to j .
Algorithm:
?

Using Matrix Multiplication Input: Adjacency Matrix of $\mathrm{G}(\mathrm{V}, \mathrm{E}), \mathrm{M}$.

Recall: $\mathrm{M}_{\mathrm{i}, \mathrm{j}}=$ number of paths of length t from i to j .
Algorithm:

- Compute M^{3}
- Check $\mathrm{M}^{3}{ }_{\mathrm{i}, \mathrm{i}}$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$ if one of them is not zero return True otherwise return False

Running time:
$2|\mathrm{~V}|^{\omega}+\mathrm{O}(|\mathrm{V}|)=\mathrm{O}\left(|\mathrm{V}|^{\omega}\right)$.
Recall $\omega \leq 2.37$

Can we do better for sparse graphs?

Detecting triangles Input : Adjacency List of $G(V, E)$,
Output: True if there is a triangle in G, False otherwise.

Main idea of algorithm:
First we check for a triangle that has a node of degree $\leq \Delta$.
Then we look for a triangle with three nodes of degree $>\Delta$.
We can choose Δ as we please.

Algorithm
Let $\Delta:=|E|^{(\omega-1) /(\omega+1)}$
Triangles with some node with degree $\leq \Delta$ For each edge (u, v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if $(\mathrm{u}, \mathrm{v}, \mathrm{w})$ is a triangle. Time:?

Algorithm
Let $\Delta:=|E|^{(\omega-1) /(\omega+1)}$
Triangles with some node with degree $\leq \Delta$ For each edge (u, v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u, v, w) is a triangle. Time: $\mathrm{O}(|E| \cdot \Delta)$

Triangles with every node with degree $>\Delta$ Sum of degrees = ?

Algorithm Let $\Delta:=|E|^{(\omega-1) /(\omega+1)}$

Triangles with some node with degree $\leq \Delta$ For each edge (u, v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u, v, w) is a triangle. Time: $\mathrm{O}(|E| \cdot \Delta)$

Triangles with every node with degree $>\Delta$ Sum of degrees = 2|티. So there are \leq ??????? nodes with degree $>\Delta$

Algorithm Let $\Delta:=|E|^{(\omega-1) /(\omega+1)}$

Triangles with some node with degree $\leq \Delta$ For each edge (u, v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u, v, w) is a triangle. Time: $\mathrm{O}(|E| \cdot \Delta)$

Triangles with every node with degree $>\Delta$ Sum of degrees $=2 \mid$ ㅌ|. So there are $\leq 2|E| / \Delta$ nodes with degree $>\Delta$ Hence using matrix multiplication this takes ???

Algorithm
Let $\Delta:=|E|^{(\omega-1) /(\omega+1)}$
Triangles with some node with degree $\leq \Delta$ For each edge (u, v) check if u or v has degree $\leq \Delta$ If so go through that node's neighbors w, and check if (u, v, w) is a triangle.
Time: $O(|E| \cdot \Delta)$
Triangles with every node with degree $>\Delta$
Sum of degrees $=2|E|$.
So there are $\leq 2|E| / \Delta$ nodes with degree $>\Delta$ Hence using matrix multiplication this takes $\mathrm{O}\left((|\mathrm{E}| / \Delta)^{\omega}\right)$.

Overall: $\mathrm{O}(|\mathrm{E}| \Delta+(|\mathrm{E}| / \Delta) \omega)=$

$$
\begin{aligned}
& =|E|^{1+(\omega-1) /(\omega+1)+|E| \omega(1-(\omega-1) /(\omega+1))} \\
& =|E|^{2 \omega /(\omega+1)<|E|^{1.41} \quad u s i n g ~} \omega<2.38
\end{aligned}
$$

Recap: Can detect triangles in time $\mathrm{O}\left(|\mathrm{E}|^{2 \omega /(\omega+1)}\right)$

So detecting triangles in time $|E|^{4 / 3}$ reduces to multiplying $\mathrm{n} \times \mathrm{n}$ matrices in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Before trying to prove $\omega=2$ you may want to try to detect triangles in time $|E|^{4 / 3}$ 0 , otherwise.

How long to solve 3SUM?

3SUM

Input: A set of numbers $S,|S|=n . \quad$ Size of numbers $=n^{O(1)}$
Output: 1, if there are $a, b, c \in S$ such that $a+b+c=0$, 0 , otherwise.

We can solve 3SUM in time $O\left(n^{2}\right)$.
It is believed that n^{2} is optimal
Next: detecting triangles in time t reduces to solving 3SUM in time $\mathrm{O}(\mathrm{t})$.

So, solving 3SUM in time $\mathrm{n}^{1.4}$ would beat best-known triangle-detection algorithms (which run in $\mathrm{n}^{1.41}$ time)

Next: detecting triangles in time t reduces to solving 3SUM in time $O(t)$.

- The reduction is randomized.
- We are going to give an algorithm R such that: if there is a triangle, R accepts with probability 1 , otherwise R accepts with probability $\leq 1 / 100$
- This gap can be amplified arbitrarily by ????

Next: detecting triangles in time t reduces to solving 3SUM in time $O(t)$.

- The reduction is randomized.
- We are going to give an algorithm R such that: if there is a triangle, R accepts with probability 1 , otherwise R accepts with probability $\leq 1 / 100$
- This gap can be amplified arbitrarily by repeating the algorithm a few times and taking Or
- It is possible to make R deterministic; we sketch that later

Detecting Triangles
Input: Adjacency list of graph $G(V, E)$. $|E|=m$.
Output: 1 if there is a triangle, 0 otherwise

Algorithm R:

1. Uniformly and independently assign a u-bit number to each node: $\forall \mathrm{a} \in \mathrm{V}, \mathrm{X}_{\mathrm{a}} \in\{0,1\}^{\mathrm{u}}$
2. For each edge $(a, b) \in E$, compute $Y_{(a, b)}=\left(X_{a}-X_{b}\right)$ and $Y_{(b, a)}=\left(X_{b}-X_{a}\right)$.
3. Return answer of 3 SUM on set $Y:=\left\{Y_{(a, b)}, Y_{(b, a)} \mid(a, b) \in E\right\}$.

Analysis of R

- Suppose there is a triangle in G, say $\{(a, b),(c, b),(c, a)\}$.
- Note: graph is undirected, but the input is imposing an order which we eliminate by computing both $\mathrm{Y}_{(\mathrm{a}, \mathrm{b})}, \mathrm{Y}_{(\mathrm{b}, \mathrm{a})}$.
- The 3SUM instance contains numbers

$$
Y_{(a, b)}+Y_{(b, c)}+Y_{(c, a)}=\left(X_{a}-X_{b}\right)+\left(X_{c}-X_{b}\right)+\left(X_{c}-X_{a}\right)
$$

What is the probability that the sum will be $0 ?$

Analysis of R

- Suppose there is a triangle in G, say $\{(a, b),(c, b),(c, a)\}$.
- Note: graph is undirected, but the input is imposing an order which we eliminate by computing both $\mathrm{Y}_{(\mathrm{a}, \mathrm{b})}, \mathrm{Y}_{(\mathrm{b}, \mathrm{a})}$.
- The 3SUM instance contains numbers

$$
Y_{(a, b)}+Y_{(b, c)}+Y_{(c, a)}=\left(X_{a}-X_{b}\right)+\left(X_{c}-X_{b}\right)+\left(X_{c}-X_{a}\right)
$$

$\operatorname{Pr}[R(G)=1]=1$
That is, if there is a triangle we catch it.

Analysis of R

- Assume G does not have triangle We want to show $\operatorname{Pr}[R(G)=1]<1 / 100$
$S_{0}:=$ some 3 numbers in Y sum to zero.
- $\mathrm{S}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right):=$ the values corresponding to three distinct edges $\mathrm{e}_{1}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right), \mathrm{e}_{2}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \mathrm{e}_{3}=\left(\mathrm{a}_{3}, \mathrm{~b}_{3}\right)$, sum to zero.
$\operatorname{Pr}[R(G)=1]=\operatorname{Pr}\left[S_{0}\right]=$
$=\operatorname{Pr}\left[\right.$ exists $\left.\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3} \in \mathrm{E}, \mathrm{S}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)\right] \leq \sum \operatorname{Pr}\left[\mathrm{S}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)\right]$ e_{1}, e_{2}, e_{3}

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{S}\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)\right] & =\operatorname{Pr}\left[\mathrm{Y}_{\mathrm{e} 1}+\mathrm{Y}_{\mathrm{e} 2}+\mathrm{Y}_{\mathrm{e} 3}=0\right] \\
& =\operatorname{Pr}\left[\mathrm{X}_{\mathrm{a} 1}+\mathrm{X}_{\mathrm{a} 2}+\mathrm{X}_{\mathrm{a} 3}=\mathrm{X}_{\mathrm{b} 1}+\mathrm{X}_{\mathrm{b} 2}+\mathrm{X}_{\mathrm{b} 3}\right]
\end{aligned}
$$

There are no triangles in $G \rightarrow$ some node appears only once
\rightarrow one of the variables in $X_{a 1}+X_{a 2}+X_{a 3}=X_{b 1}+X_{b 2}+X_{b 3}$ appears only once. Let that variable be $X_{a 1}$

For any fixed choices of the other variables, there is ≤ 1 choice for $X_{a 1}$ that satisfies the equation.

So $\operatorname{Pr}\left[S\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)\right] \leq 1 / 2^{\mathrm{u}}$
Hence, $\operatorname{Pr}\left[\mathrm{S}_{0}\right] \leq \sum \operatorname{Pr}\left[S\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right)\right] \leq|E|^{3} / 2^{\mathrm{u}}$
Setting $u=3 \log |E|+7$ we have $\operatorname{Pr}[R(G)=1] \leq 1 / 100$

Making the reduction deterministic.
Need to construct m numbers X_{a} such that
$\left(X_{a}-X_{b}\right)+\left(X_{c}-X_{d}\right)+\left(X_{e}-X_{f}\right)=0$
\rightarrow each number is repeated twice, with opposite signs

This guarantees that they correspond to a triangle.

Note, numbers must have magnitude \leq poly (m) Otherwise, both easy and uninteresting (exercise: why?)

We are going to sketch the idea and leave details to exercises

Need to construct m numbers X_{a} such that
$\left(X_{a}-X_{b}\right)+\left(X_{c}-X_{d}\right)+\left(X_{e}-X_{f}\right)=0$
\rightarrow each number is repeated twice, with opposite signs

- Construct m sets $S_{1}, S_{2}, \ldots, S_{m} \subseteq\{1,2, \ldots, u$ log $m\}$:
$\left|S_{a}\right|=c \log m, \forall a$
$\left|S_{a} \cap S_{b}\right|<(c / 5) \log m, \forall a \neq b$,
for some constants u and c
- Then set X_{a} to be the number with u digits in base 10 , where digit i is 1 if $i \in S_{a}, 0$ otherwise
- Exercise: Show that such X_{a} satisfy above (hint: no carry)
- Exercise: Construct such sets in time exponential in m (can be made time $O(\mathrm{~m})$, which is what is needed)

All-pairs shortest paths
Dynamic programming approach:
$d_{i, j}(m)=$ shortest paths of lengths $\leq m$
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}(\mathrm{m})=\min _{\mathrm{k}}\left\{\mathrm{d}_{\mathrm{i}, \mathrm{k}}(\mathrm{m}-1)+\mathrm{w}(\mathrm{k}, \mathrm{j})\right\}$
$($ Includes $\mathrm{k}=\mathrm{j}, \mathrm{w}(\mathrm{j}, \mathrm{j})=0)$
Compute $|V| x|V|$ matrix $d^{(m)}$ from $d^{(m-1)}$ in time $|V|^{3}$.
$\rightarrow \mathrm{d}^{\mathrm{V} \mid}$ computables in time $|\mathrm{V}|^{4}$

All-pairs shortest paths

Note:

$\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{m})}=\min _{\mathrm{k}}\left\{\mathrm{d}_{\mathrm{i}, \mathrm{k}}(\mathrm{m}-1)+\mathrm{w}(\mathrm{k}, \mathrm{j})\right\}$
Is just like matrix multiplication: $d^{(m)}=d^{(m-1)} W$, except $+\rightarrow$ min

$$
x \rightarrow+
$$

Like matrix multiplication, this is associative. So, instead of doing $\left.\left.\mathrm{d}^{|\mathrm{V}|}=(\ldots) \mathrm{W}\right) \mathrm{W}\right) \mathrm{W}$ can do ?

All-pairs shortest paths
Note:
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}{ }^{(\mathrm{m})}=\min _{\mathrm{k}}\left\{\mathrm{d}_{\mathrm{i}, \mathrm{k}}(\mathrm{m}-1)+\mathrm{w}(\mathrm{k}, \mathrm{j})\right\}$
Is just like matrix multiplication: $\mathrm{d}^{(\mathrm{m})}=\mathrm{d}^{(\mathrm{m}-1)} \mathrm{W}$, except $+\rightarrow$ min

$$
x \rightarrow+
$$

Like matrix multiplication, this is associative. So, instead of doing $\left.\left.\mathrm{d}^{|\mathrm{V}|}=(\ldots) \mathrm{W}\right) \mathrm{W}\right) \mathrm{W}$ can do repeated squaring:

Compute $\mathrm{d}^{(2)}=\mathrm{W}^{2}$

$$
\begin{aligned}
& d^{(4)}=d^{(2)} \times d^{(2)}=W^{2} \times W^{2} \\
& d^{(8)}=d^{(4)} \times d^{(4)}
\end{aligned}
$$

To get d ${ }^{|V|}$ need?

All-pairs shortest paths
Note:
$\mathrm{d}_{\mathrm{i}, \mathrm{j}}(\mathrm{m})=\min _{\mathrm{k}}\left\{\mathrm{d}_{\mathrm{i}, \mathrm{k}}(\mathrm{m}-1)+\mathrm{w}(\mathrm{k}, \mathrm{j})\right\}$
Is just like matrix multiplication: $\mathrm{d}^{(\mathrm{m})}=\mathrm{d}^{(\mathrm{m}-1)} \mathrm{W}$, except $+\rightarrow$ min

$$
x \rightarrow+
$$

Like matrix multiplication, this is associative. So, instead of doing $\left.\left.\mathrm{d}^{|\mathrm{V}|}=(\ldots) \mathrm{W}\right) \mathrm{W}\right) \mathrm{W}$ can do repeated squaring:

Compute $\mathrm{d}^{(2)}=\mathrm{W}^{2}$

$$
\begin{aligned}
& d^{(4)}=d^{(2)} \times d^{(2)}=W^{2} \times W^{2} \\
& d^{(8)}=d^{(4)} \times d^{(4)}
\end{aligned}
$$

To get d ${ }^{|V|}$ need $\log |V|$ multiplications only $\rightarrow|V|^{3} \log |V|$ time

- We used (Min,+) Matrix product in time t to solve APSP in time t log $|\mathrm{V}|$

In particular, computing APSP in time $|\mathrm{V}|^{2} \log |\mathrm{~V}|$ reduces to computing (Min,+) Matrix product in time $|\mathrm{V}|^{2}$

- Next: Use APSP to solve (Min, +) Matrix product.
(Min, +) Matrix product:
Input: Matrices $A_{n \times n}$ and $B_{n \times n}$.
Output: $C_{n \times n}$ such that $C_{i, j}=\min _{k}\left\{A_{i, k}+B_{k, j}\right\}$.

We need to convert A and B to an instance of APSP.

1. Let entries of A and $B \in[-M, M]$ create a tripartite graph $\mathrm{G}(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{E})$, with n nodes in each part I, J and K,
$\forall i \in I, k \in k,(i, j) \in E$ and $w(i, k)=A_{i, k}+6 M$.
$\forall k \in k, j \in J,(j, k) \in E$ and $w(k, j)=B_{k, j}+6 M$.
2.Run the algorithm for APSP on G.
3.set $C_{i, j}:=\{$ length of the shortest path from i to $j\}-12 \mathrm{M}$.

Why?

Note:

Any path of length ≥ 3 weights $\geq 3(-M+6 M) \geq 15 M$, Any path of length ≤ 2 weights $\leq 2(M+6 M) \leq 14 M$.
$\forall i \in I, j \in J$ there is a path of length 2 from i to j. Therefore the shortest path from i to j is:
$\min _{k}\{w(\mathrm{i}, \mathrm{k})+\mathrm{w}(\mathrm{k}, \mathrm{j})\}$,
$=\min _{k}\left\{A_{i, k}+6 M+B_{k, j}+6 M\right\}$,
$=\min _{k}\left\{\mathrm{~A}_{\mathrm{i}, \mathrm{k}}+\mathrm{B}_{\mathrm{k}, \mathrm{j}}\right\}+12 \mathrm{M}$

- Running time:

Creating graph G : Takes $O\left(n^{2}\right)$
So we compute (Min,+) Matrix product of nxn matrices in time $\mathrm{O}\left(\mathrm{n}^{2}\right)+\operatorname{APSP}-\operatorname{TIME}(3 n)$.

- Putting both reductions together:

APSP and (Min,+) Matrix product are basically the same problem.

Either both of them can be solved in time $\mathrm{n}^{3-\varepsilon}$, or neither can

