More on negative results

- We proved that the following problems are not in P :

ATM
Incompressible strings
A certain language in EXP

- By reduction, we proved that more problems are not in $P$
- These problems do not include many we really care about,
like SAT
- It is believed that SAT is not in $P$ (equivalently, $P \neq N P$ ).
- In fact, most people believe that SAT $\notin \operatorname{TIME}\left(2^{0.01 n}\right)$
- The best result in this direction is SAT $\notin \operatorname{TIME}\left(\mathrm{n}^{2}\right)$

We now prove it, in fact for a much simpler language.

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- Definition: PAL $:=\left\{w: w \in\{0,1\}^{n}\right.$ and $w$ is palindrome $\}$

Can you think of a TM that decides PAL,
and what is its running time?

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- Definition: PAL $:=\left\{w: w \in\{0,1\}^{n}\right.$ and $w$ is palindrome $\}$
- Claim: PAL $\in \operatorname{TIME}\left(\mathrm{c} \mathrm{n}^{2}\right)$ for a constant c
- Proof:

M :=
" On input w
??????

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- Definition: PAL $:=\left\{w: w \in\{0,1\}^{n}\right.$ and $w$ is palindrome $\}$
- Claim: PAL $\in \operatorname{TIME}\left(\mathrm{c} \mathrm{n}^{2}\right)$ for a constant c
- Proof:

M :=
" On input w

1) If all symbols in w are crossed, ACCEPT
2) Scan the tape and read first and last uncrossed symbols.
3) If they are equal, cross them, and goto 1)
4) If they are different, REJECT."

- Can you decide PAL faster?
- Theorem: PAL $\notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Intuitively, the reason is information bottleneck

A TM can only "carry" a constant amount of information across the tape, and so needs to scan the tape $n$ times. Each scan takes $n$ steps, for a total of $n^{2}$ steps.

We now formalize this intuition.

- Definition: A crossing sequence of TM M on input w and boundary i , abbreviated $\mathrm{i}-\mathrm{CS}$, is the sequence of states that M is in when crossing the $i$-th cell boundary on input $w$.
- Detail: We think of one step as first change state then move


## Example:


$1-C S=q_{1}$
$2-C S=\left(q_{1}, q_{2}, q_{0}\right)$
$3-C S=q_{1}$
$4-C S=q_{1}$
$5-C S=\left(q_{1}, q_{2}, q_{0}\right)$
$6-C S=q_{1}$


- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:
- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

If you have such $v$ and $w$, how do you complete the proof?

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

If you have such $v$ and $w$, how do you complete the proof?
Write $v=x 0^{n} x^{R}$

$$
w=y 0^{n} y^{R}
$$

Let M be a TM that decides L . M accepts v and w
M on input $x 0^{n} y^{R}$ ???

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

If you have such $v$ and $w$, how do you complete the proof?
Write $v=x 0^{n} x^{R}$

$$
w=y 0^{n} y^{R}
$$

Let M be a TM that decides L . M accepts v and w
$M$ on input $x 0^{n} y^{R}$ accepts but $x 0^{n} y^{R} \notin$ PAL since $x \neq y^{R}$
$M$ accepts $\times 0$
$9_{0} 0 \quad 0 \quad 0 \quad 0$
\# $q_{1} 000$
\# $0 \quad q_{2} 0$
\# $0 \quad x \quad q_{3} 0$

\# $0 \quad \mathrm{x} \cdot \mathrm{q}_{4} 0$
\# $0 \quad q_{4} x \quad 0$
\# $q_{4} 0 \times 0$
$q_{4} \# \quad 0 \quad x \quad 0$
\# $q_{4} 0 \times 0$
\# $0 \quad q_{A} \mathrm{X} \quad 0$
$M$ accepts y $0^{n} y^{R}$
$9_{0} 1001$
\# $q_{0} 001$
\# $0 \mathrm{q}_{2} \mathrm{O}$ 1
\# 0 \# $q_{5}{ }^{1}$
\# $0 q_{6 \#} 1$
\# $\mathrm{q}_{4} 0$ \# 1
$\mathrm{q}_{4} \# 0$ \# 1
\# $\mathrm{q}_{4} 0$ \# 1
\# $0 q_{\text {A\# }} 1$
$M$ accepts $\times 0^{n} y^{R}$
$\mathrm{q}_{0} 00101$
\# $\mathrm{q}_{1} 001$
\# $0 \mathrm{q}_{2} \mathrm{O}$ I
\# 0 \# $q_{5}^{1}$
\# $0 q_{6}{ }^{\# 1}$
\# $\mathrm{q}_{4} 0$ \# 1
$\mathrm{q}_{4} \# 0$ \# 1
\# $\mathrm{q}_{4} 0$ \# 1
\# $0 \longdiv { q _ { A } } { } ^ { \# } 1$

Crossing sequence at boundary 2

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

It remains to show that such $v$ and $w$ exist.

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

Let $M$ be a TM that decides $L$ in time $t$.
Claim: For every $v \in L$, there is $i \in\{n, n+1, \ldots, 2 n-1\}$ such that the $i-C S$ of $M$ on $v$ has length $\leq t / n$.

Proof:

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

Let $M$ be a TM that decides $L$ in time $t$.
Claim: For every $v \in L$, there is $i \in\{n, n+1, \ldots, 2 n-1\}$ such that the $i-C S$ of $M$ on $v$ has length $\leq t / n$.

Proof:
Each state in a CS counts for a computation step. No step is counted twice.
If for every $\mathrm{i} \in\{\mathrm{n}, \mathrm{n}+1, \ldots, 2 \mathrm{n}-1\}$ the $\mathrm{i}-\mathrm{CS}$ has length $>\mathrm{t} / \mathrm{n}$, ?????????

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

Let $M$ be a TM that decides $L$ in time $t$.
Claim: For every $v \in L$, there is $i \in\{n, n+1, \ldots, 2 n-1\}$ such that the $i-C S$ of $M$ on $v$ has length $\leq t / n$.

Proof:
Each state in a CS counts for a computation step. No step is counted twice.
If for every $i \in\{n, n+1, \ldots, 2 n-1\}$ the $i-C S$ has length $>t / n$, $M$ would take > t steps.

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

The number of CS of length $\leq t / n$ is at most

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

The number of CS of length $\leq t / n$ is at most $\mathrm{n} \cdot \mathrm{t} / \mathrm{n} \cdot \mathrm{q}^{\mathrm{t} / \mathrm{n}}$ where q is the number of states of the TM.
$\mathrm{n}=$ choice of i
$\mathrm{t} / \mathrm{n}=$ choice of length of CS
$q^{t / n}=$ sequence of states
The number of inputs $x 0^{n} x^{R} \in L$ with $|x|=n$ is

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

The number of CS of length $\leq t / n$ is at most $n \cdot t / n \cdot q^{t / n}$ where $q$ is the number of states of the TM.
$\mathrm{n}=$ choice of i
$\mathrm{t} / \mathrm{n}=$ choice of length of CS
$q^{t / n}=$ sequence of states
The number of inputs $x 0^{n} x^{R} \in L$ with $|x|=n$ is $2^{n}$ Note $n \cdot t / n \cdot q^{t / n} \leq \varepsilon n^{2} \cdot q^{\varepsilon n}<2^{n}$ for small enough $\varepsilon$. So $v$ and $w$ exist by ?

- Definition: $L:=\left\{x 0^{n} x^{R}:|x|=n\right\}$
- Theorem: $\mathrm{L} \notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- Proof:

Find $v \neq w, v \in L, w \in L, i \in\{n, n+1, \ldots, 2 n-1\}$ such that the TM on inputs $v$ and $w$ has the same $i-C S$.

The number of CS of length $\leq t / n$ is at most $\mathrm{n} \cdot \mathrm{t} / \mathrm{n} \cdot \mathrm{q}^{\mathrm{t} / \mathrm{n}}$ where q is the number of states of the TM.
$\mathrm{n}=$ choice of i
$\mathrm{t} / \mathrm{n}=$ choice of length of CS
$q^{t / n}=$ sequence of states
The number of inputs $x 0^{n} x^{R} \in L$ with $|x|=n$ is $2^{n}$ Note $n \cdot t / n \cdot q^{t / n} \leq \varepsilon n^{2} \cdot q^{\varepsilon n}<2^{n}$ for small enough $\varepsilon$. So $v$ and $w$ exist by pigeonhole principle.

- Theorem: PAL $\notin \operatorname{TIME}\left(\varepsilon \mathrm{n}^{2}\right)$ for a constant $\varepsilon$
- We have completed the proof of this theorem
- We now define multi-tape TM,
and show they can decide PAL much faster
- So far, 1-tape TM
- Definition: A $k$-tape TM is a TM with $k$ tapes.

Each tape has its own head moving independently
Transition functions have the following range and domain:
$\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$

- Theorem: PAL $\in \operatorname{TIME}(? ? ? ?)$ on 2-tape TM.
- Theorem: PAL $\in \operatorname{TIME}(10 n)$ on 2-tape TM.
- Proof:

M := "On input w

- Theorem: PAL $\in$ TIME( 10 n ) on 2-tape TM.
- Proof:

M := "On input w
Copy w on second tape.
Bring head on 1st tape at the beginning.
Bring head on 2nd tape at the end.
Compare symbol-by-symbol, moving 1st head forward and 2nd backward.

If any two symbols are different, REJECT.
If head on 1 st tape reaches the end, ACCEPT."

## MAJOR OPEN QUESTION

SAT $\in \operatorname{TIME}(10 \mathrm{n})$ on 2-tape TM ?

