More on negative results

• We proved that the following problems are not in P:

ATM

Incompressible strings

A certain language in EXP

• By reduction, we proved that more problems are not in P

 These problems do not include many we really care about, like SAT • It is believed that SAT is not in P (equivalently, $P \neq NP$).

• In fact, most people believe that SAT \notin TIME(2^{0.01n})

• The best result in this direction is SAT \notin TIME(n²)

We now prove it, in fact for a much simpler language.

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- **Definition**: PAL := {w : $w \in \{0,1\}^n$ and w is palindrome}

Can you think of a TM that decides PAL,

and what is its running time?

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- Definition: PAL := {w : $w \in \{0,1\}^n$ and w is palindrome}
- Claim: PAL \in TIME(c n²) for a constant c
- Proof:
 M :=
 " On input w

?????

- Recall a string is palindrome if it reads the same both ways Example: 00100, 10100101
- Definition: PAL := {w : $w \in \{0,1\}^n$ and w is palindrome}
- Claim: PAL \in TIME(c n²) for a constant c
- Proof:
- M :=
- " On input w
 - 1) If all symbols in w are crossed, ACCEPT
 - 2) Scan the tape and read first and last uncrossed symbols.
 - 3) If they are equal, cross them, and goto 1)
 - 4) If they are different, REJECT."
- Can you decide PAL faster?

- Theorem: PAL \notin TIME(ϵ n²) for a constant ϵ
- Intuitively, the reason is information bottleneck

A TM can only "carry" a constant amount of information across the tape, and so needs to scan the tape n times. Each scan takes n steps, for a total of n^2 steps.

We now formalize this intuition.

• Definition: A crossing sequence of TM M on input w and boundary i, abbreviated i-CS, is the sequence of states that M is in when crossing the i-th cell boundary on input w.

• Detail: We think of one step as first change state then move

Example: n $q_0 - q_1 - q_1$ $1-CS = q_1$ $2-CS = (q_1, q_2, q_0)$ $3-CS = q_1$ $4-CS = q_1$ $5-CS = (q_1, q_2, q_0)$ $6-CS = q_1$

Img source: http://smartclassacademy.blogspot.com/2012/11/two-way-finite-automata.html

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: $L \notin TIME(\epsilon n^2)$ for a constant ϵ
- Proof:

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

If you have such v and w, how do you complete the proof?

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

If you have such v and w, how do you complete the proof?

Write
$$v = x 0^n x^R$$

 $w = y 0^n y^R$

Let M be a TM that decides L. M accepts v and w

M on input **x** 0ⁿ y^R ???

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

If you have such v and w, how do you complete the proof?

Write
$$v = x 0^n x^R$$

 $w = y 0^n y^R$

Let M be a TM that decides L. M accepts v and w

M on input **x** 0^n y^R accepts but **x** 0^n y^R \notin PAL since **x** \neq y^R

M accepts <mark>x</mark> 0 ⁿ x ^R	M accepts y 0 ⁿ y ^R	M accepts <mark>x</mark> 0 ⁿ y ^R
d ⁰ 0 0 0 0	q ₀ 1 0 0 1	q ₀ 0 0 0 1
# q ₁ 0 0 0	# q ₀ 0 0 1	# q ₁ 0 0 1
# 0 q ₂ 0 0	# 0 q ₂ 0 1	# 0 q ₂ 0 1
# 0 x q ₃ 0	# 0 # q ₅ 1	# 0 # q ₅ 1
# 0 x 0 q ₄	# 0 q _{6#} 1	# 0 q ₆ # 1
# 0 x q ₄ 0	# q ₄ 0 # 1	# q ₄ 0 # 1
# 0 q ₄ x 0	q ₄ #0#1	q ₄ # 0 # 1
# q ₄ 0 x 0	# q ₄ 0 # 1	# q ₄ 0 # 1
q ₄ # 0 x 0	$\# 0 q_{A} = 1$	# 0 q _A # 1
# q ₄ 0 x 0		
# 0 q _A x 0		

Crossing sequence at boundary 2

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

```
Find v \neq w, v \in L, w \in L, i \in \{n, n+1, ..., 2n-1\} such that the TM on inputs v and w has the same i-CS.
```

It remains to show that such v and w exist.

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

Let M be a TM that decides L in time t.

Claim: For every $v \in L$, there is $i \in \{n, n+1, ..., 2n-1\}$ such that the i-CS of M on v has length $\leq t/n$.

Proof:

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

Let M be a TM that decides L in time t.

Claim: For every $v \in L$, there is $i \in \{n, n+1, ..., 2n-1\}$ such that the i-CS of M on v has length $\leq t/n$.

Proof:

Each state in a CS counts for a computation step. No step is counted twice. If for every $i \in \{n, n+1, ..., 2n-1\}$ the i-CS has length > t/n, ?????????

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

Let M be a TM that decides L in time t.

Claim: For every $v \in L$, there is $i \in \{n, n+1, ..., 2n-1\}$ such that the i-CS of M on v has length $\leq t/n$.

Proof:

Each state in a CS counts for a computation step. No step is counted twice. If for every $i \in \{n, n+1, ..., 2n-1\}$ the i-CS has length > t/n, M would take > t steps.

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

The number of CS of length \leq t/n is at most

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

The number of CS of length \leq t/n is at most **n** • t/n • q^{t/n} where q is the number of states of the TM.

n = choice of i t/n = choice of length of CS $q^{t/n}$ = sequence of states

The number of inputs x $0^n x^R \in L$ with |x| = n is

- **Definition**: L := { x 0ⁿ x^R : |x| = n}
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

The number of CS of length \leq t/n is at most **n** • t/n • q^{t/n} where q is the number of states of the TM.

n = choice of i t/n = choice of length of CS $q^{t/n}$ = sequence of states

The number of inputs $x \ 0^n \ x^R \in L$ with |x| = n is 2^n Note $n \cdot t/n \cdot q^{t/n} \le \epsilon \ n^2 \cdot q^{\epsilon \ n} < 2^n$ for small enough ϵ . So v and w exist by ?

- **Definition**: L := { $x 0^n x^R : |x| = n$ }
- Theorem: L ∉ TIME(ε n²) for a constant ε
 Proof:

The number of CS of length \leq t/n is at most **n** • t/n • q^{t/n} where q is the number of states of the TM.

n = choice of i t/n = choice of length of CS $q^{t/n}$ = sequence of states

The number of inputs $x \ 0^n \ x^R \in L$ with |x| = n is 2^n Note $n \cdot t/n \cdot q^{t/n} \le \epsilon \ n^2 \cdot q^{\epsilon \ n} < 2^n$ for small enough ϵ . So v and w exist by pigeonhole principle. • Theorem: PAL \notin TIME(ϵ n²) for a constant ϵ

• We have completed the proof of this theorem

• We now define multi-tape TM,

and show they can decide PAL much faster

• So far, 1-tape TM

• **Definition**: A k-tape TM is a TM with k tapes.

Each tape has its own head moving independently

Transition functions have the following range and domain:

 $\delta: Q \mathrel{x} \Gamma^k \to Q \mathrel{x} \Gamma^k \mathrel{x} \{L,R\}^k$

• Theorem: $PAL \in TIME(????)$ on 2-tape TM.

- Theorem: $PAL \in TIME(10 n)$ on 2-tape TM.
- Proof:
 M := "On input w

- Theorem: $PAL \in TIME(10 n)$ on 2-tape TM.
- Proof: M := "On input w

Copy w on second tape.

Bring head on 1st tape at the beginning.

Bring head on 2nd tape at the end.

Compare symbol-by-symbol, moving 1st head forward and 2nd backward.

If any two symbols are different, REJECT.

If head on 1st tape reaches the end, ACCEPT."

MAJOR OPEN QUESTION

SAT \in TIME(10 n) on 2-tape TM ?