
Lower bounds



We prove that SAT cannot be solved by an algorithm that runs 
in space O(log n) and uses time nc for a constant c > 1.

This algorithm is allowed random-access to input.
(Without this, n2 time lower bounds hold for palindromes)

The best-known result is

c = 2 cos( π / 7 ) = 1.80193...
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Pick any  A  TIME(n∈ 2 ).
We show A  TIME(n∈ 1.9), contradicting time hierarchy:

  A  SPACE(c log n)∈ (for some c; assumption + padding)
 ∑ ⊆ a TIME(n) (for some a(c); Lemma 1)

 ⊆ TIME(nd ) (for some a(c); assumption+Lemma 2)

For small c > 1, have d ≤ 1.9.                                             


