Lower bounds

We prove that SAT cannot be solved by an algorithm that runs in space $\mathrm{O}(\log \mathrm{n})$ and uses time n^{c} for a constant $\mathrm{c}>1$.

This algorithm is allowed random-access to input.
(Without this, n^{2} time lower bounds hold for palindromes)
The best-known result is

$$
c=2 \cos (\pi / 7)=1.80193 \ldots
$$

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME($\left.\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.

First, two lemmas

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME($\left.\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.
Lemma 1: $\mathrm{L} \subseteq \mathrm{U}_{\mathrm{a}} \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n})$
Lemma 2: $\begin{aligned} & \operatorname{NTIME}(n) \subseteq \operatorname{TIME}\left(n^{c}\right) \rightarrow \sum_{a} \operatorname{TIME}(n) \subseteq \operatorname{TIME}\left(n^{d}\right) \\ & \text { for } d=c^{a}\end{aligned}$
Proof of theorem:

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME($\left.\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.
Lemma 1: $\mathrm{L} \subseteq \mathrm{U}_{\mathrm{a}} \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n})$
Lemma 2: $\operatorname{NTIME}(\mathrm{n}) \subseteq \operatorname{TIME}\left(\mathrm{n}^{\mathrm{c}}\right) \rightarrow \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n}) \subseteq \operatorname{TIME}\left(\mathrm{n}^{\mathrm{d}}\right)$ for $d=c^{a}$
Proof of theorem:
Pick any $A \in \operatorname{TIME}\left(n^{2}\right)$.
We show $A \in \operatorname{TIME}\left(n^{1.9}\right)$, contradicting time hierarchy:

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME($\left.\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.
Lemma 1: $\mathrm{L} \subseteq \mathrm{U}_{\mathrm{a}} \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n})$
Lemma 2: $\begin{aligned} & \operatorname{NTIME}(n) \subseteq \operatorname{TIME}\left(n^{c}\right) \rightarrow \sum_{a} \operatorname{TIME}(n) \subseteq \operatorname{TIME}\left(n^{d}\right) \\ & \text { for } d=c^{a}\end{aligned}$
Proof of theorem:
Pick any $A \in \operatorname{TIME}\left(n^{2}\right)$.
We show $A \in \operatorname{TIME}\left(n^{1.9}\right)$, contradicting time hierarchy:
$A \in \operatorname{SPACE}(? ? ? ?) \quad W H Y ?$

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME $\left(\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.
Lemma 1: $\mathrm{L} \subseteq \mathrm{U}_{\mathrm{a}} \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n})$
Lemma 2: $\begin{aligned} & \operatorname{NTIME}(n) \subseteq \operatorname{TIME}\left(n^{c}\right) \rightarrow \sum_{a} \operatorname{TIME}(n) \subseteq \operatorname{TIME}\left(n^{d}\right) \\ & \text { for } d=c^{a}\end{aligned}$
Proof of theorem:
Pick any $A \in \operatorname{TIME}\left(n^{2}\right)$.
We show $A \in \operatorname{TIME}\left(n^{1.9}\right)$, contradicting time hierarchy:
$A \in \operatorname{SPACE}(\mathrm{c} \log \mathrm{n}) \quad$ (for some c; assumption + padding) $\subseteq \sum_{\mathrm{a}} \operatorname{TIME}(\mathrm{n}) \quad$ (for some a(c); Lemma 1)
$\subseteq \operatorname{TIME}(? ? ?) \quad$ WHY?

We'll actually prove:
Theorem: NTIME(n) NOT IN TIME $\left(\mathrm{n}^{\mathrm{c}}\right) \cap \mathrm{L}$, for some $\mathrm{c}>1$.
Lemma 1: $\mathrm{L} \subseteq \mathrm{U}_{\mathrm{a}} \Sigma_{\mathrm{a}} \operatorname{TIME}(\mathrm{n})$
Lemma 2: $\begin{aligned} & \operatorname{NTIME}(n) \subseteq \operatorname{TIME}\left(n^{c}\right) \rightarrow \sum_{a} \operatorname{TIME}(n) \subseteq \operatorname{TIME}\left(n^{d}\right) \\ & \text { for } d=c^{a}\end{aligned}$
Proof of theorem:
Pick any $A \in \operatorname{TIME}\left(n^{2}\right)$.
We show $A \in \operatorname{TIME}\left(n^{1.9}\right)$, contradicting time hierarchy:
$A \in \operatorname{SPACE}(\mathrm{c} \log \mathrm{n}) \quad$ (for some c; assumption + padding) $\subseteq \sum_{a} \operatorname{TIME}(n) \quad$ (for some $a(c) ;$ Lemma 1)
$\subseteq \operatorname{TIME}\left(\mathrm{n}^{\mathrm{d}}\right) \quad$ (for some a(c); assumption+Lemma 2)
For small c > 1, have $\mathrm{d} \leq 1.9$.

