
Data structures

● Organize your data to support various queries using little
time an space

Example: Inventory

Want to support

SEARCH

INSERT

DELETE

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Trivial solution: scan A. Takes time Θ(n)

● Best possible given A, x.

● What if we are first given A, are allowed to preprocess it,
can we then answer SEARCH queries faster?

● How would you preprocess A?

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Preprocess step: Sort A. Takes time O(n log n), Space O(n)

● SEARCH(A[1..n],x) := /* Binary search */
If n = 1 then return YES if A[1] = x, and NO otherwise
else

if A[n/2] ≤ x then return SEARCH(A[n/2..n])
else return SEARCH(A[1..n/2])

● Time T(n) = ?

● Given n elements A[1..n]

● Support SEARCH(A,x) := is x in A?

● Preprocess step: Sort A. Takes time O(n log n), Space O(n)

● SEARCH(A[1..n],x) := /* Binary search */
If n = 1 then return YES if A[1] = x, and NO otherwise
else

if A[n/2] ≤ x then return SEARCH(A[n/2..n])
else return SEARCH(A[1..n/2])

● Time T(n) = O(log n).

● Given n elements A[1..n] each ≤ k, can you do faster?

● Support SEARCH(A,x) := is x in A?

● DIRECTADDRESS:

● Preprocess step: Initialize S[1..k] to 0
For (i = 1 to n) S[A[i]] = 1

● T(n) = O(n), Space O(k)

● SEARCH(A,x) = ?

● Given n elements A[1..n] each ≤ k, can you do faster?

● Support SEARCH(A,x) := is x in A?

● DIRECTADDRESS:

● Preprocess step:

● T(n) = O(n), Space O(k)

●

●

SEARCH(A,x) = return S[x]
T(n) = O(1)

Initialize S[1..k] to 0
For (i = 1 to n) S[A[i]] = 1

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● If numbers are small, ≤ k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[x]
INSERT(x) := …??
DELETE(x) := …??

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● If numbers are small, ≤ k
Preprocess: Initialize S to 0.
SEARCH(x) := return S[x]
INSERT(x) := S[x] = 1
DELETE(x) := S[x] = 0

●

●

Time T(n) = O(1) per operation
Space O(k)

● Dynamic problems:

● Want to support SEARCH, INSERT, DELETE

● Support SEARCH(A,x) := is x in A?

● What if numbers are not small?

●

●

●

There exist a number of data structure that support each
operation in O(log n) time

Trees: AVL, 2-3, 2-3-4, B-trees, red-black, AA, ...
Skip lists, deterministic skip lists,

● Let's see binary search trees first

Binary tree

Vertices, aka nodes = {a, b, c, d, e, f, g, h, i}
Root = a

Left subtree = {c}
Right subtree ={b, d, e, f, g, h, i}
Parent(b) = a
Leaves = nodes with no children

= {c, f, i, h, d}
Depth = length of longest root-leaf path

= 4

How to represent a binary tree using arrays

6

Binary Search Tree is a data structure where we store data
in nodes of a binary tree and refer to them as key of that
node.
The keys in a binary search tree satisfy the
binary search tree property:
Let x,y ∈ V, if y is in left subtree of x

if y is in right subtree of y
key(y) ≤ key(x)
key(x) < key(y).

Example:

Tree-search(x,k) \\ Looks for k in binary search tree rooted at x
if x = NULL or k = Key[x]

return x
if k ≤ key[x]

return Tree-search(LeftChild[x],k) else

return tree-search(RightChild[x],k)

Running time = O(Depth)
Depth = O(log n) ⇨ search time O(logn)

Tree-Search is a generalization of binary search
in an array that we saw before.

A sorted array can be thought of as a balanced tree
(we'll return to this)

Trees make it easier to think about inserting and removing

Insert(k) // Inserts k
If the tree is empty

Create a root with key k and return
Let y be the last node visited during Tree-Search(Root,k)
If k ≤ Key[y]

Insert new node with key k as left child of y
If k > Key[y]

Insert new node with key k as right child of y

Running time = O(Depth)
Depth = O(log n) ⇨ insert time O(log n)

Let us see the code in more detail

Goal: SEARCH, INSERT, DELETE in time O(log n)

We need to keep the depth to O(log n)

When inserting and deleting, the depth may change.

Must restructure the tree to keep depth O(log n)

A basic restructing operation is a rotation

Rotation is then used by more complicated operations

Tree rotations

a

T3

b

T2

T1

Right rotation
at node

with key a

a

T3

b

T2T1

Left rotation
at node

with key b

Tree rotations

a

T3

b

T2

T1

Right rotation
at node

with key a

Left rotation
at node

with key b

Tree rotations

a

T3

b

T2

T1

Right rotation
at node

with key a

Left rotation
at node

with key b

Tree rotations

a

T3

b

T2

T1

Right rotation
at node

with key a

Left rotation
at node

with key b

Tree rotations, code using our representations

Tree rotations, code using our representations

RightRotate(2)

Using rotations to keep the depth small

●AVL trees: binary trees. In any node, heights of children
differ by ≤ 1. Maintain by rotations
●2-3-4 trees: nodes have 1,2, or 3 keys and 2, 3, or 4
children. All leaves same level. To insert in a leaf: add a
child. If already 4 children, split the node into one with 2
children and one with 4, add a child to the parent recursively.
When splitting the root, create new root.
Deletion is more complicated.

●B-trees: a generalization of 2-3-4 trees where can have
more children. Useful in some disk applications where
loading a node corresponds to reading a chunk from disk
●Red-black trees: A way to “simulate” 2-3-4 trees by a
binary tree. E.g. split 2 keys in same 2-3-4 node into 2 red-
black nodes. Color edges red or black depending on
whether the child comes from this splitting or not, i.e., is a
child in the 2-3-4 tree or not.

●AVL trees: binary trees. In any node, heights of children
differ by ≤ 1. Maintain by rotations
●2-3-4 trees: nodes have 1,2, or 3 keys and 2, 3, or 4
children. All leaves same level. To insert in a leaf: add a
child. If already 4 children, split the node into one with 2
children and one with 4, add a child to the parent recursively.
When splitting the root, create new root.
Deletion is more complicated.

●B-trees: a generalization of 2-3-4 trees where can have
more children. Useful in some disk applications where
loading a node corresponds to reading a chunk from disk
●Red-black trees: A way to “simulate” 2-3-4 trees by a
binary tree. E.g. split 2 keys in same 2-3-4 node into 2 red-
black nodes. Color edges red or black depending on
whether the child comes from this splitting or not, i.e., is a
child in the 2-3-4 tree or not.

We see in detail what may be the simplest variant of these:

AATrees

First we see pictures,

then formalize it,

then go back to pictures.

●Definition: An AA Tree is a binary search tree whereeach
node has a level, satisfying:
(1) The level of every leaf node is one.
(2)The level of every left child is exactly one less than that
of its parent.
(3)The level of every right child is equal to or one less than
that of its parent.
(4)The level of every right grandchild is strictly less than that
of is grandparent.
(5) Every node of level greater than one has two children.

●Intuition: “the only path with nodes of the same level is a
single left-right edge”

● Fact: An AA Tree with n nodes has depth O(logn)

● Proof:
Suppose the tree has depth d.

The level of the root is at least d/2.

Since every node of level > 1 has two children, the tree
contains a full binary tree of depth at least d/2-1. Such a
tree has at least 2d/2-1 nodes.

□

● Restructuring an AA tree after an addition:

● Rule of thumb:

First make sure that only left-right edges are within nodes of
the same level (Skew)
then worry about length of paths within same level (Split)

Restructuring operations:

Skew(x): If x has left-child with same level
RotateRight(x)

Split(x): If the level of the right child of the right child of x
is the same as the level of x,

Level[RightChild[x]]++;
RotateLeft(x)

AA-Insert(k):
Insert k as in a binary search tree
/* For every node from new one back to root,

do skew and split
*/

//New node is last in arrayx ← NumNodes-1
while x ≠ NULL
Skew(x)
Split(x)

x ← Parent[x]

Inserting 6

Deleting in an AA tree:

Decrease Level(x):
If one of x's children is two levels below x,

decrese the level of x by one.
If the right child of x had the same level of x, decrease the
level of the right child of x by one too.

Delete(x): Suppose x is a leaf
Delete x.

Follow the path from x to the root and at each node y do:
Decrease level(y).
Skew(y); Skew(y.right); Skew(y.right.right);
Split(y); Split(y.right);

Rotate right 10,
get 8 ← 10,
so again
rotate right 10

Note: The way to think of restructuring is that you work at a node. You call all these
skew and split operations from that node. As an effect of these operations, the node
you are working at may move. For example, in figure (e) before, when you work at
node 4, you do a split. This moves the node. Then you are done with 4. While
before node 4 was a root, now it’s not a root anymore. So you’ll move to its parent,
which is 6. We now have an intermediate tree which isn’t shown in the slide. We
call the skews and we don’t do anything. We call split at 6 and don’t do anything.
Now we finally call split at the right child of 6. This sees the path 8 -> 10 -> 12 in the
same level, and fixes it to obtain the last tree.

Delete(x):

If x is a not a leaf, find the smallest leaf bigger than x.key,
swap it with x, and remove that leaf.

To find that leaf, just perform search, and when you hit x
go, for example, right.

It's the same thing as searching for x.key + ε

So swapping these two won't destroy the tree properties

Remark about memory implementation:

Could use new/malloc free/dispose to add/remove nodes.

However, this may cause memory segmentation.

It is possible to implement any tree using an array A so that:
at any point in time, if n elements are in the tree, those will
take elements A[1..n] in the array only.

To do this, when you remove node with index i in the array,
swap A[i] and A[n]. Use parent's pointers to update.

Summary

Can support SEARCH, INSERT, DELETE in time O(log n) for
arbitrary keys

Space: O(n). For ach key we need to store level and pointers.

Can we get rid of the pointers and achieve space n?

Surprisingly, this is possible:

Optimal Worst-Case Operations for Implicit Cache-Oblivious Search Trees,
by Franceschini and Grossi

Hash functions

● We have seen how to support SEARCH, INSERT, and
DELETE in time O(log n) and space O(n) for arbitrary keys

● If the keys are small integers, say in {1,2,...,t} for a small t
we can do it in time ?? and space ??

● We have seen how to support SEARCH, INSERT, and
DELETE in time O(log n) and space O(n) for arbitrary keys

● If the keys are small integers, say in {1,2,...,t} for a small t
we can do it in time O(1) and space O(t)

● Can we have the same time for arbitrary keys?

● Idea: Let's make the keys small.

Keys Hash function ha Table

tu

The choice of a gives different arrows
For every a can find keys that collide
But for every n keys, for most a
there are no collisions

Keys Hash function ha Table

tu

The choice of a gives different arrows
For every a can find keys that collide
But for every n keys, for most a
there are no collisions

Keys Hash function ha Table

tu

The choice of a gives different arrows
For every a can find keys that collide
But for every n keys, for most a
there are no collisions

● Want to support INSERT, DELETE, SEARCH for n keys
Keys come from large UNIVERSE = {1, 2, ..., u}

We map UNIVERSE into a smaller set {1, 2, ..., t }
using a hash function h : UNIVERSE → {1, 2, ..., t}

●We want that for each of our n keys, the values of h are
different, so that we have no collisions

● In this case we can keep an array S[1..t] and
SEARCH(x): ?
INSERT(x): ?
DELETE(x): ?

● Want to support INSERT, DELETE, SEARCH for n keys
Keys come from large UNIVERSE = {1, 2, ..., u}

We map UNIVERSE into a smaller set {1, 2, ..., t }
using a hash function h : UNIVERSE → {1, 2, ..., t}

●We want that for each of our n keys, the values of h are
different, so that we have no collisions

● In this case we can keep an array S[1..t] and
SEARCH(x): return S[h(x)]
INSERT(x): S[h(x)] ← 1
DELETE(x): S[h(x)] ← 0

● Want to support INSERT, DELETE, SEARCH for n keys
Keys come from large UNIVERSE = {1, 2, ..., u}

We map UNIVERSE into a smaller set {1, 2, ..., t }
using a hash function h : UNIVERSE → {1, 2, ..., t}

●We want that for each of our n keys, the values of h are
different, so that we have no collisions

● Example, think n = 210 , u = 21000, t = 220

● Want to support INSERT, DELETE, SEARCH for n keys
Keys come from large UNIVERSE = {1, 2, ..., u}

We map UNIVERSE into a smaller set {1, 2, ..., t }
using a hash function h : UNIVERSE → {1, 2, ..., t}

●We want that for each of our n keys, the values of h are
different, so that we have no collisions

● Can a fixed function h do the job?

● Want to support INSERT, DELETE, SEARCH for n keys
Keys come from large UNIVERSE = {1, 2, ..., u}

We map UNIVERSE into a smaller set {1, 2, ..., t }
using a hash function h : UNIVERSE → {1, 2, ..., t}

●We want that for each of our n keys, the values of h are
different, so that we have no collisions

● Can a fixed function h do the job?
No, if h is fixed, then one can find two keys x ≠ y such that

h(x)=h(y) whenever u > t

So our function will use randomness.
Also need compact representation so can actually use it.

● Construction of hash function:
Let t be prime. Write a key x in base t:

x = x1 x2 … xm for m = logt (u) = log2 (u)/log2 (t)
Hash function specified by seed element a = a1 a2 … am

ha (x) := ∑i ≤ m xi ai modulo t

● Example: t = 97, x = 171494
x1 = 18, x2 = 21, x3 = 95
a1 = 45, a2 = 18, a3 = 7

ha (x) = 18*45 + 21*18 + 95*7 mod 97 = 10

● Different constructions of hash function:
Think of hashing s-bit keys to r bits

Classic solution: for a prime p>2s, and a in [p],
ha(x) := ((ax) mod p) mod 2r

Problem: mod p is slow

Alternative: let b be a random odd s-bit number and

hb(x) = bits from s-r to s of integer product bx

Faster in practice. In C, think x unsigned integer of s=64 bits
hb(x) = (b*x) >> (u-r)

● Analyzing hash functions

The function ha (x) := ∑i ≤ m xi ai modulo t satisfies

● 2-Hash Claim: ∀x ≠ x', Pra [ha (x) = ha (x')] = 1/t

In other words, on any two fixed inputs, the function
behaves like a completely random function

● n-hash Claim:
Let ha be a function from UNIVERSE to {1, 2, ..., t}
Suppose ha satisfies 2-hash claim

If t ≥ 100 n2 then for any n keys the probability that two have
same hash is at most 1/100

(union bound)

● Proof: Pra [∃ x ≠ y : ha (x) = ha(y)]

≤ ∑ x, y : x ≠ y Pra [ha (x) = ha (y)]
= ∑ x, y : x ≠ y ?????

● n-hash Claim:
Let ha be a function from UNIVERSE to {1, 2, ..., t}
Suppose ha satisfies 2-hash claim

If t ≥ 100 n2 then for any n keys the probability that two have
same hash is at most 1/100

(union bound)
(2-hash claim)

● Proof: Pra [∃ x ≠ y : ha (x) = ha(y)]

≤ ∑ x, y : x ≠ y Pra [ha (x) = ha (y)]
= ∑ x, y : x ≠ y (1/t)

≤ n2 (1/t) = 1/100 

● So, just make your table size 100n2 and you avoid collision
● Can you have no collisions with space O(n)?

● Theorem:
Given n keys, can support SEARCH in O(1) time and O(n) space

● Proof:
Two-level hashing:
(1) First hash to t = O(n) elements,
(2) Then hash again using the previous method:

if i-th cell in first level has ci elements, hash to ci
2 cells

Expected total size ≤ E[∑i ≤ t c 2]
i

= Θ(expected number of colliding pairs in first level) =
= O(n2 / t)
= O(n) □

● Trees vs. hashing

Trees maintain order: can be augmented to support other queries,
like MIN, RANK

Hash functions are faster, but destroy order, and may fail with
some small probability.

Queues and heaps

Queue

Operations: ENQUEUE, DEQUEUE
First-in-first-out

Simple, constant-time implementation using arrays:

A[0..n-1]

First ← 0
Last ← 0

ENQUEUE(x): If (Last < n), A[Last++] ← x

DEQUEUE: If First < Last, return A[First++]

Priority queue

● Want to support
INSERT
EXTRACT-MIN

● Can do it using ??
Time = ?? per query.
Space = ??

Priority queue

● Want to support
INSERT
EXTRACT-MIN

● Can do it using AA trees.
Time = O(log n) per query.
Space = O(n).

● We now see a data structure that is simpler and
somewhat more efficient.
In particular, the space will be n rather than O(n)

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1
nodes.

T
Example:
Depth of T=?
Number of leaves in T=?
Number of nodes in T=?

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1
nodes.

T
Example:
Depth of T=3.
Number of leaves in T=?
Number of nodes in T=?

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1
nodes.

T
Example:
Depth of T=3.
Number of leaves in T=23=8.
Number of nodes in T=?

A binary tree is complete if all the nodes have two children
except the nodes in the last level.

A complete binary tree of depth d has 2d leaves and 2d+1-1
nodes.

T
Example:
Depth of T=3.

Number of leaves in T=23=8.

Number of nodes in T=23+1 -1
=15.

Heap is like a complete binary tree except that the last level
may be missing nodes, and if so is filled from left to right.

Note: A complete binary tree is a special case of a heap.

A heap is conveniently represented using arrays

Navigating a heap:

Root is A[1].

Given index i to a node:

Parent(i) = i/2

Left-Child(i) = 2i

Right-Child(i) = 2i+1

Heaps are useful to dynamically maintain a set of elements
while allowing for extraction of minimum (priority queue)

The same results hold for extraction of maximum

We focus on minimum for concreteness.

●Definition: A min-heap is a heap
where A[Parent(i)] ≤A[i]
for every i

Extracting the minimum element
In min-heap A , the minimum element isA[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size – 1;
Min-heapify(A, 1)
Return min;

Let's see the steps

Extracting the minimum element
In min-heap A , the minimum element isA[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size – 1;
Min-heapify(A, 1)
Return min;

Extracting the minimum element
In min-heap A , the minimum element isA[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size – 1;
Min-heapify(A, 1)
Return min;

Extracting the minimum element
In min-heap A , the minimum element isA[1].

Extract-Min-heap(A)

min:= A[1];

A[1]:= A[heap-size];
heap-size:= heap-size – 1;
Min-heapify(A, 1)
Return min;

Min-heapify is a function that restores the min property

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

i=

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

j

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

Running time = ?

Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and
right[i] are min-heap, but A[i] maybe greater than its children

Min-heapify(A, i)
Let j be the index of smallest node

among {A[i], A[Left[i]], A[Right[i]] }

If j ≠ i then {
exchange A[i] andA[j]
Min-heapify(A, j)

}

Running time = depth = O(log n)

Recall Extract-Min-heap(A)

min:= A[1];
A[1]:= A[heap-size];
heap-size:= heap-size – 1;
Min-heapify(A, 1)
Return min;

Hence both Min-heapify and
Extract-Min-Heap take time O(log n).

Next: How do you insert into a heap?

Insert-Min-heap (A, key)

heap-size[A] := heap-size[A]+1;
A[heap-size] := key;

for(i:= heap-size[a]; i>1 and A[parent(i)] > A[i]; i:= parent[i])
exchange(A[parent(i)], A[i])

Running time = ?

Insert-Min-heap (A, key)

heap-size[A] := heap-size[A]+1;
A[heap-size] := key;

for(i:= heap-size[a]; i>1 and A[parent(i)] > A[i]; i:= parent[i])
exchange(A[parent(i)], A[i])

Running time = O(log n).

Suppose we start with an empty heap and insert n elements.
By above, running time is O(n log n).

But actually we can achieve O(n).

Build Min-heap
Input: Array A, output: Min-heapA.

For (i := length[A]/2; i <0; i - -)
Min-heapify(A, i)

Running time = ?

Min-heapify takes time O(h) where h is depth.

How many trees of a given depth h do you have?

Build Min-heap
Input: Array A, output: Min-heapA.

For (i := length[A]/2; i <0; i - -)
Min-heapify(A, i)

Running time = O(∑ h < log n n/2h) h

h/2h)= n O(∑ h < log n
= ?

Build Min-heap
Input: Array A, output: Min-heapA.

For (i := length[A]/2; i <0; i - -)
Min-heapify(A, i)

Running time = O(∑ h < log n n/2h) h

h/2h)= n O(∑ h < log n
= O(n)

Next:

Compact (also known as succinct) arrays

● Store n “trits” t1, t2, …, tn ∈ {0,1,2}

In u bits b1, b2, …, bu ∈ {0,1}

● Want:
Small space u (optimal = n lg2 3)
Fast retrieval: Get ti by probing few bits (optimal = 2)

Bits vs. trits

t1 t2 t3 tn

b1 b2 b3 b4 b5

...

bu...

Store
Retrieve

● Arithmetic coding:
Store bits of (t1, …, tn) ∈ {0, 1, …, 3n – 1}

Optimal space: n lg2 3 ≈ n·1.584
Bad retrieval: To get ti probe all > n bits

● Two bits per trit

Bad space: n·2
Optimal retrieval: Probe 2 bits

Two solutions
t1 t2 t3

t1 t2 t3

b1 b2 b3 b4 b5 b6

b1 b2 b3 b4 b5

● Divide n trits t1, …, tn ∈ {0,1,2}
in blocks of q

● Arithmetic-code each block

Space: q lg2 3 n/q < (q lg2 3 + 1) n/q
= n lg2 3 + n/q

Retrieval: Probe O(q) bits

Polynomial tradeoff

t1 t2 t3 t4 t5 t6

b1b2b3 b4 b5 b6 b7 b8b9b1

0

polynomial
tradeoff
between
probes,

redundancy

q q

● Breakthrough [Pătraşcu '08, later + Thorup]

2Space: n lg 3 + n/2Ω(q)

Retrieval: Probe q bits

● E.g., optimal space n lg2 3, probe O(lg n)

Exponential tradeoff

exponential
tradeoff
between

redundancy,
probes

Delete scenes

Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
f(x) = x ? ?
t = 2n, open addressing

Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
2uf(x) = x O(1)

t = 2n, open addressing

Any deterministic function ? ?

Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
2uf(x) = x O(1)

t = 2n, open addressing

0Any deterministic function n

Random function ? expected ?

Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
f(x) = x O(1) 2u

t = 2n, open addressing

Any deterministic function n 0

Random function n/t expected
∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

2u log(t)

Now what?
We ``derandomize''
random functions

Problem: Dynamically support n search/insert elements in {0,1}u

Idea: Use function f : {0,1}u → [t], resolve collisions by chaining

Function Search time Extra space
2uf(x) = x O(1)

t = 2n, open addressing

Any deterministic function n 0

Random function 2u log(t)n/t expected
∀ x ≠ y, Pr[f(x)=f(y)] ≤ 1/t

O(u)Pseudorandom function
A.k.a. hash function

n/t expected
Idea: Just need ∀ x ≠y,
Pr[f(x)=f(y)] ≤ 1/t

Stack

Operations: Push, Pop
Last-in-first-out

Queue

Operations: Enqueue, Dequeue
First-in-first-out

Simple implementation using arrays.
Each operation supported in O(1) time.

	Slide Number 1
	Slide Number 2
	Given n elements A[1..n]
	Given n elements A[1..n]
	Given n elements A[1..n]
	Given n elements A[1..n] each ≤ k, can you do faster?
	Given n elements A[1..n] each ≤ k, can you do faster?
	Dynamic problems:
	Dynamic problems:
	Dynamic problems:
	Slide Number 11
	How to represent a binary tree using arrays
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Tree rotations
	Tree rotations
	Tree rotations
	Tree rotations
	Tree rotations, code using our representations
	Tree rotations, code using our representations
	Using	rotations to keep the depth small
	Slide Number 26
	Slide Number 27
	We see in detail what may be the simplest variant of these:
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Restructuring operations:
	Slide Number 34
	Inserting 6
	Deleting in an AA tree:
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Delete(x):
	Slide Number 41
	Summary
	Hash	functions
	Slide Number 44
	Slide Number 45
	Table
	Table
	Table
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Queues	and	heaps
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Heap is like a complete binary tree except that the last level may be missing nodes, and if so is filled from left to right.
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Min-heapify restores the min-heap property
given array A and index i such that trees rooted at left[i] and right[i] are min-heap, but A[i] maybe greater than its children
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Next:
	Bits vs. trits
	Two solutions
	Polynomial tradeoff
	Exponential tradeoff
	Delete	scenes
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100

