Randomized Complexity Classes

- We allow TM to toss coins/throw dice etc.
 We write M(x,R) for output of M on input x, coin tosses R
- Def: $L \in RP \iff \exists \text{ poly-time randomized } M :$ $x \in L \implies Pr_R [M(x,R)=1] \ge 1/2$ $x \notin L \implies Pr_R [M(x,R)=1] = 0$
- Def: $L \in BPP \iff \exists \text{ poly-time randomized } M :$ $x \in L \implies Pr_R [M(x,R)=1] \ge 2/3$ $x \notin L \implies Pr_R [M(x,R)=1] \le 1/3$
- Exercise: For RP, can replace 1/2 with 1/n^c, or
- 1- 1/2^m for m = n^c, for any c For BPP, can replace (2/3,1/3) = (1/2 + 1/n^c, 1/2-1/n^c) or (1-1/2^m, 1/2^m).

• Exercise: The following are equivalent:

1) L \in RP \cap co-RP

2) There is a randomized poly-time machine M for L : $\forall x, \forall R, M(x,R) \in \{L(x), ?\}, \forall x, Pr_R [M(x,R) = ?] ≤ 1/2$

3) There is a randomized machine M for L :
∀ x, ∀ R, M(x,R) = L(x) the expected running time of M on x is poly(n)

This class is known as ZPP.

- Claim: $P \subseteq ZPP \subseteq RP \subseteq BPP$
- Proof: By definition.

• Claim: $RP \subseteq NP$ Proof: ?

- Claim: $P \subseteq ZPP \subseteq RP \subseteq BPP$
- Proof: By definition.

• Claim: $RP \subseteq NP$ Proof: The witness is the random string

• Big open question, is P = ZPP = RP = BPP? Surprisingly, this is believed to be the case • Claim: BPP \subseteq P/poly

• Proof: Let $L \in BPP$. Let M(x,R) be a randomized poly-time TM deciding L.

Make the error $< 2^{-n}$.

Note that for every x, $Pr_R [L(x) \neq M(x,R)] < 2^{-n}$

 • Claim: BPP \subseteq P/poly

• Proof: Let $L \in BPP$. Let M(x,R) be a randomized poly-time TM deciding L.

Make the error $< 2^{-n}$.

Note that for every x, $Pr_R [L(x) \neq M(x,R)] < 2^{-n}$

So by the probabilistic method, there exists some string $R^* : L(x) = M(x,R^*) \quad \forall x$.

The circuit corresponding to M(x,R*) is the desired circuit.

Upshot: Randomness is only "useful" for TM, not for circuits.

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?
- For s \in {0,1}^r, the s-shift is s+A := { s XOR a : a \in A } \subseteq {0,1}^r

We'll show the answer to this question is equivalent to $x \in L$

We then show this question can be asked in $\sum_2 P$

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of $A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le ?$

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of $A := \{ R \in \{0,1\}^r : M(x,R) = 1 \}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le ?$

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le ?$

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < ?

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < 1: $Pr_{s1, ..., sr} [\exists y \in \{0,1\}^r : y \notin U_r s_r + A] \le$?

• Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

For s \in {0,1}^r, the s-shift is s+A := { s XOR a : a \in A } \subseteq {0,1}^r

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < 1: $Pr_{s1, ..., sr} [\exists y \in \{0, 1\}^r : y \notin U_r s_r + A] \le \sum_y Pr_{s1,...,sr} [y \notin U_r s_r + A] = ?$

- Claim: BPP $\subseteq \sum_{2} P$
- Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < 1: $Pr_{s1, ..., sr} [\exists y \in \{0, 1\}^r : y \notin U_r s_r + A] \le$ $\sum_y Pr_{s1,...,sr} [y \notin U_r s_r + A] = \sum_y (Pr_s[y \notin s + A])^r \le ?$

• Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

For $s \in \{0,1\}^r$, the s-shift is s+A := { s XOR a : a \in A } \subseteq $\{0,1\}^r$

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < 1: $Pr_{s1, ..., sr} [\exists y \in \{0, 1\}^r : y \notin U_r s_r + A] \le$ $\sum_y Pr_{s1,...,sr} [y \notin U_r s_r + A] = \sum_y (Pr_s[y \notin s + A])^r \le \sum_y (1/r^2)^r < 1$

So M(x,R) = 1 <=> ?

• Proof: Let M(x,R) toss |R| = r coins, and have error < $1/r^2$ Fix x and ask: Can we cover $\{0,1\}^r$ with r shifts of A := $\{R \in \{0,1\}^r : M(x,R) = 1\}$?

For s \in {0,1}^r, the s-shift is s+A := { s XOR a : a \in A } \subseteq {0,1}^r

• $x \notin L$, we show we cannot cover. Note $|A| \le 2^r / r^2$. $\forall s_1, ..., s_r : |s_1 + A \cup s_2 + A \cup ... \cup s_r + A | \le r |A| \le r 2^r / r^2 \le 2^r$

• $x \in L$, we show we can cover. Idea pick the shifts at random and show Pr[do not cover] < 1: $Pr_{s1, ..., sr} [\exists y \in \{0, 1\}^r : y \notin U_r s_r + A] \le$ $\sum_y Pr_{s1,...,sr} [y \notin U_r s_r + A] = \sum_y (Pr_s[y \notin s + A])^r \le \sum_y (1/r^2)^r < 1$

So M(x,R) = 1 <=> $\exists s_1, ..., s_r : \forall y \in \{0,1\}^r$, $y \in U_r s_r + A$ <=> $\exists s_1, ..., s_r : \forall y \in \{0,1\}^r$, $V_{i=1}^r M(x, y + s_i)=1$

- Corollary: P = NP => P = BPP.
- Proof:
 - ?

- Corollary: P = NP => P = BPP.
- Proof:
 - P = NP = P = PH, and so
 - $\mathsf{P} \subseteq \mathsf{BPP} \subseteq \mathsf{PH} = \mathsf{P}$