Randomized Complexity Classes

- We allow TM to toss coins/throw dice etc.

We write $M(x, R)$ for output of M on input x, coin tosses R

- Def: $L \in R P<=>\exists$ poly-time randomized M :
$x \in L=>\operatorname{Pr}_{R}[M(x, R)=1] \geq 1 / 2$
$x \notin L=>\operatorname{Pr}_{R}[M(x, R)=1]=0$
- Def: $\mathrm{L} \in \mathrm{BPP}$ <=> ヨ poly-time randomized M :
$x \in L \Rightarrow \operatorname{Pr}_{R}[M(x, R)=1] \geq 2 / 3$
$x \notin L=>\operatorname{Pr}_{R}[M(x, R)=1] \leq 1 / 3$
- Exercise: For RP, can replace $1 / 2$ with $1 / n^{c}$, or 1-1/2 ${ }^{m}$ for $m=n^{c}$, for any c

For BPP, can replace $(2 / 3,1 / 3)=\left(1 / 2+1 / n^{c}, 1 / 2-1 / n^{C}\right)$ or
$\left(1-1 / 2^{m}, 1 / 2^{m}\right)$.

- Exercise: The following are equivalent:

1) $L \in R P \cap c o-R P$
2) There is a randomized poly-time machine M for L :
$\forall x, \forall R, M(x, R) \in\{L(x), ?\}$,
$\forall x, \operatorname{Pr}_{\mathrm{R}}[\mathrm{M}(\mathrm{x}, \mathrm{R})=?] \leq 1 / 2$
3) There is a randomized machine M for L :
$\forall x, \forall R, M(x, R)=L(x)$
the expected running time of M on x is poly(n)

This class is known as ZPP.

- Claim: $\mathrm{P} \subseteq \mathrm{ZPP} \subseteq \mathrm{RP} \subseteq \mathrm{BPP}$
- Proof: By definition. \square
- Claim: RP \subseteq NP Proof: ?
- Claim: $\mathrm{P} \subseteq \mathrm{ZPP} \subseteq \mathrm{RP} \subseteq \mathrm{BPP}$
- Proof: By definition.
- Claim: RP \subseteq NP

Proof: The witness is the random string

- Big open question, is $\mathrm{P}=\mathrm{ZPP}=\mathrm{RP}=\mathrm{BPP}$? Surprisingly, this is believed to be the case
- Claim: BPP \subseteq P/poly
- Proof:

Let $L \in B P P$.
Let $M(x, R)$ be a randomized poly-time TM deciding L.
Make the error $<2^{-n}$.

Note that for every $x, \operatorname{Pr}_{R}[L(x) \neq M(x, R)]<2^{-n}$

So by the probabilistic method, ???

- Claim: BPP \subseteq P/poly
- Proof:

Let $L \in B P P$.
Let $\mathrm{M}(\mathrm{x}, \mathrm{R})$ be a randomized poly-time TM deciding L .
Make the error $<2^{-n}$.

Note that for every $x, \operatorname{Pr}_{R}[L(x) \neq M(x, R)]<2^{-n}$

So by the probabilistic method, there exists some string $\mathrm{R}^{*}: \mathrm{L}(\mathrm{x})=\mathrm{M}\left(\mathrm{x}, \mathrm{R}^{*}\right) \quad \forall \mathrm{x}$.

The circuit corresponding to $M\left(x, R^{*}\right)$ is the desired circuit.
Upshot: Randomness is only "useful" for TM, not for circuits.

- Claim: $\mathrm{BPP} \subseteq \sum_{2} \mathrm{P}$
- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

We'll show the answer to this question is equivalent to $x \in L$

We then show this question can be asked in $\Sigma_{2} P$

- Claim: $\mathrm{BPP} \subseteq \sum_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$

Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $\mathrm{x} \notin \mathrm{L}$, we show we cannot cover. Note $|\mathrm{A}|<=$?
- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$

Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{r}}:\left|\mathrm{s}_{1}+\mathrm{A} \cup \mathrm{s}_{2}+\mathrm{A} \cup \ldots \cup \mathrm{s}_{\mathrm{r}}+\mathrm{A}\right| \leq$?
- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$

Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall \mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{r}}:\left|\mathrm{s}_{1}+\mathrm{A} \cup \mathrm{s}_{2}+\mathrm{A} \cup \ldots \cup \mathrm{s}_{\mathrm{r}}+\mathrm{A}\right| \leq \mathrm{r}|\mathrm{A}| \leq$?
- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show Pr[do not cover] < ?

- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR a $: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show $\operatorname{Pr}[$ do not cover] <1 :
$\operatorname{Pr}_{s 1, \ldots, s r}\left[\exists y \in\{0,1\}^{r}: y \notin U_{r} s_{r}+A\right] \leq$
?

- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR a $: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show $\operatorname{Pr[do~not~cover]~<~} 1$:
$\operatorname{Pr}_{\text {s } 1, \ldots, \text { sr }}\left[\exists y \in\{0,1\}^{r}: y \notin U_{r} s_{r}+A\right] \leq$
$\Sigma_{y} \operatorname{Pr}_{s 1, \ldots, s r}\left[y \notin U_{r} s_{r}+A\right]=?$

- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR a $: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show $\operatorname{Pr}[$ do not cover] < 1 :
$\operatorname{Pr}_{\text {s1, }}, \ldots$, sr $\left[\exists y \in\{0,1\}^{r}: y \notin U_{r} s_{r}+A\right] \leq$
$\sum_{y} \operatorname{Pr}_{s 1, \ldots, s r}\left[y \notin U_{r} s_{r}+A\right]=\sum_{y}\left(\operatorname{Pr}_{s}[y \notin s+A]\right)^{r} \leq ?$

- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show $\operatorname{Pr}[$ do not cover $]<1$:
$\operatorname{Pr}_{\text {s1, }}, \ldots$, sr $\left[\exists y \in\{0,1\}^{r}: y \notin U_{r} s_{r}+A\right] \leq$
$\Sigma_{y} \operatorname{Pr}_{s 1, \ldots, s r}\left[y \notin U_{r} s_{r}+A\right]=\sum_{y}\left(\operatorname{Pr}_{s}[y \notin s+A]\right)^{r} \leq \Sigma_{y}\left(1 / r^{2}\right)^{r}<1$
So $M(x, R)=1<=>$?

- Claim: $\mathrm{BPP} \subseteq \Sigma_{2} \mathrm{P}$
- Proof: Let $M(x, R)$ toss $|R|=r$ coins, and have error $<1 / r^{2}$ Fix x and ask: Can we cover $\{0,1\}^{r}$ with r shifts of

$$
A:=\left\{R \in\{0,1\}^{r}: M(x, R)=1\right\} ?
$$

For $s \in\{0,1\}^{r}$, the s-shift is $s+A:=\{s$ XOR $a: a \in A\} \subseteq\{0,1\}^{r}$

- $x \notin L$, we show we cannot cover. Note $|A|<=2^{r} / r^{2}$.
$\forall s_{1}, \ldots, s_{r}:\left|s_{1}+A \cup s_{2}+A \cup \ldots U s_{r}+A\right| \leq r|A| \leq r 2^{r} / r^{2}<2^{r}$
- $x \in L$, we show we can cover.

Idea pick the shifts at random and show $\operatorname{Pr[do~not~cover]~<~} 1$:
$\operatorname{Pr}_{\text {s } 1, \ldots, \text { sr }}\left[\exists y \in\{0,1\}^{r}: y \notin U_{r} s_{r}+A\right] \leq$
$\Sigma_{y} \operatorname{Pr}_{s 1, \ldots, s r}\left[y \notin U_{r} s_{r}+A\right]=\sum_{y}\left(\operatorname{Pr}_{s}[y \notin s+A]\right)^{r} \leq \sum_{y}\left(1 / r^{2}\right)^{r}<1$
So $M(x, R)=1<=>\exists s_{1}, \ldots, s_{r}: \forall y \in\{0,1\}^{r}, y \in U_{r} s_{r}+A$

$$
<=>\exists s_{1}, \ldots, s_{r}: \forall y \in\{0,1\}, V_{i=1}^{r} M\left(x, y+s_{i}\right)=1
$$

- Corollary: $\mathrm{P}=\mathrm{NP}=>\mathrm{P}=\mathrm{BPP}$.
- Proof:

?

- Corollary: $\mathrm{P}=\mathrm{NP}=>\mathrm{P}=\mathrm{BPP}$.
- Proof:
$P=N P=>P=P H$, and so
$P \subseteq B P P \subseteq P H=P$

