Misc

What's a reduction?
Tapes,
NTIME, NEXP,
Padding,
PH

- What is a reduction from A to B? It's the concept that if you can do B, then you can also do A.

For example, buying a house reduces to becoming millionaire;
seeing the Colosseum reduces to flying to Rome.

- Def1: (What we gave) A reduces to B as $B \in P \rightarrow A \in P$
- In the proofs we have seen the key of this was exhibiting a polynomial-time map: $R: \forall x, x \in A \leftrightarrow R(x) \in B$
- Def2: A reduction from A to B is R as above.
- Claim: Def2 \rightarrow Def1.
- Problem with Def2: only captures very specific way to show that $B \in P \rightarrow A \in P$.
For example,
(computing satisfying assignments) reduces to 3SAT? Holds for Def1 but not known for Def 2.

Tapes

- So far, 1-tape TM
- Def.: A k-tape TM is a TM with k tapes.

We are only concerned with $k=O(1)$.
Each tape has its own head moving independently
$\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$

- $L:=\left\{x: x \in\{0,1\}^{*}: x=x^{R}\right\}$ Palindromes
- Fact: L not in 1-tape $\operatorname{TIME}\left(o\left(n^{2}\right)\right)$
- Fact: $L \in \operatorname{TIME}(O(n))$ on 2-tape.
- Proof:
?
- $L:=\left\{x: x \in\{0,1\}^{*}: x=x^{R}\right\}$ Palindromes
- Fact: L not in 1-tape $\operatorname{TIME}\left(o\left(\mathrm{n}^{2}\right)\right)$
- Fact: $L \in \operatorname{TIME}(O(n))$ on 2-tape.
- Proof:

Copy input on second tape. Bring head on 1st tape at the beginning. Bring head on 2nd tape at the end.

Compare symbol-by-symbol moving 1st head forward and 2nd backward.

- Although P on your laptop and P on TM is the same, for running time n, n^{2}, etc. not even k -tape is an adequate model of your laptop

What's missing?

- Although P on your laptop and P on TM is the same, for running time n, n^{2}, etc. not even k -tape is an adequate model of your laptop

What's missing?
The ability to jump quickly to a memory location

- Def.: A random-access TM (RATM) is a k-tape machine where each tape has an associated indexing tape. In one time step TM may move i-th head to the cell indexed by the indexing tape, in binary.
- This models well your laptop up to polylog factors.
- $L:=\{(i, x):$ the $i-t h$ bit of x is 1$\}$
- L requires 1 -tape time ?
(Think of an expression in terms of $|\mathrm{i}|$)
- $L:=\{(i, x):$ the $i-t h$ bit of x is 1$\}$
- L requires 1-tape time $\Omega\left(2^{|i|}\right)$
- L can be decided on a RATM in time ?
- $L:=\{(i, x):$ the $i-t h$ bit of x is 1$\}$
- L requires 1-tape time $\Omega\left(2^{|i|}\right)$
- L can be decided on a RATM in time $\mathrm{O}(\mathrm{i})$
- Exercise:

Argue in no more than 10 lines that
polynomial-time on TM
= polynomial-time on k-tape TM
= polynomial-time on RATM

Next: non-determinism

Non-deterministic TM: δ maps to subset of $Q \times \Gamma \times\{L, R\}$
Accept if there is a computation path that leads to accept.
Def1: $\operatorname{NTIME}(t(n))=\{L: L$ is decided by a non-deterministic TM that runs in time $\leq \mathrm{t}(\mathrm{n})\}$

Def2: $\operatorname{NTIME}(\mathrm{t}(\mathrm{n}))=\{\mathrm{L}: \exists \mathrm{M}: \forall x$ of length n
$x \in L \longleftrightarrow \exists y,|y| \leq t(n)$, $M(x, y)$ accepts in $\leq t(n)\}$

- Exercise: Prove the two definitions are equivalent (feel free to use multiple tapes, if that helps)
- Def: NEXP := NTIME $\left(2^{\text {poly(n) }}\right)$
- Theorem: $\mathrm{P}=\mathrm{NP} \rightarrow \mathrm{EXP}=\mathrm{NEXP}$
- Proof: Example of padding technique

Let $L \in \operatorname{NTIME}(T(n))$ where $m=2^{\wedge}\left(n^{c}\right)$.
Let $\mathrm{L}^{\prime}:=\left\{\left(\mathrm{x}, \mathrm{O}^{\top(n)}\right): \mathrm{x} \in \mathrm{L},|\mathrm{x}|=\mathrm{n}\right\}$
Note L' \in NTIME(?

- Def: NEXP := NTIME(2 $2^{\text {poly(n) })}$
- Theorem: $\mathrm{P}=\mathrm{NP} \rightarrow \mathrm{EXP}=\mathrm{NEXP}$
- Proof: Example of padding technique

Let $L \in \operatorname{NTIME}(T(n))$ where $m=2^{\wedge}\left(n^{c}\right)$.
Let $\mathrm{L}^{\prime}:=\left\{\left(\mathrm{x}, \mathrm{O}^{\top(n)}\right): \mathrm{x} \in \mathrm{L},|\mathrm{x}|=\mathrm{n}\right\}$
Note $L^{\prime} \in \operatorname{NTIME}(O(n)) \subseteq P$. So let M solve L' in poly time .
EXP algorithm for L:
M' := "On input x; ?

- Def: NEXP := NTIME(2 $2^{\text {poly(n) })}$
- Theorem: $\mathrm{P}=\mathrm{NP} \rightarrow \mathrm{EXP}=\mathrm{NEXP}$
- Proof: Example of padding technique

Let $L \in \operatorname{NTIME}(T(n))$ where $m=2^{\wedge}\left(n^{c}\right)$.
Let $L^{\prime}:=\left\{\left(x, 0^{\top(n)}\right): x \in L,|x|=n\right\}$
Note $L^{\prime} \in \operatorname{NTIME}(O(n)) \subseteq P$. So let M solve L' in poly time
EXP algorithm for L:
M^{\prime} := "On input $\mathrm{x} ; \quad$ Replace x with $\left(\mathrm{x}, \mathrm{O}^{\top(n)}\right)$; Run M."
$M^{\prime}(x)=M\left(x, 0^{\top(n)}\right)=\operatorname{accept} \longleftrightarrow x \in L$ M^{\prime} runs in time $\mathrm{O}(\mathrm{T}(\mathrm{n}))+\operatorname{poly}(\mathrm{T}(\mathrm{n}))$.

- Padding:

Equivalences propagate "upward"

Intuition: if you have an equivalence between resources, then when you have even more of those resources the equivalence will continue to hold

Contrapositive of padding
Differences propagate "downward" EXP \neq NEXP $\rightarrow P \neq N P$

$$
\begin{array}{rlrl}
& & \text { Complete problem } \\
\mathrm{NP}= & \sum_{1} P=\exists y: M(x, y)=1 & & \text { Given formula } \varphi: \\
\operatorname{co-NP}= & \Pi_{1} P=\forall y: M(x, y)=1 & & \forall y: \varphi(y)=1 ? \\
& \sum_{2} P=\exists y \forall z: M(x, y, z)=1 & & \exists y \forall z: \varphi(y, z)=1 ? \\
& \Pi_{2} P=\forall y \exists z: M(x, y, z)=1 & & \\
& \sum_{3} P=\exists y \forall z \exists w: M(x, y, z, w)=1 \\
& \text { etc. } & &
\end{array}
$$

- Def:
$\sum_{i} P=\{L: \exists$ poly-time M, polynomial $q(n)$:
$x \in L \longleftrightarrow \exists y_{1} \in\{0,1\}^{q(n)} \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)}$

$$
\left.M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1\right\}
$$

Polynomial-time hierarchy $\mathrm{PH}:=\mathrm{U}_{\mathrm{c}} \Sigma_{\mathrm{c}} \mathrm{P}=\mathrm{U}_{\mathrm{c}} \Pi_{\mathrm{C}} \mathrm{P}$

Theorem: $\mathrm{P}=\mathrm{NP} \rightarrow \mathrm{P}=\mathrm{PH}$
Proof:

Theorem: $P=N P \rightarrow P=P H$
Proof: We prove by induction on i that $\sum_{i} P U \Pi_{i} P \subseteq P$
W.I.o.g. let $L \in \sum_{i+1} P$, so \exists poly-time M, polynomial $q(n)$:

$$
\begin{gathered}
x \in L \longleftrightarrow \exists y_{1} \in\{0,1\}^{q(n)} \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)} \\
M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1
\end{gathered}
$$

Consider $\mathrm{L}^{\prime}:=\left\{\left(\mathrm{x}, \mathrm{y}_{1}\right): \forall \mathrm{y}_{2} \in\{0,1\}^{\mathrm{q}(\mathrm{n})} \ldots \mathrm{Q} \mathrm{y}_{\mathrm{i}+1} \in\{0,1\}^{\mathrm{q}(\mathrm{n})}\right.$

$$
\left.M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1\right\}
$$

$\mathrm{L}^{\prime} \in$?

Theorem: $P=N P \rightarrow P=P H$
Proof: We prove by induction on i that $\sum_{i} P U \Pi_{i} P \subseteq P$
W.I.o.g. let $L \in \sum_{i+1} P$, so \exists poly-time M, polynomial $q(n)$:
$x \in L \longleftrightarrow \exists y_{1} \in\{0,1\}^{q(n)} \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)}$ $M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1$

Consider $L^{\prime}:=\left\{\left(x, y_{1}\right): \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)}\right.$ $\left.M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1\right\}$
$\mathrm{L}^{\prime} \in \Pi_{\mathrm{i}} \mathrm{P} \subseteq \mathrm{P}$. Let poly-time machine M^{\prime} solve L^{\prime}.
So $x \in L \nVdash \exists y_{1} \in\{0,1\}^{q(n)}: M^{\prime}\left(x, y_{1}\right)=1$
And so $L \in$?

Theorem: $P=N P \rightarrow P=P H$
Proof: We prove by induction on i that $\sum_{i} P U \Pi_{i} P \subseteq P$
W.I.o.g. let $L \in \sum_{i+1} P$, so \exists poly-time M, polynomial $q(n)$:
$x \in L \longleftrightarrow \exists y_{1} \in\{0,1\}^{q(n)} \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)}$ $M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1$

Consider $L^{\prime}:=\left\{\left(x, y_{1}\right): \forall y_{2} \in\{0,1\}^{q(n)} \ldots Q y_{i+1} \in\{0,1\}^{q(n)}\right.$ $\left.M\left(x, y_{1}, y_{2}, \ldots, y_{i+1}\right)=1\right\}$
$\mathrm{L}^{\prime} \in \Pi_{\mathrm{i}} \mathrm{P} \subseteq \mathrm{P}$. Let poly-time machine M^{\prime} solve L^{\prime}.
So $x \in L \nVdash \exists y_{1} \in\{0,1\}^{q(n)}: M^{\prime}\left(x, y_{1}\right)=1$
And so $L \in N P \rightarrow L \in P$

Exercise:

$\Pi_{2} \mathrm{P} \subseteq \Sigma_{2} \mathrm{P} \rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$

Terminlogy: "The polynomial-time hierarchy collapses" means $\exists \mathrm{c}: \mathrm{PH}=\sum_{\mathrm{c}} \mathrm{P}$.

