Circuits

TM: A single program that works for every input length
Circuits: A program tailored to a specific input length
Motivation:
-that's what computers really are
-cryptography: attackers focus on specific key length
-more combinatorial, should be easier to understand (?)

Circuit definitions:

Gates basis (typically AND, OR, NOT)
Input and output gates
Fan-in, Fan-out
Size $=$ number of gates (sometimes wires)
Depth = length of longest input-output path

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function computed by a circuit with s gates and fan-in h.
Then f is computed by a ciruit with $\mathrm{O}(\mathrm{s})$ gates and fan-in 2.

Proof:
 ?

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function computed by a circuit with s gates and fan-in h.
Then f is computed by a ciruit with $\mathrm{O}(\mathrm{s})$ gates and fan-in 2.
Proof:
Replace AND / OR gates with fan-in h with a binary tree of AND / OR gates

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function.
(1) Computable with s gates \rightarrow computable with s^{2} wires
(2) Computable with s wires \rightarrow computable with $\mathrm{O}(\mathrm{s})$ gates

Proof:
(1)?

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function computed by a circuit with s gates and fan-in h.
Then f is computed by a ciruit with $\mathrm{O}(\mathrm{s})$ gates and fan-in 2.
Proof:
Replace AND / OR gates with fan-in h with a binary tree of AND / OR gates

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function.
(1) Computable with s gates \rightarrow computable with s^{2} wires
(2) Computable with s wires \rightarrow computable with $\mathrm{O}(\mathrm{s})$ gates

Proof:
(1) s^{2} is maximum number of wires
(2)?

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function computed by a circuit with s gates and fan-in h.
Then f is computed by a ciruit with $\mathrm{O}(\mathrm{s})$ gates and fan-in 2.
Proof:
Replace AND / OR gates with fan-in h with a binary tree of AND / OR gates

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function.
(1) Computable with s gates \rightarrow computable with s^{2} wires
(2) Computable with s wires \rightarrow computable with $\mathrm{O}(\mathrm{s})$ gates

Proof:
(1) s^{2} is maximum number of wires
(2) Each wire touches ≤ 2 gates

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function.
f is computable by a circuit of size $O\left(2^{n}\right)$ gates

Proof:
?

Claim: Let $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ be a function. f is computable by a circuit of size $O\left(2^{n}\right)$ gates

Proof:

$$
V_{a: f(a)=1} \wedge_{i} x_{i}=a_{i}
$$

There are \leq ? AND gates

Claim: Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function. f is computable by a circuit of size $O\left(2^{n}\right)$ gates

Proof:
$V_{a: f(a)=1} \Lambda_{i} x_{i}=a_{i}$
There are $\leq 2^{n}$ AND gates
$\mathrm{x}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}$ takes $\mathrm{O}(1)$ gates.

Exercise: $\exists f:\{0,1\}^{n} \rightarrow\{0,1\}$ requiring circuits of size $2^{\Omega(n)}$

- How do circuits compare to TM?
- Exercise: Exhibit a function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ that is not decidable but has circuits of polynomial size.
- What about the other way around?

Can poly-time TM compute more than poly-size circuits?

- Poly-size circuits are at least as powerful as poly-size TM

Theorem: Let $\mathrm{f} \in \operatorname{TIME}(\mathrm{t}(\mathrm{n}))$.
Then $\forall \mathrm{n}$, f on inputs of length n computable with $\mathrm{t}^{2}(\mathrm{n})$ gates
Corollary: P has polynomial-size circuits ($\mathrm{P} \subseteq \mathrm{P} /$ poly)
Beginning of proof of theorem:
Assume w.l.o.g. TM for f writes output on 1 st cell.
We encode configs of TM using symbols which encode a tape symbol, whether the head is there, and the state

So we think of $00 \mathrm{q}_{5} 12$ as $00\left(\mathrm{q}_{5} 1\right) 2$ where $\left(q_{5} 1\right)$ is one symbol

Fact: \exists circuit of $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ gates which given n symbols of a configuration C produces the n symbols of the next configuration C^{\prime}.

Proof: A variant of locality of computation
Each symbol of C^{\prime} is a function of?

Fact: \exists circuit of $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ gates which given n symbols of a configuration C produces the n symbols of the next configuration C^{\prime}.

Proof: A variant of locality of computation
Each symbol of C^{\prime} is a function of three symbols of C . As we saw, that function is doable by a circuit of size?

Fact: \exists circuit of $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ gates which given n symbols of a configuration C produces the n symbols of the next configuration C^{\prime}.

Proof: A variant of locality of computation
Each symbol of C^{\prime} is a function of three symbols of C . As we saw, that function is doable by a circuit of size $O(1)$.

Proof of theorem:

?

Fact: \exists circuit of $\mathrm{O}(\mathrm{t}(\mathrm{n}))$ gates which given n symbols of a configuration C produces the n symbols of the next configuration C^{\prime}.

Proof: A variant of locality of computation
Each symbol of C^{\prime} is a function of three symbols of C. As we saw, that function is doable by a circuit of size $O(1)$.

Proof of theorem:

Pile up $t(n)$ copies of circuit from Fact
Total size $=O\left(\mathrm{t}^{2}(\mathrm{n})\right)$

- Size can be improved to $\mathrm{O}\left(\mathrm{t}(\mathrm{n}) \log ^{\mathrm{c}} \mathrm{t}(\mathrm{n})\right)$
- Def: Circuit-SAT := \{ $C: C$ is a circuit : $\exists y: C(y)=1$
- Claim: Circuit-SAT is NP-complete
- Proof: Circuit-SAT \in NP because?
- Def: Circuit-SAT := \{ $C: C$ is a circuit : $\exists \mathrm{y}: C(\mathrm{y})=1$
- Claim: Circuit-SAT is NP-complete
- Proof: Circuit-SAT \in NP because given C and y we can compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT $\in P$. We show $P=N P$.
Let $L \in N P$ with corresponding machine $M(x, y)$.
Here's a polynomial-time algorithm for L: Given x, ?

- Def: Circuit-SAT := \{ $C: C$ is a circuit : $\exists \mathrm{y}: C(\mathrm{y})=1$
- Claim: Circuit-SAT is NP-complete
- Proof: Circuit-SAT \in NP because given C and y we can compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT $\in P$. We show $P=N P$.
Let $L \in N P$ with corresponding machine $M(x, y)$.
Here's a polynomial-time algorithm for L: Given x, Construct following previous theorem circuit C for the function $\mathrm{y} \rightarrow \mathrm{M}(\mathrm{x}, \mathrm{y})$.
This circuit has size poly(|x|) because ?

- Def: Circuit-SAT := \{ $C: C$ is a circuit : $\exists \mathrm{y}: C(\mathrm{y})=1$
- Claim: Circuit-SAT is NP-complete
- Proof: Circuit-SAT \in NP because given C and y we can compute C(y) in time polynomial in |C|

Suppose now Circuit-SAT $\in P$. We show $P=N P$.
Let $L \in N P$ with corresponding machine $M(x, y)$.
Here's a polynomial-time algorithm for L: Given x, Construct following previous theorem circuit C for the function $\mathrm{y} \rightarrow \mathrm{M}(\mathrm{x}, \mathrm{y})$.
This circuit has size poly(|x|) because M runs in polynomial time and $|y|=\operatorname{poly}(|x|)$ Use poly-time algorithm for Circuit-SAT on C.

Corollary: 3SAT is NP-complete.
Proof:
We just need to reduce Circuit-SAT to 3SAT.
Idea: replace each gate in the circuit with $\mathrm{O}(1)$ clauses
Exercise.

- Recall P \subseteq poly-size circuits (aka P/poly)
- Believed NP NOT $\subseteq P /$ poly, which implies $P \neq$ NP.
- Leading goal: prove NP NOT IN P/poly $\rightarrow \mathrm{P} \neq \mathrm{NP}$
- We cannot even show NP NOT in circuits of size O(n)
- We cannot even show EXP NOT in P/poly

Exercise:

- Prove $\exists c \forall k, \Sigma_{c} P$ does not have circuits of size n^{k}
- Prove $\mathrm{PH} \subseteq \mathrm{EXP}$
- So $\forall \mathrm{k}$, EXP does not have circuits of size n^{k}

Open:

- Does NP have circuits of size $O(n)$?

Exercise:

- Def.: E := $\operatorname{TIME}\left(2^{\mathrm{O}(\mathrm{n})}\right)$
- Open: Does E have circuits of size $O(n)$?
- Prove $E \subseteq P /$ poly $\leftrightarrow E X P \subseteq P /$ poly
- Theorem: $\mathrm{NP} \subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\sum_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem

$$
\mathrm{L}:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\right\} \in ? ? ? ?
$$

Where do we need to place this, to get $\mathrm{PH}=\Sigma_{2} \mathrm{P}$?

- Theorem: $\mathrm{NP} \subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\sum_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem $L:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}^{|\varphi|}: \varphi(u, v)=1\right\} \in \sum_{2} P$
$N P \subseteq P /$ poly $\rightarrow\{(\varphi, u): \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\} \in ?$
- Theorem: $\mathrm{NP} \subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem $L:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}^{|\varphi|}: \varphi(u, v)=1\right\} \in \sum_{2} P$
$N P \subseteq P /$ poly $\rightarrow\{(\varphi, u): \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\} \in P /$ poly
We can guess this circuit, but is it the right one?
How do you turn the circuit into one whose output you can check by yourself, i.e., in poly-time?
- Theorem: $\mathrm{NP} \subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem $L:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}^{|\varphi|}: \varphi(u, v)=1\right\} \in \sum_{2} P$
$N P \subseteq P /$ poly $\rightarrow\{(\varphi, u): \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\} \in P /$ poly
We can guess this circuit, but is it the right one?
Note NP $\subseteq \mathrm{P} /$ poly \rightarrow in P/poly can compute a satisfying assignment v if one exists.
$\varphi \in \mathrm{L} \leftrightarrow \exists$ poly-size circuit $\mathrm{C}: ?$
- Theorem: $\mathrm{NP} \subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\Sigma_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem $L:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}^{|\varphi|}: \varphi(u, v)=1\right\} \in \sum_{2} P$
$N P \subseteq P /$ poly $\rightarrow\{(\varphi, u): \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\} \in P /$ poly We can guess this circuit, but is it the right one?

Note NP \subseteq P/poly \rightarrow in P/poly can compute a satisfying assignment v if one exists.
$\varphi \in \mathrm{L} \leftrightarrow \exists$ poly-size circuit $\mathrm{C}: \forall \mathrm{u} \in\{0,1\}^{|\varphi|}, \varphi(\mathrm{u}$, ?????? $)=1$

- Theorem: NP $\subseteq \mathrm{P} /$ poly $\rightarrow \mathrm{PH}=\sum_{2} \mathrm{P}$
- Proof: We'll show the $\Pi_{2} \mathrm{P}$ - complete problem $L:=\left\{\varphi: \forall u \in\{0,1\}^{|\varphi|} \exists v \in\{0,1\}^{|\varphi|}: \varphi(u, v)=1\right\} \in \sum_{2} P$
$N P \subseteq P /$ poly $\rightarrow\{(\varphi, u): \exists v \in\{0,1\}|\varphi|: \varphi(u, v)=1\} \in P /$ poly We can guess this circuit, but is it the right one?

Note NP $\subseteq P /$ poly \rightarrow in P/poly can compute a satisfying assignment v if one exists.
$\varphi \in \mathrm{L} \leftrightarrow \exists$ poly-size circuit $\mathrm{C}: \forall \mathrm{u} \in\{0,1\}^{|\varphi|}, \varphi(\mathrm{u}, \mathrm{C}(\varphi, \mathrm{u}))=1$
Note $\varphi(\mathrm{u}, \mathrm{C}(\varphi, \mathrm{u}))$ is computable in poly-time.

