Polynomials and Fast Fourier Transform (FFT)

Polynomials

$A(x)=\sum_{i=0}{ }^{n-1} a_{i} x^{i} \quad$ a polynomial of degree $n-1$
Evaluate at a point $\mathrm{x}=\mathrm{b}$ in time ?

Polynomials

$A(x)=\sum_{i=0}^{n-1} a_{i} x^{i} \quad$ a polynomial of degree $n-1$
Evaluate at a point $\mathrm{x}=\mathrm{b}$ in time $\mathrm{O}(\mathrm{n})$: Horner's rule:
Compute $a_{n-1} x$,

$$
\begin{aligned}
& a_{n-2}+a_{n-1} x^{2} \\
& a_{n-3}+a_{n-2} x+a_{n-1} x^{3}
\end{aligned}
$$

Each step $\mathrm{O}(1)$ operations, multiply by and add coefficient.
There are $\leq \mathrm{n}$ steps. $\rightarrow \mathrm{O}(\mathrm{n})$ time

Summing Polynomials

$$
\begin{array}{ll}
\sum_{i=0}{ }^{n-1} a_{i} x^{i} & \text { a polynomial of degree } n-1 \\
\sum_{i=0^{n-1}} b_{i} x^{i} \quad \text { a polynomial of degree } n-1
\end{array}
$$

$\sum_{i=0}^{n-1} c_{i} x^{i}$
the sum polynomial of degree n -1
$c_{i}=a_{i}+b_{i}$

Time O(n)

How to multiply polynomials?

$$
\begin{array}{ll}
\sum_{i=0}^{n-1} a_{i} x^{i} & \text { a polynomial of degree } n-1 \\
\sum_{i=0}^{n-1} b_{i} x^{i} & \text { a polynomial of degree } n-1 \\
\sum_{i=0} n^{2 n-2} c_{i} x^{i} & \text { the product polynomial of degree } n-1 \\
c_{i}=\sum_{j \leq i} a_{j} b_{i-j} &
\end{array}
$$

Trivial algorithm: time $O\left(n^{2}\right)$ FFT gives time $O(n \log n)$

Polynomial representations

Coefficient: $\left(a_{0}, a_{1}, a_{2}, \ldots a_{n-1}\right)$
Point-value: have points $x_{0}, x_{1}, \ldots x_{n-1}$ in mind Represent polynomials $A(X)$ by pairs $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\right\} \quad A\left(x_{i}\right)=y_{i}$

To multiply in point-value, just need $\mathrm{O}(\mathrm{n})$ operations.

Approach to polynomial multiplication:
A, B given as coefficient representation

1) Convert A, B to point-value representation
2) Multiply $C=A B$ in point-value representation
3) Convert C back to coefficient representation
4) done esily in time $O(n)$

FFT allows to do 1) and 3) in time $O(n \log n)$.

Note: For C we need $2 n-1$ points; we'll just think "n"

From coefficient to point-value:

$$
\left|\begin{array}{c}
\mathrm{y}_{0} \\
\mathrm{y}_{1} \\
\cdots \\
\cdots \\
\cdots \\
\mathrm{y}_{\mathrm{n}-1}
\end{array}\right|=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}
\end{array}\right)\left|\begin{array}{l}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\cdots \\
\cdots \\
\cdots \\
\mathrm{a}_{\mathrm{n}-1}
\end{array}\right|
$$

From point-value representation, note above matrix is invertible (if points distinct)

Alternatively, Lagrange's formula

We need to evaluate A at points $x_{1} \ldots x_{n}$ in time $O(n \log n)$
Idea: divide and conquer:
$A(x)=A^{0}\left(x^{2}\right)+x A^{1}\left(x^{2}\right)$
where A^{0} has the even-degree terms, A^{1} the odd
Example:
$A=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}$
$A^{0}(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}$
$A^{1}(x)=a_{1} x+a_{3} x^{3}+a_{5} x^{5}$
How is this useful?

We need to evaluate A at points $x_{1} \ldots x_{n}$ in time $O(n \log n)$
Idea: divide and conquer:
$A(x)=A^{0}\left(x^{2}\right)+x A^{1}\left(x^{2}\right)$
where A^{0} has the even-degree terms, A^{1} the odd

If my points are $x_{1}, x_{2}, x_{n / 2},-x_{1},-x_{2},-x_{n / 2}$
I just need the evaluations of A^{0}, A^{1} at points $x_{1}{ }^{2}, x_{2}{ }^{2}, x_{n / 2}{ }^{2}$
$T(n) \leq 2 T(n / 2)+O(n)$, with solution $O(n \log n)$. Are we done?

We need to evaluate A at points $x_{1} \ldots x_{n}$ in time $O(n \log n)$
Idea: divide and conquer:
$A(x)=A^{0}\left(x^{2}\right)+x A^{1}\left(x^{2}\right)$
where A^{0} has the even-degree terms, A^{1} the odd

If my points are $x_{1}, x_{2}, x_{n / 2},-x_{1},-x_{2},-x_{n / 2}$
I just need the evaluations of A^{0}, A^{1} at points $x_{1}{ }^{2}, x_{2}{ }^{2}, x_{n / 2}{ }^{2}$
$T(n) \leq 2 T(n / 2)+O(n)$, with solution $O(n \log n)$. Are we done?
Need points which can be iteratively decomposed in + and -

Complex numbers:

$|$| $x(x, y)$ |
| :---: |
| $x=r \cos \theta$ |
| $y=r \sin \theta$ |
| $r=\sqrt{x^{2}+y^{2}}$ |
| x |

$\omega_{\mathrm{n}}=\mathrm{n}$-th primitive root of unit ${ }^{\prime}$
$\omega_{n}{ }^{0}, \ldots, \omega_{n}^{n-1}$
n-th roots of unity
We evaluate polynomial A of degree n -1
at roots of unity
$\omega_{n}{ }^{0}, \ldots, \omega_{n}{ }^{n-1}$

Fact: The n squares of the n-th roots of unity are:
first the $\mathrm{n} / 2 \mathrm{n} / 2$-th roots of unity, then again the $\mathrm{n} / 2 \mathrm{n} / 2$-th roots of unity.
\rightarrow from coefficient to point-value in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ (complex) steps

Summary:

We need to evaluate A at n-th roots of unity $\omega_{n}{ }^{0}, \ldots, \omega_{n}{ }^{n-1}$
Divide: $A(x)=A^{0}\left(x^{2}\right)+x A^{1}\left(x^{2}\right)$ where A^{0} has the even-degree terms, A^{1} the odd

Conquer: Evaluate $\mathrm{A}^{0}, \mathrm{~A}^{1}$ at $\mathrm{n} / 2$-th roots $\omega_{\mathrm{n} / 2} 0^{0}, \ldots, \omega_{\mathrm{n} / 2}{ }^{\mathrm{n} / 2-1}$
This yields evaluation vectors $\mathrm{y}^{0}, \mathrm{y}^{1}$
Combine: $z:=1=\omega_{n}{ }^{0}$
for ($k=0, k<n, k++$)
$y[k]=y^{0}[k$ modulo $n / 2]+z y^{1}[k$ modulo $n / 2]$
$z=z \cdot \omega_{n}$
$T(n) \leq 2 T(n / 2)+O(n)$, with solution $O(n \log n)$.

It only remains to go from point-value to coefficient represent.

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n-1}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\
1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

F

We need to invert F

It only remains to go from point-value to coefficient represent.

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n-1}
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\
1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n-1}
\end{array}\right)
$$

Fact: $\left(F^{-1}\right)_{\mathrm{j}, \mathrm{k}}=\omega_{\mathrm{n}}^{-\mathrm{jk}} / \mathrm{n} \quad$ Note $\mathrm{j}, \mathrm{k} \in\{0,1, \ldots, \mathrm{n}-1\}$
To compute inverse, use FFT with ω^{-1} instead of ω, then divide by n .

