Big picture

- •All languages
- Decidable

Turing machines

- •NP
- •P
- Context-free

Context-free grammars, push-down automata

•Regular

Automata, non-deterministic automata, regular expressions

- States), this DFA has 4 states
- Transitions

labelled with elements of the alphabet $\Sigma = \{0, 1\}$

Computation on input w:

- Begin in start state
- Read input string in a one-way fashion
- Follow the arrows matching input symbols
- When input ends: ACCEPT if in accept state

REJECT if not

Example: Input string

Example: Input string

Example: Input string

Example: Input string

Example: Input string

Example: Input string

Example: Input string

w = 0011 ACCEPT because end in accept state

Example: Input string

Example: Input string

w = 010 **REJECT**

because does not

end in accept state

Example: Input string w = 01 ACCEPT

- w = 010 REJECT
- w = 0011 ACCEPT
- w = 00110 REJECT

M recognizes language

L(M) = { w : w starts with 0 and ends with 1 }

L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101 $\in L(M)$

- 00 causes M to accept, so 00 is in $L(M) \quad 00 \in L(M)$
- 01 does not cause M to accept, so 01 not in L(M),

01 ∉ L(M)

- 0101 $\in L(M)$
- 01101100 \in L(M)
- 011010 ∉ L(M)

L(M) = {w : w has an even number of 1 }

Note: If there is no 1, then there are zero 1, zero is an even number, so M should accept.

Indeed 0000000 $\in L(M)$

L(M) = every possible string over {0,1}

Example

$$\Sigma = \{0,1\}$$

M := 1
0

• L(M) = all strings over {0,1} except empty string ε = {0,1}* - { ε }

• L(M) = ?

- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in ... what ?

- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in states.

DFA have finite states, so finite memory

Convention:

L(M) = { w : w starts with 0 and ends with 1 }

Convention:

Don't need to write such arrows:

If, from some state, read symbol with no

corresponding arrow, imagine M goes into "sink state" that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

This makes pictures more compact.

Example $\sum = \{0,1\}$

$$M =$$

$$\rightarrow O \xrightarrow{0,1} O \xrightarrow{0,1} O$$

$$L(M) = ?$$

Example
$$\sum = \{0,1\}$$

$$M =$$

$$\rightarrow O \xrightarrow{0,1} O \xrightarrow{0,1} O$$

$$L(M) = \sum^{2} = \{00, 01, 10, 11\}$$

Example from programming languages:

Recognize strings representing numbers:

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:

- Follow with arbitrarily many digits, but at least one
- Possibly put decimal point
- Follow with arbitrarily many digits, possibly none

Example from programming languages:

Recognize strings representing numbers:

- Input w = + REJECT
- Input w = -3.25 ACCEPT
- Input w = +2.35-. REJECT
Example $\Sigma = \{0, 1\}$

What about { w : w has same number of 0 and 1 }

• Can you design a DFA that recognizes that?

• It seems you need infinite memory

• We will prove later that there is no DFA that recognizes that language !

Next: formal definition of DFA

• Useful to prove various properties of DFA

 Especially important to prove that things CANNOT be recognized by DFA.

Useful to practice mathematical notation

State diagram of a DFA:

- •One or more states
- •Some number of accept states ()
- •Labelled transitions exiting each state, _____ for every symbol in Σ

•Definition: A finite automaton (DFA) is a 5-tuple (Q, Σ , δ , q₀, F) where

- •Q is a finite set of states
- • Σ is the input alphabet
- • δ : Q X $\Sigma \rightarrow$ Q is the transition function
- •q₀ in Q is the start state
- •F \subseteq Q is the set of accept states

Q X Σ is the set of ordered pairs (a,b) : a \in Q, b $\in \Sigma$ Example {q,r,s}X{0,1}={(q,0),(q,1),(r,0),(r,1),(s,0),(s,1)}

- •Q = { q_0, q_1 }
- $\bullet \Sigma = \{0,1\}$
- • $\delta(q_0, 0) = ?$

- •Q = { q_0, q_1 }
- $\bullet \Sigma = \{0,1\}$
- • $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = ?$

- •Q = { q_0, q_1 }
- $\bullet \Sigma = \{0, 1\}$
- • $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$
 - $\delta(q_1, 0) = q_1 \quad \delta(q_1, 1) = q_0$
- $\bullet q_0$ in Q is the start state

•F = ?

- •Q = { q_0, q_1 }
- $\bullet \Sigma = \{0,1\}$
- • $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$
- $\delta(q_1, 0) = q_1 \quad \delta(q_1, 1) = q_0$
- $\bullet q_0$ in Q is the start state
- •F = { q_0 } \subseteq Q is the set of accept states

•Definition: A DFA (Q, Σ , δ , q₀, F) accepts a string w if

- •w = w₁ w₂ ... w_k where, $\forall 1 \le i \le k$, w_i is in Σ (the k symbols of w)
- • \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$
- $r_{i+1} = \delta(r_i, w_{i+1}) \quad \forall \ 0 \le i < k$
- r_k is in F

(r_i = state DFA is in after reading i-th symbol in w)

- WE MUST SHOW THAT
- • \exists sequence of 3+1=4 states r_0 , r_1 , r_2 , r_3 in Q that:
- $r_0 = q_0$
- $r_{i+1} = \delta(r_i, w_{i+1}) \ \forall \ 0 \le i < 3$
- r_3 is in F

- •Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 0.11 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$
- •consider 4 states r₀ := ?

- •Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$ • consider 4 states $r_0 := q_0 r_1 := ?$
- $r_0 = q_0$ OK

- w = 011 = w₁ w₂ w₃ w₁ = 0 w₂ = 1 w₃ = 1 • consider 4 states $r_0 := q_0$ $r_1 := q_0$ $r_2 := ?$
- $r_0 = q_0$ OK
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$ OK

- w = 011 = w₁ w₂ w₃ w₁ = 0 w₂ = 1 w₃ = 1 • consider 4 states $r_0 := q_0$ $r_1 := q_0$ $r_2 := q_1$ $r_3 := ?$
- $r_0 = q_0$ OK
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$ OK
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$ OK

• w = 011 = w₁ w₂ w₃ w₁ = 0 w₂ = 1 w₃ = 1 • consider 4 states $r_0 := q_0$ $r_1 := q_0$ $r_2 := q_1$ $r_3 := q_0$:

OK

OK

()NF1

- $r_0 = q_0$ OK
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$ OK
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$ OK
- $r_3 = \delta(r_2, w_3) = \delta(q_1, 1) = q_0$
- $r_3 = q_0$ in F

 Definition: For a DFA M, we denote by L(M) the set of strings accepted by M:

L(M) := { w : M accepts w}

We say M accepts or recognizes the language L(M)

• Definition: A language L is regular if ∃ DFA M : L(M) = L In the next lectures we want to:

• Understand power of regular languages

• Develop alternate, compact notation to specify regular languages

Example: Unix command *grep '*\<*c.*h*\>' file selects all words starting with c and ending with h in *file*

• Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

• Are these languages regular?

• Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

 Terminology: Are regular languages closed under not, U, o, * ?

If A is a regular language, then so is (not A)

If A is a regular language, then so is (not A)

If A is a regular language, then so is (not A)

•Proof idea: Complement the set of accept states

If A is a regular language, then so is (not A)

Proof idea: Complement the set of accept statesExample:

L(M) =

{ w : w has even number of 1}

If A is a regular language, then so is (not A)

Proof idea: Complement the set of accept statesExample:

If A is a regular language, then so is (not A)

•Formal construction: Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A Construct DFA M' = (Q, Σ , δ , q₀, F') F' := not F

L(M') = not A because
M' accepts w ⇔ M does not accept w

If A is a regular language, then so is (not A)

$$M = \underbrace{0,1}_{0,1} \underbrace{0,1}_{0,1} \bigcirc \underbrace{0,1}_{0,1} \odot \underbrace{$$

$$L(M) = \sum^2 = \{00, 01, 10, 11\}$$

What is a DFA M' : L(M') = not \sum^2 = all strings except those of length 2 ? Example $\sum = \{0,1\}$

$$\longrightarrow \bigcirc 0,1 \bigcirc$$

$$L(M') = not \sum^2 = \{0,1\}^* - \{00,01,10,11\}$$

Do not forget the convention about the sink state!

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

- Other three are more complicated!
- •Plan: we introduce NFA prove that NFA are equivalent to DFA prove A U B, A o B, A* regular, using NFA

Non deterministic finite automata (NFA)

 DFA: given state and input symbol, unique choice for next state, deterministic:

•Next we allow multiple choices, non-deterministic

We also allow ε-transitions:
can follow without reading anything

Intuition of how it computes:

- Accept string w if there is a way to follow transitions that ends in accept state
- •Transitions labelled with symbol in $\Sigma = \{a, b\}$ must be matched with input
- • ϵ transitions can be followed without matching

Example:

- Accept a (first follow ε -transition)
- Accept baaa

ANOTHER Example of NFA

Example:

- Accept bab (two accepting paths, one uses the ε -transition)
- Reject ba (two possible paths, but neither has final state = q₁)

•Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ , δ , q₀, F) where

- •Q is a finite set of states
- • Σ is the input alphabet
- • δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- •q₀ in Q is the start state
- •F \subseteq Q is the set of accept states

•Recall: Powerset(Q) = set of all subsets of Q Example: Powerset({1,2}) = ?
•Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ , δ , q₀, F) where

- •Q is a finite set of states
- • Σ is the input alphabet
- • δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- •q₀ in Q is the start state
- •F \subseteq Q is the set of accept states

•Recall: Powerset(Q) = set of all subsets of Q Example: Powerset($\{1,2\}$) = { \emptyset , {1}, {2}, {1,2} }

•Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F) where

- •Q = { q_0, q_1 }
- $\bullet \Sigma = \{0,1\}$
- • $\delta(q_0, 0) = ?$

•Example: above NFA is 5-tuple (Q, Σ , δ , q_0 , F) where •Q = { q_0 , q_1 }

- $\bullet \Sigma = \{0,1\}$
- • $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = ?$

•Example: above NFA is 5-tuple (Q, Σ , δ , q_0 , F) where •Q = { q_0 , q_1 } • Σ = {0,1} • $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \epsilon) = ?$

•Example: above NFA is 5-tuple (Q, Σ , δ , q_0 , F) where •Q = { q_0 , q_1 } • Σ = {0,1} • $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \epsilon) = \emptyset$ $\delta(q_1, 0) = ?$

•Example: above NFA is 5-tuple (Q, Σ , δ , q_0 , F) where •Q = { q_0 , q_1 }

- $\bullet \Sigma = \{0,1\}$
- $\bullet \delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \qquad \delta(q_0, \varepsilon) = \emptyset$
- $\delta(q_1, 0) = \emptyset \qquad \delta(q_1, 1) = ?$

•Example: above NFA is 5-tuple (Q, Σ , δ , q_0 , F) where •Q = { q_0 , q_1 }

$$\begin{split} \bullet \Sigma &= \{0, 1\} \\ \bullet \delta(q_0, 0) &= \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \varepsilon) = \emptyset \\ \delta(q_1, 0) &= \emptyset \quad \delta(q_1, 1) = \emptyset \quad \delta(q_1, \varepsilon) = ? \end{split}$$

•Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F) where •Q = { q₀, q₁}

- $\bullet \Sigma = \{0,1\}$
- $\begin{aligned} \bullet \delta(q_0, 0) &= \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \quad \delta(q_0, \varepsilon) = \emptyset \\ \delta(q_1, 0) &= \emptyset \quad \delta(q_1, 1) = \emptyset \quad \delta(q_1, \varepsilon) = \{q_1\} \end{aligned}$

 $\bullet q_0$ in Q is the start state

•F = ?

•Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F) where •Q = { q₀, q₁}

- $\bullet \Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\} \quad \delta(q_0, 1) = \{q_0, q_1\} \qquad \delta(q_0, \varepsilon) = \emptyset$
- $\delta(q_1, 0) = \emptyset \qquad \delta(q_1, 1) = \emptyset \qquad \qquad \delta(q_1, \varepsilon) = \{q_0\}$
- $\bullet q_0$ in Q is the start state
- $\bullet F = \{ \ q_1 \} \subseteq Q \ is \ the \ set \ of \ accept \ states$

•Definition: A NFA (Q, Σ , δ , q_0 , F) accepts a string w if \exists integer k, \exists k strings w_1 , w_2 , ..., w_k such that •w = $w_1 w_2 ... w_k$ where $\forall 1 \le i \le k$, $w_i \in \Sigma U \{\epsilon\}$ (the symbols of w, or ϵ)

- • \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$

•
$$r_{i+1} \in \delta(r_i, w_{i+1}) \ \forall \ 0 \le i < k$$

• r_k is in F

•Differences with DFA are in green

r₀ = ?

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \epsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = ?$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = ?$$

$$r_1 \in \delta(r_0, b) = \{q_1\}$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = ?$$

$$r_1 \in \delta(r_0, b) = \{q_1\} \quad r_2 \in \delta(r_1, a) = \{q_1, q_2\}$$

Back to first example NFA:

$$a \qquad q_1 \qquad a,b$$

Accepts w = baaa

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$\mathbf{r}_{0} = \mathbf{q}_{0}, \quad \mathbf{r}_{1} = \mathbf{q}_{1}, \quad \mathbf{r}_{2} = \mathbf{q}_{2}, \quad \mathbf{r}_{3} = \mathbf{q}_{0}, \quad \mathbf{r}_{4} = \mathbf{?}$$

$$\begin{aligned} \mathbf{r}_{1} \in \delta(\mathbf{r}_{0}, \mathbf{b}) &= \{\mathbf{q}_{1}\} & \mathbf{r}_{2} \in \delta(\mathbf{r}_{1}, \mathbf{a}) &= \{\mathbf{q}_{1}, \mathbf{q}_{2}\} \\ \mathbf{r}_{3} \in \delta(\mathbf{r}_{2}, \mathbf{a}) &= \{\mathbf{q}_{0}\} \end{aligned}$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \epsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = q_0, r_4 = q_2, r_5 = ?$$

$$\begin{aligned} \mathbf{r}_{1} \in \delta(\mathbf{r}_{0}, \mathbf{b}) &= \{\mathbf{q}_{1}\} & \mathbf{r}_{2} \in \delta(\mathbf{r}_{1}, \mathbf{a}) &= \{\mathbf{q}_{1}, \mathbf{q}_{2}\} \\ \mathbf{r}_{3} \in \delta(\mathbf{r}_{2}, \mathbf{a}) &= \{\mathbf{q}_{0}\} & \mathbf{r}_{4} \in \delta(\mathbf{r}_{3}, \mathbf{\epsilon}) &= \{\mathbf{q}_{2}\} \end{aligned}$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = q_0, r_4 = q_2, r_5 = q_0$$

Transitions:

 $r_{1} \in \delta(r_{0}, b) = \{q_{1}\} \quad r_{2} \in \delta(r_{1}, a) = \{q_{1}, q_{2}\}$ $r_{3} \in \delta(r_{2}, a) = \{q_{0}\} \quad r_{4} \in \delta(r_{3}, \varepsilon) = \{q_{2}\} \quad r_{5} \in \delta(r_{4}, a) = \{q_{0}\}$

•NFA are at least as powerful as DFA, because DFA are a special case of NFA

•Are NFA more powerful than DFA?

•Surprisingly, they are not:

- •Theorem:
- For every NFA N there is DFA M : L(M) = L(N)

- •Theorem:
- For every NFA N there is DFA M : L(M) = L(N)

- •Construction without ϵ transitions
- •Given NFA N (Q, Σ , δ , q, F)
- •Construct DFA M (Q', Σ , δ ', q', F') where:
- •Q' := Powerset(Q)
- •q' = {q}
- •F' = { S : S \in Q' and S contains an element of F}
- $\delta'(S, a) := U_{s \in S} \delta(s, a)$

= { t : t $\in \delta$ (s,a) for some s $\in S$ }

•It remains to deal with ϵ transitions

 Definition: Let S be a set of states.
 E(S) := { q : q can be reached from some state s in S traveling along 0 or more ε transitions }

•We think of following ϵ transitions at beginning, or right after reading an input symbol in Σ

- •Theorem:
- For every NFA N there is DFA M : L(M) = L(N)

- •Construction including ϵ transitions
- •Given NFA N (Q, Σ , δ , q, F)
- •Construct DFA M (Q', Σ , δ ', q', F') where:
- •Q' := Powerset(Q)
- •q' = E({q})
- $\bullet F' = \{ S : S \in Q' \text{ and } S \text{ contains an element of } F \}$
- $\delta'(S, a) := E(U_{s \in S} \delta(s, a))$ = { t : t $\in E(\delta(s, a))$ for some s $\in S$ }

We can delete the unreachable states.

NFA

We can delete the unreachable states.

Summary: NFA and DFA recognize the same languages

We now return to the question:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Theorem: If A, B are regular languages, then so is A U B := { w : w in A or w in B }

•Proof idea: Given DFA M_A : $L(M_A) = A$, $DFAM_B : L(M_B) = B,$ •Construct NFA N : L(N) = A U B M_A M_B 3 8

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B, •Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := ?

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,

•Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := $\{q\} U Q_A U Q_B$, F := ?

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where:
- •Q := {q} U Q_A U Q_B , F := $F_A U F_B$
- • $\delta(r,x) := \{ \delta_A(r,x) \} \text{ if } r \text{ in } Q_A \text{ and } x \neq \epsilon$
- • $\delta(r,x) := ?$ if r in Q_B and $x \neq \epsilon$

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where:
- •Q := {q} U Q_A U Q_B , F := $F_A U F_B$
- • $\delta(r,x) := \{ \delta_A(r,x) \} \text{ if } r \text{ in } Q_A \text{ and } x \neq \epsilon$
- • $\delta(r,x) := \{ \delta_B(r,x) \} \text{ if } r \text{ in } Q_B \text{ and } x \neq \epsilon$
- •δ(q,ε) := **?**

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := \{q\} U Q_A U Q_B , F := F_A U F_B$
- • $\delta(r,x) := \{ \delta_A(r,x) \} \text{ if } r \text{ in } Q_A \text{ and } x \neq \epsilon$
- • $\delta(r,x) := \{ \delta_B(r,x) \} \text{ if } r \text{ in } Q_B \text{ and } x \neq \epsilon$
- $\bullet \delta(q, \epsilon) := \{q_A, q_B\}$
- •We have L(N) = A U B

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

$$L(M_{1}) = L_{1}$$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

 $L(M_{1}) = L_{1}$

 $L(M_{2}) = L_{2}$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_{1} = \{w : |w| \text{ is div. by } 3\}$ $L_{2} = \{w : w \text{ starts with a } 1\}$ 0,1 $L(M) = L(M_1) U L(M_2)$ M = $= L_1 U L_2$ 3 = | 2 \Rightarrow L is regular.
- Suppose A, B are regular languages, then
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

Theorem: If A, B are regular languages, then so is A o B := { w : w = xy for some x in A and y in B. •Proof idea: Given DFAs M_A , M_B for A, B construct NFA N : $L(N) = A \circ B$. Μ_Δ M_B 0 Ν 8

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,

•Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := ?

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,

•Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := $Q_A U Q_B$, q := ?

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,

•Construct NFA N = (Q, Σ , δ , q, F) where: •Q := Q_A U Q_B , q := q_A , F := ?

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B , q := q_A , F := F_B$
- • $\delta(\mathbf{r},\mathbf{x}) := ?$ if r in Q_A and $\mathbf{x} \neq \varepsilon$

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where: •Q := Q_A U Q_B , q := q_A , F := F_B
- $$\begin{split} \bullet \delta(\mathbf{r}, \mathbf{x}) &:= \{ \ \delta_A(\mathbf{r}, \mathbf{x}) \ \} \ \text{if } \mathbf{r} \ \text{in } \mathbf{Q}_A \ \text{and} \ \mathbf{x} \neq \epsilon \\ \bullet \delta(\mathbf{r}, \epsilon) &:= \ ? \qquad \text{if } \mathbf{r} \ \text{in } \mathbf{F}_A \end{split}$$

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where: •Q := Q_A U Q_B , q := q_A , F := F_B
- $\begin{aligned} \bullet \delta(\mathbf{r}, \mathbf{x}) &:= \{ \ \delta_A(\mathbf{r}, \mathbf{x}) \ \} \ \text{if } \mathbf{r} \ \text{in } \mathbf{Q}_A \ \text{and } \mathbf{x} \neq \epsilon \\ \bullet \delta(\mathbf{r}, \epsilon) &:= \{ \ \mathbf{q}_B \ \} \ \text{if } \mathbf{r} \ \text{in } \mathbf{F}_A \end{aligned}$
- • $\delta(\mathbf{r},\mathbf{x}) := ?$ if r in Q_B and $\mathbf{x} \neq \varepsilon$

- •Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, DFA M_B = (Q_B, Σ , δ_B , q_B, F_B) : L(M_B) = B,
- •Construct NFA N = (Q, Σ , δ , q, F) where: •Q := Q_A U Q_B , q := q_A , F := F_B
- $\begin{aligned} \bullet \delta(\mathbf{r}, \mathbf{x}) &:= \{ \ \delta_A(\mathbf{r}, \mathbf{x}) \ \} \ \text{if } \mathbf{r} \ \text{in } \mathbf{Q}_A \ \text{and} \ \mathbf{x} \neq \epsilon \\ \bullet \delta(\mathbf{r}, \epsilon) &:= \{ \ \mathbf{q}_B \ \} \ \text{if } \mathbf{r} \ \text{in } \mathbf{F}_A \end{aligned}$
- • $\delta(r,x) := \{ \delta_B(r,x) \} \text{ if } r \text{ in } Q_B \text{ and } x \neq \epsilon$
- •We have $L(N) = A \circ B$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Note: L = {01, 0001001, 111001, ... }

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

$$M_0 = 1 \quad 0,1$$

$$\longrightarrow 0 \quad 0$$

$$L(M_0) = L_0$$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \circ L_1$.

$$M_0 = 1 0, 1$$

 $M_0 = 0, 1$
 $M_0 = 0, 1$
 $M_0 = 0, 1$
 $L(M_0) = L_0$

 $L(M_{1}) = L_{1}$

Is L = {w in {0,1}* : w contains a 1 after a 0}
regular?

Let
$$L_0 = \{w : w \text{ contains a } 0\}$$

 $L_1 = \{w : w \text{ contains a } 1\}$. Then $L = L_0 \circ L_1$.
 $M = 1 \quad 0, 1 \quad 0 \quad 0, 1$
 $\downarrow 0 \quad 0 \quad \varepsilon \quad 0 \quad 1 \quad 0$
 $L(M) = L(M_0) \circ L(M_1) = L_0 \circ L_1 = L$
 $\Rightarrow L \text{ is regular.}$

- Suppose A, B are regular languages, then
- not A := { w : w is not in A } REGULAR
- A U B := { w : w in A or w in B } REGULAR
- $\bullet \ A \ o \ B \ := \{ \ w_1 \ w_2 : \ w_1 \in A \ and \ w_2 \in B \ \} \ REGULAR$
- $\bullet A^* := \{ w_1 \ w_2 \ \ldots \ w_k \ : k \ge 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

Theorem: If A is a regular language, then so is $A^* := \{ w : w = w_1 ... w_k, w_i \text{ in A for } i=1,...,k \}$

•Proof idea: Given DFA M_A : $L(M_A) = A$,

Construct NFA N : $L(N) = A^*$

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A, Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := ?

•Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA N = (Q, Σ, δ, q, F) where: •Q := {q} U Q_A, F := ?

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := {q} U Q_A, F := {q} U F_A

• $\delta(\mathbf{r},\mathbf{x}) := ?$ if r in Q_A and $\mathbf{x} \neq \varepsilon$

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

•Q := {q} U Q_A, F := {q} U F_A

• $\delta(r,x) := \{ \delta_A(r,x) \} \text{ if } r \text{ in } Q_A \text{ and } x \neq \epsilon$

• $\delta(r,\epsilon) := ?$ if r in {q} U F_A

•Given DFA M_A = (Q_A, Σ , δ_A , q_A, F_A) : L(M_A) = A,

Construct NFA N = (Q, Σ , δ , q, F) where:

- •Q := {q} U Q_A, F := {q} U F_A
- • $\delta(\mathbf{r},\mathbf{x}) := \{ \delta_A(\mathbf{r},\mathbf{x}) \} \text{ if } \mathbf{r} \text{ in } Q_A \text{ and } \mathbf{x} \neq \epsilon$
- • $\delta(r,\epsilon) := \{ q_A \} \text{ if } r \text{ in } \{q\} U F_A$
- •We have $L(N) = A^*$

Let
$$L_0 = \{w : w \text{ has length} = 2\}$$
. Then $L = L_0^*$.

Let
$$L_0 = \{w : w \text{ has length} = 2\}$$
. Then $L = L_0^*$.

Let
$$L_0 = \{w : w \text{ has length } = 2\}$$
. Then $L = L_0^*$.

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

are all regular!

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2$: w_1 in A and w_2 in B }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

What about $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \}$?

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$

De Morgan's laws: $A \cap B = not ((not A) U(not B))$ By above, (not A) is regular, (not B) is regular, (not A) U (not B) is regular, not ((not A) U (not B)) = $A \cap B$ regular

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$
- $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \}$

are all regular

How to specify a regular language?

Write a picture \rightarrow complicated

Write down formal definition \rightarrow complicated $\delta(q_0, 0) = q_{0, ...}$

Use symbols from Σ and operations *, o, U \rightarrow good

({0} * U {1}) o {001}

Regular expressions: anything you can write with \varnothing , ϵ , symbols from Σ , and operations *, o, U

Conventions:

- •Write a instead of {a}
- •Write AB for A o B
- •Write \sum for $U_{a \in \sum} a$ So if $\sum = \{a, b\}$ then $\sum = a \cup b$
- •Operation * has precedence over o, and o over U so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, Σ^* , Σ^* 001 Σ^* , $(\Sigma\Sigma)^*$, 01 U 10

Definition Regular expressions RE over Σ are:

a if a in Σ

Ø

3

- R R' if R, R' are RE
- R U R' if R, R' are RE
- R* if R is RE

Definition The language described by RE:

```
L(\varepsilon) = \{\varepsilon\}

L(a) = \{a\} if a in \Sigma

L(R R') = L(R) \circ L(R')

L(R U R') = L(R) U L(R')

L(R^*) = L(R)^*
```

 $L(\emptyset) = \emptyset$

• a*baba*a∅

- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- (a U L • a*ba*
- (a U b)*

• ab U ba

- a*
- RE Language

?

Example $\Sigma = \{a, b\}$

• a*baba*a∅

- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- (a U b)*
 a*ba*

Example $\Sigma = \{a, b\}$

Language

{ab, ba}

• a*

RE

• ab U ba

• a*baba*a∅

- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- (a U b)*
 a*ba*

RE

• a*

• ab U ba

Example $\Sigma = \{a, b\}$

Language

{ab, ba}
Example $\Sigma = \{a, b\}$

RE Language

- ab U ba {ab, ba}
- a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- all strings

- a*ba*
- Σ*bΣ*
- Σ*aabΣ*
- $(\Sigma\Sigma)^*$
- (a*ba*ba*)*
- a*baba*a∅

Example $\Sigma = \{a, b\}$

RE Language

- ab U ba {ab, ba}
- a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- a*ba*
- $\Sigma^* h \Sigma^*$
- Σ*aabΣ*
- $(\Sigma\Sigma)^*$
- (a*ba*ba*)*
- a*baba*a∅

- all strings
 - {w : w has exactly one b}

a*baba*a∅

- (a*ba*ba*)*
- $(\Sigma\Sigma)^*$
- Σ^* aab Σ^*
- $\Sigma^* h \Sigma^*$
- a*ba*
- (a U b)*
- a*

• ab U ba

RE

- Language {ab, ba}
 - $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$

 - all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}

- RE Language
- {ab, ba} • ab U ba
- a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- a*ba*
- $\Sigma^* h \Sigma^*$
- Σ^* aab Σ^*
- $(\Sigma\Sigma)^*$
- (a*ba*ba*)*
- a*baba*a⊘

- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}

- RE Language
- {ab, ba} • ab U ba
- a* $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- a*ba*
- $\Sigma^* h \Sigma^*$
- Σ^* aab Σ^*
- $(\Sigma\Sigma)^*$
- (a*ba*ba*)*
- a*baba*a⊘

- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}
 - {w : w has even length}

• a*baba*a⊘

- (a*ba*ba*)*
- $(\Sigma\Sigma)^*$
- Σ*aabΣ*
- $\Sigma^* h \Sigma^*$
- a*ba*
- a* • (a U b)*
- ab U ba

- RE Language
 - {ab, ba}
 - $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
 - all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}
 - {w : w has even length}
 - {w : w contains even number of b}

• a*baba*a∅

• (a*ba*ba*)*

{w : w contains even number of b} (anything o $\emptyset = \emptyset$)

- Σ*aabΣ*
- $\Sigma^* h \Sigma^*$

• $(\Sigma\Sigma)^*$

- a*ba*
- (a U b)*

• ab U ba

• a*

RE

- Language
- {ab, ba}
 - $\{\epsilon, a, aa, ... \} = \{w : w has only a\}$
 - all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}
 - {w : w has even length}

Theorem: For every RE R there is NFA M: L(M) = L(R)

• R = Ø M := ?

Theorem: For every RE R there is NFA M: L(M) = L(R)

Construction:

• R = ε M := ?

- R = Ø M := ----
- R = ε M := ----Ο
- R = a M := a O a
- R = R U R' ?

- R = Ø M := ----
- R = ε M := ----Ο
- R = R U R' use construction for A U B seen earlier
- R = R o R' ?

- R = Ø M := ----
- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* ?

- R = Ø M := ----
- $R = \epsilon$ M := \frown \bigcirc A = 0
- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* use construction for A* seen earlier

 $L(M_a)=L(a)$

 $L(M_a)=L(a)$

 $L(M_b)=L(b)$

$RE = (ab U a)^*$

 $L(M_{ab})=L(ab)$

$RE = (ab U a)^*$

L(M_{ab U a})=L(ab U a)

 $RE = (ab U a)^*$

RE =(ε U a)ba*

RE =(ε U a)ba*

 $L(M_{\varepsilon})=L(\varepsilon)$

 $L(M_{\epsilon})=L(\epsilon)$

 $L(M_a)=L(a)$

RE =(ε U a)ba*

RE =(ε U a)ba*

RE =(ε U a)ba*

 $L(M_a)=L(a)$

 $L(M_{(\varepsilon \cup a)b})=L((\varepsilon \cup a)b)$

RE =(ε U a)ba*

RE =(ε U a)ba*

Here " \Rightarrow " means "can be converted to"

We have seen: $RE \Rightarrow NFA \Leftrightarrow DFA$

Next we see: $DFA \Rightarrow RE$

In two steps: DFA \Rightarrow Generalized NFA \Rightarrow RE

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Convention:

Unique final state

Exactly one transition between each pair of states except nothing going into start state nothing going out of final state If arrow not shown in picture, label = \emptyset

- •Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Σ , δ , q₀, q_a) where
- •Q is a finite set of states
- • Σ is the input alphabet
- • δ : (Q {q_a}) X (Q {q₀}) \rightarrow Regular Expressions
- $\bullet q_0$ in Q is the start state
- •q_a in Q is the accept state

- •Definition: GNFA (Q, Σ , δ , q₀, q_a) accepts a string w if
- \exists integer k, \exists k strings w_1 , w_2 , ..., $w_k \in \Sigma^*$ such that $w = w_1 w_2 \dots w_k$

(divide w in k strings)

- • \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$
- $w_{i+1} \in L(\delta(r_i, r_{i+1})) \forall 0 \le i < k$
- $r_k = q_a$

•Differences with NFA are in green

Accepts w = aaabbab w₁=?

Accepts w = aaabbab w₁=aaa w₂=?

Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=?$

Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=q_1 r_2=?$

 $w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$

Accepts w = aaabbab w_1 =aaa w_2 =bb w_3 =ab $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3 = ?$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

 $w_2 = bb \in L(\delta(r_1, r_2)) = L(\delta(q_1, q_1)) = L(b^*)$

Accepts w = aaabbab

$$w_1$$
=aaa w_2 =bb w_3 =ab
 $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3=q_a$
 w_1 = aaa $\in L(\delta(r_0,r_1)) = L(\delta(q_0,q_1)) = L(a^*)$
 w_2 = bb $\in L(\delta(r_1,r_2)) = L(\delta(q_1,q_1)) = L(b^*)$
 w_3 = ab $\in L(\delta(r_2,r_3)) = L(\delta(q_1,q_a)) = L(ab)$

Theorem: \forall DFA M \exists GNFA N : L(N) = L(M) Construction:

To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:

Theorem: \forall GNFA N \exists RE R : L(R) = L(N) Construction:

- If N has 2 states, then N = q_0 S q_a thus R := S
- If N has > 2 states, eliminate some state q_r ≠ q₀, q_a : for every ordered pair q_i, q_j (possibly equal) that are connected through q_i

Repeat until 2 states remain

Example: DFA \rightarrow GNFA \rightarrow RE

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q₁: re-draw GNFA with all other states

Eliminate q_1 : find a path through q_1

Eliminate q₁: add edge to new GNFA

Eliminate q₁: simplify RE on new edge

Eliminate q_1 : if no more paths through q_1 , start over

Eliminate q_2 : re-draw GNFA with all other states

Eliminate q_2 : find a path through q_2

Eliminate q_2 : add edge to new GNFA

Eliminate q_2 : simplify RE on new edge

Eliminate q_2 : if no more paths through q_2 , start over

Only two states remain:

RE = a* (b U c) b*

all other states

path through q₁

path through q₁

re-draw GNFA with

all other states

add edge to new GNFA

a*b U a*c(b U ca*c)*(a U ca*b) $(q_3) \xrightarrow{\epsilon} (q_3)$

when no more paths through q₂, start over

a*b U a*c(b U ca*c)*(a U ca*b) $(q_0) \xrightarrow{q_0} \underbrace{q_3} \xrightarrow{\epsilon} \underbrace{q_3}$

Eliminate q₃:

re-draw GNFA with

all other states

don't forget: no arrow means \mathscr{A}

Eliminate q₃:

when no more paths through q_3 , start over

(and simplify REs)

don't forget: $\mathscr{Q}^* = \varepsilon$

$$- \mathbf{q}_0 = \mathbf{a}^* \mathbf{b} \ \mathbf{U} \ \mathbf{a}^* \mathbf{c} (\mathbf{b} \ \mathbf{U} \ \mathbf{c} \mathbf{a}^* \mathbf{c})^* (\mathbf{a} \ \mathbf{U} \ \mathbf{c} \mathbf{a}^* \mathbf{b})$$

Only two states remain:

RE = a*b U a*c(b U ca*c)*(a U ca*b)

Recap:

Here " \Rightarrow " means "can be converted to"

$\mathsf{RE} \Leftrightarrow \mathsf{DFA} \Leftrightarrow \mathsf{NFA}$

Any of the three recognize exactly

the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using *grep*

- •The RE is converted to an NFA
- •Then the NFA is converted to a DFA
- •The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

Is { $0^n 1^n : n \ge 0$ } = { ϵ , 01, 0011, 000111, ... } regular?

Pumping lemma:

L regular language $\Rightarrow \exists p$

$$\exists p \ge 0$$

 $\forall w \in L, |w| \ge p$
 $\exists x,y,z : w = xyz, |y| > 0, |xy| \le p$
 $\forall i \ge 0 : xy^i z \in L$

Recall
$$y^0 = \varepsilon$$
, $y^1 = y$, $y^2 = yy$, $y^3 = yyy$, ...

Pumping lemma:

L regular language $\Rightarrow \exists p$

$$\begin{vmatrix} \exists p \ge 0 \\ \forall w \in L, |w| \ge p \\ \exists x, y, z : w = xyz, |y| > 0, |xy| \le p \\ \forall i \ge 0 : xy^i z \in L \end{vmatrix}$$

We will not see the proof. But here's the idea:

- p := |Q| for DFA recognizing L
- If $w \in L$, $|w| \ge p$, then during computation

2 states must be the same $q \in Q$

y = portion of w that brings back to q can repeat y and still accept string

```
Pumping lemma:
```

L regular language $\Rightarrow |\exists |$

$$\exists p \ge 0$$
 A
∀ w ∈ L, |w| ≥ p
∃ x,y,z : w= xyz, |y|> 0, |xy|≤ p
∀ i ≥ 0 : xyⁱz ∈ L

Useful to prove L NOT regular. Use contrapositive: L regular language $\Rightarrow A$

> same as (not A) \Rightarrow L not regular

$$\forall p \ge 0$$
not A $\exists w \in L, |w| \ge p$ $\Rightarrow L$ not regular $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\Rightarrow L$ not regular $\exists i \ge 0 : xy^iz \notin L$

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like ∀ bla ∃ bla ∀ bla ∃ bla bla means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

You have winning strategy:

if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

You have winning strategy: if adversary says x, you say x+1 Claim is true

 $\forall x \exists y : y > x$

∀ ,E

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game What is it?

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game The power set construction. Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

∀ move of the Adversary

3 move You can make

∀ move of the Adversary

3 move You can make

: You checkmate

Pumping lemma (contrapositive) $\forall p \ge 0$ $\exists w \in L, |w| \ge p$ $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\exists i \ge 0 : xy^iz \notin L$

\Rightarrow L not regular

Rules of the game:

Adversary picks p,

You pick $w \in L$ of length $\geq p$,

Adversary decomposes w in xyz, where |y| > 0, $|xy| \le p$

You pick $i \ge 0$

Finally, you win if xyⁱz ∉ L

Theorem: L := $\{0^n \ 1^n : n \ge 0\}$ is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, this is not of the form $0^n 1^n$

∀ p ≥0
∃ w ∈ L,
$$|w| ≥ p$$

∀ x,y,z : w = xyz, $|y| > 0$, $|xy| ≤ p$
∃ i ≥ 0 : $xy^iz \notin L$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : xyⁱz ∉ L

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0

So xyyz = ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, not as many 0 as 1

∀ p ≥0 ∃ w ∈ L, |w| ≥ p∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p∃ i ≥ 0 : $xy^iz \notin L$

- **Theorem:** L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: **∀** p ≥0 Use pumping lemma $\exists w \in L, |w| \ge p$ Adversary moves p
- You move w := ?

∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃i≥0:xyⁱz∉L

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p \ge 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^p$
- Adversary moves x,y,z You move i := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p∃ i ≥ 0 : $xy^iz \notin L$

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p > 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^p$
- ∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : xyⁱz ∉ L
- Adversary moves x,y,z
- You move i := 0
- You must show $xz \notin L$:
- Since $|xy| \le p$ and $w = xyz = 0^{p+1} 1^p$, y only has 0
- So $xz = 0^{p+1} |y| 1^{p}$
- Since |y| > 0, this is not of the form $0^j 1^k$ with j > k

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : $xy^iz \notin L$

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p1 0^p 1
- Adversary moves x,y,z
- You move i := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : xyⁱz ∉ L

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p 1 0^p 1
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1 0^p 1$, y only has 0
- So xyyz = $0^{p + |y|} 1 0^{p} 1$
- Since |y| > 0, first half of xyyz only 0, so xyyz \notin L

∀ p ≥0 ∃ w ∈ L, |w| ≥ p∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p∃ i ≥ 0 : $xy^iz \notin L$

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : xyⁱz ∉ L

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}
- Adversary moves x,y,z You move i := ?

∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : xyⁱz ∉ L

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L: Since $|xy| \le p$, $|xyyz| \le ?$

 \forall p ≥0 \exists w ∈ L, |w| ≥ p \forall x,y,z : w = xyz, |y| > 0, |xy| ≤ p \exists i ≥ 0 : xyⁱz ∉ L

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- ∀ p ≥0 ∃ w ∈ L, |w| ≥ p ∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p ∃ i ≥ 0 : $xy^iz \notin L$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L: Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, |xyyz| > ?
Theorem: L := { 1^{n^2} : $n \ge 0$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- ∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be ... what ?

Theorem: L := { 1^{n^2} : $n \ge 0$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$

- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be a square. xyyz ∉ L

Big picture

- •All languages
- Decidable

Turing machines

- •NP
- •P
- Context-free

Context-free grammars, push-down automata

•Regular

Automata, non-deterministic automata, regular expressions