We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- $A \cap B:=\{w: w$ in A and w in $B\}$
are all regular

Big picture

-All languages
-Decidable
Turing machines
-NP
-P
-Context-free
Context-free grammars, push-down automata
-Regular
Automata, non-deterministic automata, regular expressions

How to specify a regular language?

Write a picture \rightarrow complicated

Write down formal definition \rightarrow complicated

$$
\delta\left(q_{0}, 0\right)=q_{0}, \ldots
$$

Use symbols from Σ and operations ${ }^{*}, \mathrm{o}, \mathrm{U} \rightarrow$ good

$$
(\{0\} * \cup\{1\}) \circ\{001\}
$$

Regular expressions: anything you can write with \varnothing, ε, symbols from Σ, and operations *, o, U

Conventions:
-Write a instead of $\{a\}$
-Write AB for A o B
-Write Σ for $U_{a \in \Sigma} a$ So if $\Sigma=\{a, b\}$ then $\Sigma=a U b$
-Operation * has precedence over o, and o over U so $1 \mathrm{U} 01^{*}$ means $1 \mathrm{U}\left(0(1)^{*}\right)$

Example: 110, $0^{*}, \Sigma^{*}, \Sigma^{*} 001 \Sigma^{*},(\Sigma \Sigma)^{*}, 01$ U 10

Definition Regular expressions RE over Σ are:

\varnothing

ε
if a in Σ
$R R^{\prime} \quad$ if R, R^{\prime} are $R E$
$R \cup R^{\prime} \quad$ if R, R^{\prime} are $R E$
R*
if R is $R E$

Definition The language described by RE:
$\mathrm{L}(\varnothing)=\varnothing$
$\mathrm{L}(\varepsilon)=\{\varepsilon\}$
$\mathrm{L}(\mathrm{a})=\{\mathrm{a}\}$
if a in Σ
$L\left(R R^{\prime}\right)=L(R)$ o $L\left(R^{\prime}\right)$
$L\left(R \cup R^{\prime}\right)=L(R) \cup L\left(R^{\prime}\right)$
$L\left(R^{*}\right)=L(R)^{*}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} \mathrm{aab} \Sigma^{*}$
- ($\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language
$\{\varepsilon, a$, aa, $\ldots\}=\{w$: w has only $a\}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language \{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$ all strings

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language
\{ab, ba\}
$\{\varepsilon, a$, aa, $\ldots\}=\{w: w$ has only $a\}$
all strings
\{w : w has exactly one b $\}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
-a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
\{w:w has at least one b\}

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
\{w:w has at least one b\}
\{w:w contains the string aab\}

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
-a*baba*a \varnothing

Language

\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
\{w:w has at least one b\}
\{w: w contains the string aab\}
\{w:w has even length\}

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing

Language

\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
$\{w: w$ has at least one b $\}$
\{w: w contains the string aab\}
\{w:w has even length\}
$\{w: w$ contains even number of $b\}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\Sigma^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
-a*baba*a \varnothing

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
$\{w: w$ has at least one b $\}$
$\{w: w$ contains the string aab\}
\{w: w has even length\}
$\{w: w$ contains even number of $b\}$
\varnothing
(anything o $\varnothing=\varnothing$)

Theorem: For every RE R there is NFA M: $L(M)=L(R)$

Theorem: For every RE R there is NFA M: $L(M)=L(R)$
Construction:

- $\mathrm{R}=\varnothing \quad \mathrm{M}:=$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$
Construction:

- $R=\varnothing$ $M:=\longrightarrow$
- $\mathrm{R}=\varepsilon \quad \mathrm{M}:=?$

Theorem: For every RE R there is NFA M: $L(M)=L(R)$
Construction:

- $R=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \text { 〇 }
$$

- $\mathrm{R}=\mathrm{a} \quad \mathrm{M}:=$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$
Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \mathrm{O}
$$

- $\mathrm{R}=\mathrm{a}$

-R=R UR' ?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $M:=\longrightarrow$
- $\mathrm{R}=\varepsilon$

$$
\mathbf{M}==
$$

- $\mathrm{R}=\mathrm{a}$
$M:=\longrightarrow \rightarrow-$
- $R=R U R^{\prime}$ use construction for $A \cup B$ seen earlier
-R = R o R' ?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$

$$
M:=\longrightarrow
$$

- $\mathrm{R}=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \mathrm{O}
$$

- $\mathrm{R}=\mathrm{a}$
$\mathrm{M}:=\longrightarrow \rightarrow \mathrm{a}$
- $R=R U R^{\prime}$ use construction for $A \cup B$ seen earlier
- $R=R$ o R^{\prime} use construction for A o B seen earlier
- $\mathrm{R}=\mathrm{R}^{*}$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$

$$
M:=\longrightarrow
$$

- $\mathrm{R}=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \mathrm{O}
$$

- $\mathrm{R}=\mathrm{a}$

- $R=R \cup R^{\prime}$ use construction for $A \cup B$ seen earlier
- $R=R \circ R^{\prime}$ use construction for $A \circ B$ seen earlier
- $R=R^{*} \quad$ use construction for A^{*} seen earlier

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$L\left(M_{a}\right)=L(a)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$$
L\left(M_{a}\right)=L(a)
$$

$$
L\left(M_{b}\right)=L(b)
$$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b}=$

$L\left(M_{a b}\right)=L(a b)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b}=$

$\mathrm{M}_{\mathrm{a}}=\rightarrow \mathrm{O}^{\mathrm{a}} \mathrm{O}$

$\mathrm{L}\left(\mathrm{M}_{\mathrm{ab}}\right)=\mathrm{L}(\mathrm{ab})$

$L\left(M_{a}\right)=L(a)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b \cup a}=$

$L\left(M_{a b \cup a}\right)=L(a b U a)$

Example: RE \rightarrow NFA

$$
R E=(a b U a)^{*}
$$

M
$=$
(ab U a)*

$$
\mathrm{L}\left(\mathrm{M}_{(\mathrm{ab} \mathrm{a})}\right)=\mathrm{L}\left((\mathrm{ab} \cup \mathrm{a})^{*}\right)=\mathrm{L}(\mathrm{RE})
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon \cup a) b a^{*}$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon \cup a) b a *$

$$
M_{\varepsilon}=\rightarrow 0
$$

$$
\mathrm{L}\left(\mathrm{M}_{\varepsilon}\right)=\mathrm{L}(\varepsilon)
$$

ANOTHER Example: RE \rightarrow NFA

RE =($\varepsilon \mathrm{U}$ a)ba*

$\mathrm{M}_{\mathrm{a}}=\rightarrow \mathrm{O}^{\mathrm{a}} \rightarrow$ ©

$$
L\left(M_{\varepsilon}\right)=L(\varepsilon)
$$

$$
L\left(M_{a}\right)=L(a)
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon U a) b a^{*}$

$\mathrm{M}_{\varepsilon \cup \mathrm{a}}=$

$$
L\left(M_{\varepsilon \cup a}\right)=L(\varepsilon \cup a)
$$

ANOTHER Example: RE \rightarrow NFA

RE =($\varepsilon \mathrm{U}$ a)ba*

M

$$
L\left(M_{b}\right)=L(b)
$$

$$
L\left(M_{\varepsilon \cup a}\right)=L(\varepsilon \cup a)
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon U a) b a^{*}$

$\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}=$

$$
L\left(M_{(\varepsilon \cup a) b}\right)=L((\varepsilon \cup a) b)
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup a) b a^{*}
$$

$$
L\left(M_{a}\right)=L(a)
$$

$$
\mathrm{L}\left(\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}\right)=\mathrm{L}((\varepsilon \mathrm{U} \mathrm{a}) \mathrm{b})
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup \mathrm{a}) \mathrm{ba}{ }^{*}
$$

$M_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}=$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{a}^{*}}=\rightarrow \underbrace{0}_{-0} \overbrace{\square}^{\varepsilon} \\
& L\left(M_{a^{*}}\right)=L\left(a^{*}\right)
\end{aligned}
$$

$$
L\left(M_{(\varepsilon \cup a) b}\right)=L((\varepsilon \cup a) b)
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup a) b a^{*}
$$

M ($\varepsilon \cup \mathrm{a}$) ba*

$$
\mathrm{L}\left(\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{ba}} \mathrm{a}^{*}\right)=\mathrm{L}\left((\varepsilon \cup \mathrm{U}) \mathrm{ba}^{*}\right)=\mathrm{L}(\mathrm{RE})
$$

Recap:

Here " \Rightarrow " means "can be converted to"

We have seen: RE \Rightarrow NFA \Leftrightarrow DFA

Next we see: $\quad D F A \Rightarrow R E$

In two steps: $\quad D F A \Rightarrow$ Generalized $N F A \Rightarrow R E$

Generalized NFA (GNFA)

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)

Convention:
Unique final state
Exactly one transition between each pair of states except nothing going into start state nothing going out of final state
If arrow not shown in picture, label = \varnothing
-Definition: A generalized finite automaton (GNFA) - is a 5 -tuple ($Q, \Sigma, \delta, q_{0}, q_{a}$) where
$\cdot Q$ is a finite set of states

- Σ is the input alphabet
- $\delta:\left(Q-\left\{q_{a}\right\}\right) X\left(Q-\left\{q_{0}\right\}\right) \rightarrow$ Regular Expressions
$\cdot q_{0}$ in Q is the start state
$\cdot q_{a}$ in Q is the accept state
-Definition: GNFA $\left(Q, \Sigma, \delta, q_{0}, q_{a}\right)$ accepts a string w if
- \exists integer $k, \exists k$ strings $w_{1}, w_{2}, \ldots, w_{k} \in \Sigma^{*}$
such that $w=w_{1} w_{2} \ldots w_{k}$
(divide w in k strings)
- \exists sequence of $k+1$ states $r_{0}, r_{1}, . ., r_{k}$ in Q such that:
- $r_{0}=q_{0}$
- $\mathrm{w}_{\mathrm{i}+1} \in L\left(\delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}+1}\right)\right) \forall 0 \leq \mathrm{i}<\mathrm{k}$
- $r_{k}=q_{a}$

Accepts w = aaabbab

$$
w_{1}=?
$$

Accepts w = aaabbab $\mathrm{w}_{1}=$ aaa $\mathrm{w}_{2}=$?

Accepts w = aaabbab
$w_{1}=a a a \quad w_{2}=b b \quad w_{3}=a b$ $r_{0}=q_{0} \quad r_{1}=?$

Example

Accepts w = aaabbab
$w_{1}=a a a \quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=$?
$\mathrm{w}_{1}=$ aaa $\in \mathrm{L}\left(\delta\left(\mathrm{r}_{0}, \mathrm{r}_{1}\right)\right)=\mathrm{L}\left(\delta\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right)\right)=\mathrm{L}\left(\mathrm{a}^{*}\right)$

Example

Accepts w = aaabbab
$w_{1}=$ aaa $\quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=q_{1} \quad r_{3}=?$
$w_{1}=$ aaa $\in L\left(\delta\left(r_{0}, r_{1}\right)\right)=L\left(\delta\left(q_{0}, q_{1}\right)\right)=L\left(a^{*}\right)$
$w_{2}=b b \quad \in L\left(\delta\left(r_{1}, r_{2}\right)\right)=L\left(\delta\left(q_{1}, q_{1}\right)\right)=L\left(b^{*}\right)$

Example

Accepts w = aaabbab
$w_{1}=$ aaa $\quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=q_{1} \quad r_{3}=q_{a}$
$w_{1}=$ aaa $\in L\left(\delta\left(r_{0}, r_{1}\right)\right)=L\left(\delta\left(q_{0}, q_{1}\right)\right)=L\left(a^{*}\right)$
$w_{2}=b b \quad \in L\left(\delta\left(r_{1}, r_{2}\right)\right)=L\left(\delta\left(q_{1}, q_{1}\right)\right)=L\left(b^{*}\right)$
$\mathrm{w}_{3}=\mathrm{ab} \quad \in \mathrm{L}\left(\delta\left(\mathrm{r}_{2}, \mathrm{r}_{3}\right)\right)=\mathrm{L}\left(\delta\left(\mathrm{q}_{1}, \mathrm{q}_{\mathrm{a}}\right)\right)=\mathrm{L}(\mathrm{ab})$

Theorem: \forall DFA $\mathrm{M} \exists \mathrm{GNFA} \mathrm{N}: \mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{M})$

 Construction:To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:

Theorem: \forall GNFA $N \exists \operatorname{RE} R: L(R)=L(N)$
Construction:

If N has >2 states, eliminate some state $q_{r} \neq q_{0}, q_{a}$: for every ordered pair q_{i}, q_{j} (possibly equal) that are connected through q_{r}

Repeat until 2 states remain

Example: DFA \rightarrow GNFA \rightarrow RE

DFA

Example: DFA \rightarrow GNFA \rightarrow RE

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : re-draw GNFA with all other states

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{1} : find a path through q_{1}

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : add edge to new GNFA
Don't forget: no arrow means label \varnothing

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : simplify RE on new edge

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{1} : if no more paths through q_{1}, start over

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : re-draw GNFA with all other states

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{2} : find a path through q_{2}

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : add edge to new GNFA

a* (b U c) $\mathrm{b}^{*} \varepsilon \cup \varnothing$

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : simplify RE on new edge

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : if no more paths through q_{2}, start over

a* (b Uc) b*

Example: DFA \rightarrow GNFA \rightarrow RE

Only two states remain:

$$
R E=a^{*}(b \cup c) b^{*}
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

DFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

 new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

 new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : add edge to new GNFA
don't forget current $\mathrm{q}_{2} \rightarrow \mathrm{q}_{3}$ edge!
This time is not \varnothing !

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate $\mathbf{q}_{\mathbf{1}}$: add edge to new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

through q_{1}, start over
(and simplify
REs)

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{2} :
re-draw GNFA with
all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

find a path through q_{2}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} :

 add edge to new GNFA$$
a^{*} c\left(c a^{*} c \cup b\right)^{*}(c a * b \cup a) \cup a^{*} b
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

when no more paths
through q_{2}, start over

$$
a^{*} c\left(c a^{*} c \cup b\right)^{*}\left(c a^{*} b \cup a\right) \cup a^{*} b
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{3} :

re-draw GNFA with all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

don't forget: no arrow means \varnothing

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{3} :

when no more paths through q_{3}, start over
(and simplify REs)

$$
\text { don't forget: } \varnothing^{*}=\varepsilon
$$

\rightarrow (a) $a^{*} c\left(c a^{*} c \cup b\right)^{*}\left(c a^{*} b \cup a\right) \cup a^{*} b$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Only two states remain:

$$
R E=a^{*} c(c a * c \cup b)^{*}(c a * b \cup a) \cup a * b
$$

Recap:
Here " \Rightarrow " means "can be converted to"

$R E \Leftrightarrow D F A \Leftrightarrow N F A$

Any of the three recognize exactly
the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using grep
-The RE is converted to an NFA
-Then the NFA is converted to a DFA
-The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

$$
\text { Is }\left\{0^{n} 1^{n}: n \geq 0\right\}=\{\varepsilon, 01,0011,000111, \ldots\} \text { regular? }
$$

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p|
$$

$$
\forall i \geq 0: x y^{\prime} z \in L
$$

Recall $\mathrm{y}^{0}=\varepsilon, \mathrm{y}^{1}=\mathrm{y}, \mathrm{y}^{2}=\mathrm{y} y, \mathrm{y}^{3}=\mathrm{yy} y, \ldots$

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\forall \mathrm{i} \geq 0: x^{i} z \in \mathrm{~L}
$$

We will not see the proof. But here's the idea:
$p:=|Q|$ for DFA recognizing L
If $w \in L,|w| \geq p$, then during computation
2 states must be the same $q \in Q$
$y=$ portion of w that brings back to q can repeat y and still accept string

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p|
$$

$$
\forall \mathrm{i} \geq 0: x^{i} z \in L
$$

Useful to prove L NOT regular. Use contrapositive:
L regular language $\Rightarrow A$
same as
$(\operatorname{not} A) \Rightarrow L$ not regular

Pumping lemma (contrapositive)

$$
|\forall p \geq 0 \quad \operatorname{not} A|
$$

$$
|\exists w \in L,|w| \geq p
$$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like
 \forall bla \exists bla \forall bla \exists bla bla means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

- Rules:

First Adversary says a number.
Then You say a number.
You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

- Rules:

First Adversary says a number.
Then You say a number.
You win if your number is bigger.

You have winning strategy:
if adversary says x, you say $x+1$

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

$$
\exists, \forall
$$

- Rules:

First Adversary says a number.
$\forall x \exists y: y>x$
Then You say a number.
You win if your number is bigger.

You have winning strategy:
Claim is true if adversary says x, you say $x+1$

Another example:

Theorem: \forall NFA $N \exists$ DFA $M: L(M)=L(N)$

We already saw a winning strategy for this game What is it?

Another example:

Theorem: \forall NFA $\mathrm{N} \exists \mathrm{DFA} M: \mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$

We already saw a winning strategy for this game
The power set construction.

Games with more moves:
Chess, Checkers, Tic-Tac-Toe

You can win if
\forall move of the Adversary
\exists move You can make
\forall move of the Adversary
\exists move You can make
: You checkmate

Pumping lemma (contrapositive)

$$
\forall \mathrm{p} \geq 0
$$

$\exists w \in L,|w| \geq p$
$\Rightarrow L$ not regular
$\exists i \geq 0: x y^{i} z \notin L$
Rules of the game:
Adversary picks p,
You pick $w \in L$ of length $\geq p$,
Adversary decomposes win xyz, where $|y|>0,|x y| \leq p$
You pick $\mathrm{i} \geq 0$
Finally, you win if $x y^{i} z \notin L$

Theorem: $\mathrm{L}:=\left\{0^{\mathrm{n}} 1^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\forall \mathrm{p} \geq 0
$$

$$
|\exists w \in L,|w| \geq p
$$

Adversary moves p
You move w:= $0^{\mathrm{p}} 1^{\mathrm{p}}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{i} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0 So byz $=0^{p+|y|} 1^{p}$
Since $|y|>0$, this is not of the form $0^{n} 1^{n}$

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:
Use pumping lemma Adversary moves p
You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq p$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:

Use pumping lemma
Adversary moves p
You move w := $0^{p} 1^{p}$
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$
Adversary moves x,y,z
You move i := ?

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

 Same Proof:Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists \mathrm{w} \in \mathrm{~L},|\mathrm{w}| \geq \mathrm{p}
\end{aligned}\right.
$$

Adversary moves p
You move w := $0^{p} 1^{p}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves $\mathrm{x}, \mathrm{y}, \mathrm{z}$
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0 So $x y y z=$?

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:

Use pumping lemma

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0
So $x y y z=0^{p+|y|} 1^{p}$
Since $|y|>0$, not as many 0 as 1

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := $0^{p+1} 1^{p}$
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular Proof:

Use pumping lemma
Adversary moves p
You move w:= $0^{p+1} 1^{p}$

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 0
You must show cz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p+1} 1^{p}, y$ only has 0
So $x z=0^{p+1-|y|} 1^{p}$
Since $|y|>0$, this is not of the form $0^{j} 1^{k}$ with $j>k$

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := op $0^{\mathrm{p}} 1$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular Proof:

Use pumping lemma

$$
|\exists w \in L,|w| \geq p
$$

Adversary moves p

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

You move w := Op $10^{\text {p }} 1$

$$
\forall \mathrm{p} \geq 0
$$

$\exists \mathrm{i} \geq 0: \mathrm{xy}^{i} \mathrm{z} \notin \mathrm{L}$
Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 10^{p} 1$, y only has 0
So $x y y z=0^{p+|y|} 10^{p} 1$
Since $|y|>0$, first half of xyyz only 0 , so $x y y z \notin L$

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\exists i \geq 0: x y^{\prime} z \notin L
$$

Theorem: $\mathrm{L}:=\left\{1^{\mathrm{n}^{2}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\prime} z \notin \mathrm{~L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& |\exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
You move $w:=1 p^{2}$

```
\existsi\geq0: xy'z & L
```

Adversary moves x,y,z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq ?$

Theorem: $\mathrm{L}:=\left\{1^{\mathrm{n}^{2}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
You move $w:=1 p^{2}$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\exists \mathrm{i} \geq 0: \mathrm{xy}^{\prime} \mathrm{z} \notin \mathrm{~L}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>$?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>p^{2}$
So |xyyz| cannot be ... what?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
You move $w:=1 p^{2}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{i} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>p^{2}$
So |xyyz| cannot be a square. xyyz $\notin L$

Big picture

-All languages
-Decidable
Turing machines
-NP
-P
-Context-free
Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

