We now return to the question:

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in } A \text{ and } w_2 \text{ in } B$ }
- $\bullet \ A^* \ := \{ \ w_1 \ w_2 \ \ldots \ w_k \ : k \geq 0 \ , \ w_i \ in \ A \ \ for \ every \ i \ \}$
- $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \}$

are all regular

Big picture

- •All languages
- Decidable

Turing machines

- •NP
- •P
- Context-free

Context-free grammars, push-down automata

•Regular

Automata, non-deterministic automata, regular expressions

How to specify a regular language?

Write a picture \rightarrow complicated

Write down formal definition \rightarrow complicated $\delta(q_0, 0) = q_{0, ...}$

Use symbols from Σ and operations *, o, U \rightarrow good

({0} * U {1}) o {001}

Regular expressions: anything you can write with \varnothing , ϵ , symbols from Σ , and operations *, o, U

Conventions:

- •Write a instead of {a}
- •Write AB for A o B
- •Write \sum for $U_{a \in \sum} a$ So if $\sum = \{a, b\}$ then $\sum = a \cup b$
- •Operation * has precedence over o, and o over U so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, Σ*, Σ*001Σ*, (ΣΣ)*, 01 U 10

Definition Regular expressions RE over Σ are:

a if a in Σ

Ø

3

- R R' if R, R' are RE
- R U R' if R, R' are RE
- R* if R is RE

Definition The language described by RE:

```
L(\varepsilon) = \{\varepsilon\}

L(a) = \{a\} if a in \Sigma

L(R R') = L(R) \circ L(R')

L(R U R') = L(R) U L(R')

L(R^*) = L(R)^*
```

 $L(\emptyset) = \emptyset$

- a*baba*a∅
- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- a*ba*
- (a U b)*

• ab U ba

- a*
- RE Language

?

Example $\Sigma = \{a, b\}$

• a*baba*a \oslash

- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- a*ba*
- (a U b)*

• ab U ba

RE

Example $\Sigma = \{a, b\}$

Language

{ab, ba}

• a*

• a*baba*a∅

- (a*ba*ba*)*
- (ΣΣ)*
- Σ*aabΣ*
- Σ*bΣ*
- (a U b)*
 a*ba*

RE

• a*

• ab U ba

Example $\Sigma = \{a, b\}$

Language

{ab, ba}

Example $\Sigma = \{ a, b \}$

RE Language

• ab U ba {ab, ba}

• a^* { ϵ , a, aa, ... } = { w : w has only a}

all strings

- (a U b)*
- a*ba*
- Σ*bΣ*
- Σ*aabΣ*
- (ΣΣ)*
- (a*ba*ba*)*
- a*baba*a∅

Example $\Sigma = \{ a, b \}$

- RE Language
- ab U ba {ab, ba}
- a^* { ϵ , a, aa, ... } = { w : w has only a}
- (a U b)*
- a*ba*
- Σ*bΣ*
- $\Sigma^*aab\Sigma^*$
- (ΣΣ)*
- (a*ba*ba*)*
- a*baba*a \varnothing

- $\{\varepsilon, a, aa, ...\} = \{w : w has only a\}$ all strings
- {w : w has exactly one b}

- a*baba*a∅
- (a*ba*ba*)*
- $(\Sigma\Sigma)^*$
- Σ^* aab Σ^*
- $\Sigma^* h \Sigma^*$
- a*ba*
- (a U b)*
- a*
- RE • ab U ba

Example $\Sigma = \{a, b\}$

- Language
 - {ab, ba}
 - $\{\varepsilon, a, aa, ... \} = \{w : w has only a\}$
 - all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}

Example $\Sigma = \{a, b\}$

- RE Language
- ab U ba {ab, ba}
- a* $\{\varepsilon, a, aa, ... \} = \{w : w has only a\}$
- (a U b)*
- a*ba*
- $\Sigma^* h \Sigma^*$
- Σ*aabΣ*
- $(\Sigma\Sigma)^*$
- (a*ba*ba*)*
- a*baba*a∅

- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}

Example $\Sigma = \{ a, b \}$

- RE Language
- ab U ba {ab, ba}
- a*
- (a U b)*
- a*ba*
- Σ*bΣ*
- Σ*aabΣ*
- (ΣΣ)*
- (a*ba*ba*)*
- a*baba*a∅

- $\{\epsilon, a, aa, ...\} = \{w : w has only a\}$
- all strings
 - {w : w has exactly one b}
 - {w : w has at least one b}
 - {w : w contains the string aab}
 - {w : w has even length}

Σ*aabΣ* • $(\Sigma\Sigma)^*$

- (a*ba*ba*)*
- a*baba*a∅
- $\{\varepsilon, a, aa, ... \} = \{w : w has only a\}$ all strings {w : w has exactly one b} {w : w has at least one b} {w : w contains the string aab} {w : w has even length} {w : w contains even number of b}
- RE Language
- {ab, ba} • ab U ba

• (a U b)*

• a*ba*

• $\Sigma^* h \Sigma^*$

• a*

Example $\Sigma = \{a, b\}$

• (a*ba*ba*)* • a*baba*a∅

• a*

• (a U b)*

• a*ba*

• $\Sigma^* h \Sigma^*$

• $(\Sigma\Sigma)^*$

Σ*aabΣ*

- {w : w has even length} {w : w contains even number of b} (anything o $\emptyset = \emptyset$)
- {w : w contains the string aab}
- {w : w has at least one b}
- all strings {w : w has exactly one b}
- $\{\varepsilon, a, aa, ... \} = \{w : w has only a\}$
- {ab, ba} • ab U ba
- RE Language

Example $\Sigma = \{a, b\}$

Theorem: For every RE R there is NFA M: L(M) = L(R)

• R = Ø M := ?

• R = a M := ?

- R = Ø M := ----
- R = ε M := ____
- R = R U R' ?

- R = Ø M := ----
- R = ε M := ----Ο
- R = R U R' use construction for A U B seen earlier
- R = R o R' ?

- R = Ø M := ----
- $R = \epsilon$ M := \frown \bigcirc \frown \bigcirc

- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* ?

- R = Ø M := ----
- $R = \varepsilon$ M := \bigcirc \bigcirc A = 0
- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* use construction for A* seen earlier

 $L(M_a)=L(a)$

 $L(M_a)=L(a)$

 $L(M_b)=L(b)$

$RE = (ab U a)^*$

 $L(M_{ab})=L(ab)$

$RE = (ab U a)^*$

$L(M_{ab \cup a})=L(ab \cup a)$

 $RE = (ab U a)^*$

 $L(M_{\varepsilon})=L(\varepsilon)$

 $L(M_{2})=L(\varepsilon)$

 $L(M_a)=L(a)$

RE =(ε U a)ba*

RE =(ε U a)ba*

 $L(M_a)=L(a)$

 $L(M_{(\varepsilon \cup a)b})=L((\varepsilon \cup a)b)$

RE =(ε U a)ba*

RE =(ε U a)ba*

Here " \Rightarrow " means "can be converted to"

We have seen: $RE \Rightarrow NFA \Leftrightarrow DFA$

Next we see: $DFA \Rightarrow RE$

In two steps: DFA \Rightarrow Generalized NFA \Rightarrow RE

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Convention:

Unique final state

Exactly one transition between each pair of states except nothing going into start state nothing going out of final state If arrow not shown in picture, label = \emptyset

- Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Σ , δ , q₀, q_a) where
- •Q is a finite set of states
- • Σ is the input alphabet
- • δ : (Q {q_a}) X (Q {q₀}) \rightarrow Regular Expressions
- $\bullet q_0$ in Q is the start state
- •q_a in Q is the accept state

- •Definition: GNFA (Q, Σ , δ , q₀, q_a) accepts a string w if
- \exists integer k, \exists k strings w_1 , w_2 , ..., $w_k \in \Sigma^*$ such that $w = w_1 w_2 \dots w_k$

(divide w in k strings)

- • \exists sequence of k+1 states $r_0, r_1, ..., r_k$ in Q such that:
- $r_0 = q_0$
- $w_{i+1} \in L(\delta(r_i, r_{i+1})) \forall 0 \le i < k$
- $r_k = q_a$

•Differences with NFA are in green

Accepts w = aaabbab w₁=?

Accepts w = aaabbab w_1 =aaa w_2 =?

Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=?$

Accepts w = aaabbab w₁=aaa w₂=bb w₃=ab $r_0=q_0 r_1=q_1 r_2=?$

 $w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$

Accepts w = aaabbab w_1 =aaa w_2 =bb w_3 =ab $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3=?$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

 $w_2 = bb \in L(\delta(r_1, r_2)) = L(\delta(q_1, q_1)) = L(b^*)$

Accepts w = aaabbab

$$w_1$$
=aaa w_2 =bb w_3 =ab
 $r_0=q_0$ $r_1=q_1$ $r_2=q_1$ $r_3 = q_a$
 w_1 = aaa $\in L(\delta(r_0,r_1)) = L(\delta(q_0,q_1)) = L(a^*)$
 w_2 = bb $\in L(\delta(r_1,r_2)) = L(\delta(q_1,q_1)) = L(b^*)$
 w_3 = ab $\in L(\delta(r_2,r_3)) = L(\delta(q_1,q_a)) = L(ab)$

- Theorem: \forall DFA M \exists GNFA N : L(N) = L(M) Construction:
- To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:

Theorem: \forall GNFA N \exists RE R : L(R) = L(N) Construction:

- If N has 2 states, then N = q_0 S q_a thus R := S
- If N has > 2 states, eliminate some state q_r ≠ q₀, q_a : for every ordered pair q_i, q_j (possibly equal) that are connected through q_i

Repeat until 2 states remain

Example: DFA \rightarrow GNFA \rightarrow RE

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_1 : re-draw GNFA with all other states

Eliminate q_1 : find a path through q_1

Eliminate q₁: add edge to new GNFA Don't forget: no arrow means label Ø

Eliminate q₁: simplify RE on new edge

Eliminate q_1 : if no more paths through q_1 , start over

Eliminate q_2 : re-draw GNFA with all other states

Eliminate q_2 : find a path through q_2

Eliminate q_2 : add edge to new GNFA

Eliminate q_2 : simplify RE on new edge

Eliminate q_2 : if no more paths through q_2 , start over

Only two states remain:

RE = a* (b U c) b*

all other states

path through q₁

 q_2

εa*cUØ

path through q₁

re-draw GNFA with

all other states

add edge to new GNFA

 $a^*c(ca^*c U b)^*(ca^*b U a) U a^*b$

when no more paths through q₂, start over

Eliminate q₃:

re-draw GNFA with

all other states

don't forget: no arrow means Ø

Eliminate q₃:

when no more paths through q_3 , start over

(and simplify REs)

don't forget: $\emptyset^* = \varepsilon$

a*c(ca*c U b)*(ca*b U a) U a*b

Only two states remain:

$RE = a^*c(ca^*c U b)^*(ca^*b U a) U a^*b$

Recap:

Here " \Rightarrow " means "can be converted to"

$\mathsf{RE} \Leftrightarrow \mathsf{DFA} \Leftrightarrow \mathsf{NFA}$

Any of the three recognize exactly

the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using *grep*

- •The RE is converted to an NFA
- •Then the NFA is converted to a DFA
- •The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

Is { $0^n 1^n : n \ge 0$ } = { ϵ , 01, 0011, 000111, ... } regular?

Pumping lemma:

L regular language \Rightarrow \exists p

$$\exists p \ge 0 ∀ w ∈ L, |w| \ge p \exists x,y,z : w= xyz, |y|> 0, |xy| \le p ∀ i ≥ 0 : xyiz ∈ L$$

Recall
$$y^0 = \varepsilon$$
, $y^1 = y$, $y^2 = yy$, $y^3 = yyy$, ...

Pumping lemma:

L regular language $\Rightarrow \exists p$

$$\exists p \ge 0 ∀ w ∈ L, |w| \ge p \exists x,y,z : w= xyz, |y|> 0, |xy|≤ p ∀ i ≥ 0 : xyiz ∈ L$$

We will not see the proof. But here's the idea:

- p := |Q| for DFA recognizing L
- If $w \in L$, $|w| \ge p$, then during computation

2 states must be the same $q\in\!Q$

y = portion of w that brings back to q can repeat y and still accept string

Pumping lemma:

L regular language $\Rightarrow |\exists|$

$$\exists p \ge 0$$
 A
 ∀ w ∈ L, |w| ≥ p
 ∃ x,y,z : w= xyz, |y|> 0, |xy|≤ p
 ∀ i ≥ 0 : xyⁱz ∈ L

Useful to prove L NOT regular. Use contrapositive: L regular language $\Rightarrow A$

> same as (not A) \Rightarrow L not regular

$$\forall p \ge 0$$
not A $\exists w \in L, |w| \ge p$ $\Rightarrow L$ not regular $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\Rightarrow L$ not regular $\exists i \ge 0 : xy^iz \notin L$

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like ∀ bla ∃ bla ∀ bla ∃ bla bla means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

You have winning strategy:

if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

∀ ,E

 $\forall x \exists y : y > x$

Claim is true

- Two players:
 - You, Adversary.
- Rules:
 - First Adversary says a number.
 - Then You say a number.
 - You win if your number is bigger.

You have winning strategy: if adversary says x, you say x+1 Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game What is it?

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game The power set construction. Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

∀ move of the Adversary

3 move You can make

∀ move of the Adversary

3 move You can make

: You checkmate

Pumping lemma (contrapositive)

$$\forall p \ge 0$$

 $\exists w \in L, |w| \ge p$
 $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$
 $\exists i \ge 0 : xy^iz \notin L$

\Rightarrow L not regular

- Rules of the game:
- Adversary picks p,
- You pick $w \in L$ of length $\geq p$,
- Adversary decomposes w in xyz, where |y| > 0, $|xy| \le p$
- You pick $i \ge 0$
- Finally, you win if $xy^i z \notin L$

Theorem: L := $\{0^n \ 1^n : n \ge 0\}$ is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, this is not of the form $0^n 1^n$

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : $xy^iz \notin L$

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0

So xyyz = ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

Same Proof:

- Use pumping lemma
- Adversary moves p
- You move $w := 0^p 1^p$
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz ∉ L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0
- So xyyz = $0^{p + |y|} 1^{p}$
- Since |y| > 0, not as many 0 as 1

∀ p ≥0 ∃ w ∈ L, |w| ≥ p∀ x,y,z : w = xyz, |y| > 0, |xy| ≤ p∃ i ≥ 0 : $xy^iz \notin L$ Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regularProof: $\forall p \ge 0$ Use pumping lemma $\exists w \in L, |w| \ge p$ Adversary moves p $\forall x,y,z : w = xyz, |y| > 0, |xy| \le p$ You move w := ? $\exists i \ge 0 : xy^iz \notin L$
Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p \ge 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^{p}$
- Adversary moves x,y,z You move i := ?

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular Proof: $\forall p \ge 0$

- Use pumping lemma
- Adversary moves p
- You move $w := 0^{p+1} 1^p$
- ∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L
- Adversary moves x,y,z
- You move i := 0
- You must show $xz \notin L$:
- Since $|xy| \le p$ and $w = xyz = 0^{p+1} 1^p$, y only has 0
- So $xz = 0^{p+1} |y| 1^{p}$
- Since |y| > 0, this is not of the form $0^j 1^k$ with j > k

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p1 0^p 1
- Adversary moves x,y,z
- You move i := ?

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := 0^p 1 0^p 1
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$ and $w = xyz = 0^p 1 0^p 1$, y only has 0
- So xyyz = 0^{p + |y|} 1 0^p 1
- Since |y| > 0, first half of xyyz only 0, so xyyz $\notin L$

Proof:

- Use pumping lemma
- Adversary moves p
- You move w := ?

Proof:

- Use pumping lemma
- Adversary moves p You move $w := 1p^2$
- Adversary moves x,y,z You move i := ?

∀ p ≥0
∃ w ∈ L,
$$|w| ≥ p$$

∀ x,y,z : w = xyz, $|y| > 0$, $|xy| ≤ p$
∃ i ≥ 0 : $xy^iz \notin L$

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L: Since $|xy| \le p$, $|xyyz| \le ?$

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L

- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, |xyyz| > ?

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- ∀ p ≥0 ∃ w ∈ L, $|w| \ge p$ ∀ x,y,z : w = xyz, |y| > 0, $|xy| \le p$ ∃ i ≥ 0 : xyⁱz ∉ L
- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be ... what ?

Proof:

- Use pumping lemma
- Adversary moves p You move w := 1^{p²}

- Adversary moves x,y,z
- You move i := 2
- You must show xyyz \notin L:
- Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$
- Since |y| > 0, $|xyyz| > p^2$
- So |xyyz| cannot be a square. xyyz ∉ L

Big picture

- •All languages
- Decidable

Turing machines

- •NP
- •P
- Context-free

Context-free grammars, push-down automata

•Regular

Automata, non-deterministic automata, regular expressions