Summary: NFA and DFA recognize the same languages

We now return to the question:

- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$

REGULAR

- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$

Theorem: If $A, B$ are regular languages, then so is $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$
-Proof idea: Given DFA $_{A}: L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}: L\left(M_{B}\right)=B
$$

-Construct NFA N : L(N) = A U B



Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DEA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, \mathrm{a}_{\mathrm{B}}, \mathrm{~F}_{\mathrm{B}}\right): \mathrm{L}\left(\mathrm{M}_{\mathrm{B}}\right)=\mathrm{B},
$$

$\cdot$ Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=$ ?


Construction:
-Given DFA M ${ }_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DEA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, q, F)$ where:

- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, x):=$ ?
if $r$ in $Q_{B}$ and $x \neq \varepsilon$



## Construction:

-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DEA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, q, F)$ where:

- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if $r$ in $Q_{B}$ and $x \neq \varepsilon$
$\bullet \delta(q, \varepsilon):=?$



## Construction:

-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DEA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, q, F)$ where:

- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if $r$ in $Q_{B}$ and $x \neq \varepsilon$
- $\delta(\mathrm{q}, \varepsilon):=\left\{\mathrm{q}_{\mathrm{A}}, \mathrm{q}_{\mathrm{B}}\right\}$
-We have $L(N)=A \cup B$


## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by 3 OR w starts with a 1\} regular?

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like $U$, so try to write $L=L_{1} U L_{2}$ where $L_{1}, L_{2}$ are regular

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like $U$, so try to write $L=L_{1} U L_{2}$
where $L_{1}, L_{2}$ are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like $U$, so try to write $L=L_{1} U L_{2}$
where $L_{1}, L_{2}$ are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

$L\left(M_{1}\right)=L_{1}$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1\}

OR is like $U$, so try to write $L=L_{1} U L_{2}$
where $L_{1}, L_{2}$ are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$


$$
L\left(M_{1}\right)=L_{1}
$$

$$
L\left(M_{2}\right)=L_{2}
$$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1\}

OR is like $U$, so try to write $L=L_{1} U L_{2}$
where $L_{1}, L_{2}$ are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$


We now return to the question:

- Suppose $A, B$ are regular languages, then
- not $A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$ REGULAR
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$

Theorem: If $A, B$ are regular languages, then so is

$$
A \circ B:=\{w: w=x y \text { for some }
$$

$x$ in $A$ and $y$ in $B$.
-Proof idea: Given DFAs $M_{A}, M_{B}$ for $A, B$
construct NFA N : L(N) = A o B.



Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B
$$

$\cdot$ Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N = (Q, $\Sigma, \delta, q, F)$ where:
-Q $:=Q_{A} \cup Q_{B}, q:=$ ?


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $\mathrm{Q}:=\mathrm{Q}_{\mathrm{A}} \cup \mathrm{Q}_{\mathrm{B}}, \mathrm{q}:=\mathrm{q}_{\mathrm{A}}, \mathrm{F}:=$ ?


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA $N=(Q, \Sigma, \delta, q, F)$ where:

- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
$\cdot \delta(r, x):=? \quad$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B \text {, }
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=$ ? $\quad$ if $r$ in $F_{A}$


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

-Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=\left\{q_{B}\right\}$ if $r$ in $F_{A}$
- $\delta(r, x):=$ ?
if $r$ in $Q_{B}$ and $x \neq \varepsilon$


#  



Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, \mathrm{q}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right): \mathrm{L}\left(\mathrm{M}_{\mathrm{A}}\right)=\mathrm{A}$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B
$$

-Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=\left\{q_{B}\right\}$ if $r$ in $F_{A}$
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if $r$ in $Q_{B}$ and $x \neq \varepsilon$
-We have $L(N)=A$ o B


## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Note: $L=\{01,0001001,111001, \ldots\}$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

$$
\text { Let } \begin{aligned}
L_{0} & =\{w: w \text { contains a } 0\} \\
L_{1} & =\{w: w \text { contains a } 1\} . \quad \text { Then } L=L_{0} \circ L_{1} .
\end{aligned}
$$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$. Then $L=L_{0} \circ L_{1}$.
$\mathrm{C}_{0}^{1}$
$L\left(M_{0}\right)=L_{0}$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$.

$$
\text { Then } L=L_{0} \circ L_{1} \text {. }
$$

$M_{0}=$


$$
L\left(M_{0}\right)=L_{0}
$$

$$
L\left(M_{1}\right)=L_{1}
$$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$. Then $L=L_{0} \circ L_{1}$.


$$
L(M)=L\left(M_{0}\right) \circ L\left(M_{1}\right)=L_{0} \circ L_{1}=L
$$

$\Rightarrow L$ is regular.

We now return to the question:

- Suppose $A, B$ are regular languages, then
- not $A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$ REGULAR
- $A$ o $B:=\left\{w_{1} w_{2}: w_{1} \in A\right.$ and $\left.w_{2} \in B\right\}$ REGULAR
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$

Theorem: If $A$ is a regular language, then so is

$$
A^{*}:=\left\{w: w=w_{1} \ldots w_{k}, w_{i} \text { in } A \text { for } i=1, \ldots, k\right\}
$$

-Proof idea: Given DFA $_{\mathrm{A}}: \mathrm{L}\left(\mathrm{M}_{\mathrm{A}}\right)=\mathrm{A}$,
Construct NFA N: L(N) = A*



Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$, Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,
Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := \{q\} $\cup Q_{A}, F:=?$


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,
Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:

- $Q:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$
$\bullet \delta(r, x):=$ ? if $r$ in $Q_{A}$ and $x \neq \varepsilon$


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,
Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q $:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$

- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
$\bullet \delta(r, \varepsilon):=$ ? $\quad$ if $r$ in $\{q\} \cup F_{A}$


Construction:
-Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,
Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q $:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$

- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if $r$ in $Q_{A}$ and $x \neq \varepsilon$
$\bullet \delta(r, \varepsilon):=\left\{q_{A}\right\}$ if $r$ in $\{q\} \cup F_{A}$
-We have $L(N)=A^{*}$


## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

$$
M_{0}=
$$



$$
L\left(M_{0}\right)=L_{0}
$$

## Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

$$
\begin{aligned}
\mathrm{M}= & \xrightarrow[L]{\text { L(M) }} \text { L(M,1})^{*}=L_{0}^{*}=\mathrm{L} \\
& \Rightarrow \mathrm{~L} \text { is regular. }
\end{aligned}
$$

We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$
are all regular!

We now return to the question:

- Suppose $\mathrm{A}, \mathrm{B}$ are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$

What about $\mathrm{A} \cap \mathrm{B}:=\{\mathrm{w}: \mathrm{w}$ in A and w in B$\}$ ?

We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$

De Morgan's laws: $\mathrm{A} \cap \mathrm{B}=\operatorname{not}((\operatorname{not} \mathrm{A}) \mathrm{U}(\operatorname{not} \mathrm{B}))$
By above, $(\operatorname{not} A)$ is regular, $(\operatorname{not} B)$ is regular, $(\operatorname{not} A) U(\operatorname{not} B)$ is regular, $\operatorname{not}((\operatorname{not} A) U(\operatorname{not} B))=A \cap B$ regular

We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in $A$ or $w$ in $B\}$
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in $A$ and $w_{2}$ in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in $A$ for every $\left.i\right\}$
- $A \cap B:=\{w: w$ in $A$ and $w$ in $B\}$
are all regular

