Big picture

-All languages
-Decidable
Turing machines
-NP
-P
-Context-free
Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

DFA (Deterministic Finite Automata)

DFA (Deterministic Finite Automata)

- States \bigcirc, this DFA has 4 states
- Transitions

labelled with elements of the alphabet $\Sigma=\{0,1\}$

DFA (Deterministic Finite Automata)

Computation on input w:

- Begin in start state

- Read input string in a one-way fashion
- Follow the arrows matching input symbols
- When input ends: ACCEPT if in accept state REJECT if not

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

always start in start state

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011 \quad \text { ACCEPT }
$$

because end in accept state

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

always start in start state

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010 \quad \text { REJECT }
$$

because does not end in accept state

DFA (Deterministic Finite Automata)

Example: Input string w = 01 ACCEPT

$$
\begin{array}{ll}
\mathrm{w}=010 & \text { REJECT } \\
\mathrm{w}=0011 & \text { ACCEPT } \\
\mathrm{w}=00110 & \text { REJECT }
\end{array}
$$

DFA (Deterministic Finite Automata)

M recognizes language
$L(M)=\{w: w$ starts with 0 and ends with 1$\}$
$L(M)$ is the language of strings causing M to accept

Example: 0101 is an element of $L(M), 0101 \in L(M)$

Example
 $$
\Sigma=\{0,1\}
$$

- 00 causes M to accept, so 00 is in $L(M) \quad 00 \in L(M)$
- 01 does not cause M to accept, so 01 not in $L(M)$,
$01 \notin L(M)$
- $0101 \in \mathrm{~L}(\mathrm{M})$
- 01101100 є L(M)
- $011010 \quad \notin \mathrm{~L}(\mathrm{M})$

Example

$$
\Sigma=\{0,1\}
$$

$L(M)=\{w: w$ has an even number of 1$\}$

Note: If there is no 1 , then there are zero 1 ,
zero is an even number, so M should accept.

Indeed $0000000 \in L(M)$

Example

$$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$?

Example

- $\mathrm{L}(\mathrm{M})=$ every possible string over $\{0,1\}$

$$
=\{0,1\}^{*}
$$

Example

$$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$?

Example
 $$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$ all strings over $\{0,1\}$ except empty string ε

$$
=\{0,1\}^{*}-\{\varepsilon\}
$$

Example $\Sigma=\{0,1\}$

- $\mathrm{L}(\mathrm{M})=$?

Example

 $\Sigma=\{0,1\}$

- $L(M)=\{w: w$ starts and ends with same symbol $\}$
-Memory is encoded in ... what?

Example

 $\Sigma=\{0,1\}$

- $L(M)=\{w: w$ starts and ends with same symbol $\}$
- Memory is encoded in states.

DFA have finite states, so finite memory

Convention:

$L(M)=\{w: w$ starts with 0 and ends with 1$\}$
The arrow (90 leads to a "sink" state.
If followed, M can never accept

Convention:

Don't need to write such arrows:
If, from some state, read symbol with no
corresponding arrow, imagine M goes into "sink state" that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

Means

This makes pictures more compact.

Example $\Sigma=\{0,1\}$

$M=$

$\mathrm{L}(\mathrm{M})=$?

Example $\Sigma=\{0,1\}$

$M=$

$L(M)=\Sigma^{2}=\{00,01,10,11\}$

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Note: $0, \ldots, 9$ means $0,1,2,3,4,5,6,7,8,9: 10$ transitions

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Follow with arbitrarily many digits, but at least one
Possibly put decimal point
Follow with arbitrarily many digits, possibly none

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Input w = 17
Input w = +
ACCEPT
REJECT

Input w = +2.35-. REJECT

Example
$\Sigma=\{0,1\}$

- What about $\{\mathrm{w}: \mathrm{w}$ has same number of 0 and 1$\}$
- Can you design a DFA that recognizes that?
- It seems you need infinite memory
- We will prove later that there is no DFA that recognizes that language!

Next: formal definition of DFA

- Useful to prove various properties of DFA
- Especially important to prove that things CANNOT be recognized by DFA.
- Useful to practice mathematical notation

State diagram of a DFA:
-One or more states

-Exactly one start state

-Some number of accept states ©
-Labelled transitions exiting each state,
 for every symbol in Σ
-Definition: A finite automaton (DFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- Q is a finite set of states
- Σ is the input alphabet
- $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is the transition function
$-q_{0}$ in Q is the start state
- $F \subseteq Q$ is the set of accept states
$Q \times \Sigma$ is the set of ordered pairs $(a, b): a \in Q, b \in \Sigma$
Example $\{q, r, s\} \times\{0,1\}=\{(q, 0),(q, 1),(r, 0),(r, 1),(s, 0),(s, 1)\}$

-Example: above DFA is 5 -tuple ($\left.\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=$?

-Example: above DFA is 5 -tuple ($\left.\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\mathrm{q}_{0} \quad \delta\left(\mathrm{q}_{0}, 1\right)=$?

-Example: above DFA is 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F$) where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\mathrm{q}_{0} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\mathrm{q}_{1}$
$\delta\left(\mathrm{q}_{1}, 0\right)=\mathrm{q}_{1} \quad \delta\left(\mathrm{q}_{1}, 1\right)=\mathrm{q}_{0}$
$\cdot q_{0}$ in Q is the start state
-F = ?

-Example: above DFA is 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F$) where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\mathrm{q}_{0} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\mathrm{q}_{1}$
$\delta\left(q_{1}, 0\right)=q_{1} \quad \delta\left(q_{1}, 1\right)=q_{0}$
$\cdot q_{0}$ in Q is the start state
$\cdot F=\left\{q_{0}\right\} \subseteq Q$ is the set of accept states
-Definition: A DFA (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts a string w if
- $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{k}} \quad$ where, $\forall 1 \leq \mathrm{i} \leq \mathrm{k}, \quad \mathrm{w}_{\mathrm{i}}$ is in Σ
(the k symbols of w)
-The sequence of $k+1$ states $r_{0}, r_{1}, \ldots, r_{k}$ such that:

$$
\begin{aligned}
& \text { (1) } r_{0}=q_{0} \text {, and } \\
& \text { (2) } r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k
\end{aligned}
$$

has r_{k} in F
($r_{i}=$ state DFA is in after reading i-th symbol in w)

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$
$w_{1}=0 \quad w_{2}=1 \quad w_{3}=1$

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$

We must show that
-The sequence of $3+1=4$ states $r_{0}, r_{1}, r_{2}, r_{3}$ such that:

$$
\begin{aligned}
& \text { (1) } r_{0}=q_{0} \\
& \text { (2) } r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<3
\end{aligned}
$$

has r_{3} in F

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$

$$
w_{1}=0 \quad w_{2}=1 \quad w_{3}=1
$$

- $r_{0}=q_{0}$
- $r_{1}:=$?

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
$\bullet r_{2}:=$?

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
- $r_{2}=\delta\left(r_{1}, w_{2}\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $r_{3}:=$?

Example

-Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$

- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
- $r_{2}=\delta\left(r_{1}, w_{2}\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $r_{3}=\delta\left(r_{2}, w_{3}\right)=\delta\left(q_{1}, 1\right)=q_{0}$
- $r_{3}=q_{0}$ in F
- Definition: For a DFA M, we denote by $L(M)$ the set of strings accepted by M :

$$
L(M):=\{\text { w : M accepts w }\}
$$

We say M accepts or recognizes the language $L(M)$

- Definition: A language L is regular

$$
\text { if } \exists \text { DFA } M: L(M)=L
$$

In the next lectures we want to:

- Understand power of regular languages
- Develop alternate, compact notation to specify regular languages

Example: Unix command grep 'l<c. *hl>' file selects all words starting with c and ending with h in file

- Understand power of regular languages:
- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- A o $B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Are these languages regular?
- Understand power of regular languages:
- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- A o $B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Terminology: Are regular languages closed under not, U, o, *?
-Theorem:
If A is a regular language, then so is (not A)
-Theorem:
If A is a regular language, then so is (not A)
-Proof idea: ?????????? the set of accept states
-Theorem:
If A is a regular language, then so is (not A)
-Proof idea: Complement the set of accept states
-Example
-Theorem:
If A is a regular language, then so is ($\operatorname{not} A$)
-Proof idea: Complement the set of accept states
-Example:
M :=

$\mathrm{L}(\mathrm{M})=$
$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\}$
-Theorem:

If A is a regular language, then so is ($\operatorname{not} A$)

-Proof idea: Complement the set of accept states
-Example:
M :=

$\mathrm{L}(\mathrm{M})=$
$\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\operatorname{not} \mathrm{L}(\mathrm{M})=$
$\{\mathrm{w}: \mathrm{w}$ has even number of 1 \}
$\{\mathrm{w}: \mathrm{w}$ has odd number of 1 \}
-Theorem: If A is a regular language, then so is (not A)
-Proof:
Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' = ??????????????????????????

This definition is the creative step of this proof, the rest is (perhaps complicated but) mechanical "unwrapping definitions"
-Theorem: If A is a regular language, then so is $(\operatorname{not} \mathrm{A})$
-Proof:
Given DFA M $=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=$ not F.
-We need to show $L\left(M{ }^{\prime}\right)=$ not $L(M)$, that is:
for any w, ????????????????????????????
-Theorem: If A is a regular language, then so is (not A)
-Proof:
Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=\operatorname{not} F$.
-We need to show $L\left(M^{\prime}\right)=$ not $L(M)$, that is:
for any w, M' accepts $w \longleftrightarrow M$ does not accept w.

- So let w be any string of length k, and consider the $k+1$ states $r_{0}, r_{1}, \ldots, r_{k}$ from the definition of accept:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.

How do we conclude?
-Theorem: If A is a regular language, then so is (not A)
-Proof:
Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=\operatorname{not} F$.
-We need to show $L\left(M^{\prime}\right)=$ not $L(M)$, that is:
for any w, M' accepts w $\longleftrightarrow M$ does not accept w

- So let w be any string of length k, and consider the $k+1$ states $r_{0}, r_{1}, \ldots, r_{k}$ from the definition of accept:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.

Note that r_{k} in $F^{\prime} \longleftrightarrow r_{k}$ not in F, since $F^{\prime}=$ not F.

What is a proof?
-A proof is an explanation, written in English, of why something is true.
-Every sentence must be logically connected to the previous ones, often by "so", "hence", "since", etc.

- Your audience is a human being, NOT a machine.
-Theorem: If A is a regular language, then so is (not A)
- Proof:

DRAM $=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$
DEA M' $=$ aQ, $\left.\Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=p o t F$.
$L\left(M^{\prime}\right) \quad \operatorname{not} L(M)$
M^{\prime} accepts $\mathrm{w} \rightarrow$ does not accept w
$k+1$ states r_{0}, r_{1}, r_{k}
(1) $r_{0}=20$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.
r_{k} in $F^{\prime} \longleftrightarrow r_{k}$ not in F,
$F^{\prime}=\operatorname{not} F$.

What is a proof?

Complement the set of accept states

To know a proof means to know all the pyramid

Example $\Sigma=\{0,1\}$

$$
\mathrm{M}=
$$

$L(M)=\Sigma^{2}=\{00,01,10,11\}$

What is a DFA M' :
$\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\operatorname{not} \Sigma^{2}=$ all strings except those of length 2 ?

Example $\Sigma=\{0,1\}$

$$
M^{\prime}=
$$

$$
L\left(M^{\prime}\right)=\operatorname{not} \sum^{2}=\{0,1\}^{*}-\{00,01,10,11\}
$$

Do not forget the convention about the sink state!

- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$

REGULAR

- $A \cup B:=\{w: w$ in A or w in $B\}$
- AoB:=\{ $w_{1} w_{2}: w_{1}$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
-Theorem: If A, B are regular, then so is $A \cup B$
-Proof idea: Take Cartesian product of states
In a pair ($\mathrm{q}, \mathrm{q}^{\prime}$),
q tracks DFA for A, q' tracks DFA for B.
-Next we see an example.
In it we abbreviate

Example $\mathrm{M}_{\mathrm{A}}:=\rightarrow$ (a) $\rightarrow \mathrm{B}^{\mathrm{b}}$
$M_{B}=\longrightarrow \bigcirc$

$L\left(M_{A}\right)=A=?$

$$
L\left(M_{B}\right)=B=?
$$

Example $\mathrm{M}_{\mathrm{A}}:=-$ (a
0
$L\left(M_{A}\right)=A=$

$$
L\left(M_{B}\right)=B=
$$

$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\} \square\{\mathrm{w}: \mathrm{w}$ has odd number of 0$\}$
$\mathrm{M}_{\mathrm{AUB}}:=$ How many states?

Example

$$
\mathrm{L}\left(\mathrm{M}_{\mathrm{B}}\right)=\mathrm{B}=
$$

$L\left(M_{A}\right)=A=$
$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\} \square\{\mathrm{w}: \mathrm{w}$ has odd number of 0$\}$

$$
\mathrm{M}_{\mathrm{AUB}}:=
$$

$L\left(M_{A \cup B}\right)=A \cup B=$
$\{w: w$ has even number of 1 ,

or odd number of 0$\}$

-Theorem: If A, B are regular, then so is $A \cup B$
-Proof:
Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
Q:=\text { ? }
$$

-Theorem: If A, B are regular, then so is $A \cup B$
-Proof:
Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
& \mathrm{Q}:=\mathrm{Q}_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{B}} \\
& \mathrm{q}_{0}:=?
\end{aligned}
$$

-Theorem: If A, B are regular, then so is $A \cup B$
-Proof:
Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
Q & :=Q_{A} \times Q_{B} \\
q_{0} & :=\left(q_{A}, q_{B}\right) \\
F & :=?
\end{aligned}
$$

-Theorem: If A, B are regular, then so is $A \cup B$
-Proof:
Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
& Q:=Q_{A} \times Q_{B} \\
& q_{0}:=\left(q_{A}, q_{B}\right) \\
& F:=\left\{\left(q, q^{\prime}\right) \in Q: q \in F_{A} \text { or } q^{\prime} \in F_{B}\right\}
\end{aligned}
$$

$$
\delta\left(\left(q, q^{\prime}\right), v\right):=(?, ?)
$$

-Theorem: If A, B are regular, then so is $A \cup B$
-Proof:
Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

$$
\begin{aligned}
& Q:=Q_{A} \times Q_{B} \\
& q_{0}:=\left(q_{A}, q_{B}\right) \\
& F:=\left\{\left(q, q^{\prime}\right) \in Q: q \in F_{A} \text { or } q^{\prime} \in F_{B}\right\} \\
& \delta\left(\left(q, q^{\prime}\right), v\right):=\left(\delta_{A}(q, v), \delta_{B}\left(q^{\prime}, v\right)\right)
\end{aligned}
$$

- We need to show $L(M)=A \cup B$ that is, for any w: M accepts $w \longleftrightarrow M_{A}$ accepts w or M_{B} accepts w

-Proof of M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w

 -Suppose that M accepts w of length k.-From the definitions of accept and M, the sequence $\left(s_{0}, t_{0}\right)=q_{0}=\left(q_{A}, q_{B}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\mathrm{k}\right.$ has $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right) \in$?
-Proof of M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w - Suppose that M accepts w of length k.
-From the definitions of accept and M, the sequence $\left(\mathrm{s}_{0}, \mathrm{t}_{0}\right)=\mathrm{q}_{0}=\left(\mathrm{q}_{\mathrm{A}}, \mathrm{q}_{\mathrm{B}}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\mathrm{k}\right.$ has $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right) \in \mathrm{F}$.
-By our definition of F , what can we say about $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$?
.Proof of M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w

- Suppose that M accepts w of length k .
-From the definitions of accept and M, the sequence
$\left(s_{0}, t_{0}\right)=q_{0}=\left(q_{A}, q_{B}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\mathrm{k}\right.$ has $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right) \in \mathrm{F}$.
- By our definition of $F, s_{k} \in F_{A}$ or $t_{k} \in F_{B}$.
-Without loss of generality, assume $\mathrm{s}_{\mathrm{k}} \in \mathrm{F}_{\mathrm{A}}$.
-Then M_{A} accepts w because the sequence

$$
s_{0}=q_{A}, s_{i+1}=\delta_{A}\left(s_{i}, w_{i+1}\right) \forall 0 \leq i<k,
$$

has $\mathrm{s}_{\mathrm{k}} \in \mathrm{F}_{\mathrm{A}}$.
-Proof of M accepts $w \leftarrow M_{A}$ accepts w or M_{B} accepts w -W/out loss of generality, assume M_{A} accepts $w,|w|=k$. -From the definition of M_{A} accepts w, the sequence $r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$, has r_{k} in ?
-Proof of M accepts $w \leftarrow M_{A}$ accepts w or M_{B} accepts w -W/out loss of generality, assume M_{A} accepts $\mathrm{w},|\mathrm{w}|=\mathrm{k}$. - From the definition of M_{A} accepts w, the sequence $r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$, has r_{k} in F_{A}.
-Define the sequence of $\mathrm{k}+1$ states

$$
t_{0}:=q_{B}, t_{i+1}:=\delta_{B}\left(t_{i}, w_{i+1}\right) \forall 0 \leq i<k .
$$

$\cdot \mathrm{M}$ accepts w because the sequence ?????????? (recall states in M are pairs)
-Proof of M accepts $w \leftarrow M_{A}$ accepts w or M_{B} accepts w -W/out loss of generality, assume M_{A} accepts $\mathrm{w},|\mathrm{w}|=\mathrm{k}$. - From the definition of M_{A} accepts w, the sequence $r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$, has r_{k} in F_{A}.
-Define the sequence of $\mathrm{k}+1$ states

$$
t_{0}:=q_{B}, t_{i+1}:=\delta_{B}\left(t_{i}, w_{i+1}\right) \forall 0 \leq i<k .
$$

- M accepts w because the sequence

$$
\left(r_{0}, t_{0}\right)=q=\left(q_{A}, q_{B}\right),
$$

$$
\left(r_{i+1}, t_{i+1}\right)=\delta\left(\left(r_{i}, t_{i}\right), w_{i+1}\right)=\left(\delta_{A}\left(r_{i}, w_{i+1}\right), \delta_{B}\left(t_{i}, w_{i+1}\right) \forall 0 \leq i<k\right.
$$

has $\left(r_{k}, t_{k}\right)$ in F, by our definition of F.

- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or w in $B\}$ REGULAR
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Other two are more complicated!
-Plan: we introduce NFA prove that NFA are equivalent to DFA reprove $A \cup B$, prove A o B, A^{*} regular, using NFA

Non deterministic finite automata (NFA)

- DFA: given state and input symbol, unique choice for next state, deterministic:
- Next we allow multiple choices, non-deterministic

-We also allow ε-transitions:
can follow without reading anything

Example of NFA

Intuition of how it computes:
-Accept string w if there is a way to follow transitions that ends in accept state
-Transitions labelled with symbol in $\Sigma=\{a, b\}$ must be matched with input
$\bullet \varepsilon$ transitions can be followed without matching

Example of NFA

Example:

- Accept a
(first follow ε-transition)
- Accept baaa

ANOTHER Example of NFA

Example:

- Accept bab (two accepting paths, one uses the ε-transition)
- Reject ba
(two possible paths, but neither has final state $=q_{1}$)
-Definition: A non-deterministic finite automaton (NFA) is a 5 -tuple $\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta: \operatorname{QX}(\Sigma \mathrm{U}\{\varepsilon\}) \rightarrow$ Powerset(Q)
$\cdot \mathrm{q}_{0}$ in Q is the start state
$\cdot F \subseteq Q$ is the set of accept states
-Recall: Powerset $(Q)=$ set of all subsets of Q
Example: Powerset(\{1,2\})=?
-Definition: A non-deterministic finite automaton (NFA) is a 5 -tuple $\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta: \operatorname{QX}(\Sigma \mathrm{U}\{\varepsilon\}) \rightarrow$ Powerset(Q)
$\cdot \mathrm{q}_{0}$ in Q is the start state
$\cdot F \subseteq Q$ is the set of accept states
-Recall: Powerset $(Q)=$ set of all subsets of Q
Example: Powerset(\{1,2\})=\{Ø, \{1\}, \{2\}, \{1,2\}\}

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
$\bullet \delta\left(\mathrm{q}_{0}, 0\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(q_{0}, 0\right)=\left\{q_{0}\right\} \quad \delta\left(q_{0}, 1\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
$\cdot Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
$\cdot \delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
$\cdot Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
$\cdot Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, \varepsilon\right)=$?

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, \varepsilon\right)=\left\{\mathrm{q}_{0}\right\}$
$\cdot q_{0}$ in Q is the start state
$\bullet F=?$

-Example: above NFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
$\cdot \Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(q_{1}, \varepsilon\right)=\left\{q_{0}\right\}$
$\cdot q_{0}$ in Q is the start state
- $F=\left\{q_{1}\right\} \subseteq Q$ is the set of accept states
-Definition: A NFA (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts a string w if \exists integer $k, \exists k$ strings $w_{1}, w_{2}, \ldots, w_{k}$ such that $\cdot \mathrm{W}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{k}} \quad$ where $\forall 1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{w}_{\mathrm{i}} \in \Sigma \mathrm{U}\{\varepsilon\}$ (the symbols of w, or ε)
- \exists sequence of $k+1$ states $r_{0}, r_{1}, . ., r_{k}$ in Q such that:
- $r_{0}=q_{0}$
- $r_{i+1} \in \delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$
- r_{k} is in F
-Differences with DFA are in green

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=?
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=?
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=?
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\}$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=?
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\}$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=?
$$

Transitions:

$$
\begin{aligned}
& r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\} \\
& r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\}
\end{aligned}
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=q_{2}, \quad r_{5}=?
$$

Transitions:

$$
\begin{array}{ll}
r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} & r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\} \\
r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\} & r_{4} \in \delta\left(r_{3}, \varepsilon\right)=\left\{q_{2}\right\}
\end{array}
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=q_{2}, \quad r_{5}=q_{0}
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\}$
$r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\} \quad r_{4} \in \delta\left(r_{3}, \varepsilon\right)=\left\{q_{2}\right\} \quad r_{5} \in \delta\left(r_{4}, a\right)=\left\{q_{0}\right\}$
-NFA are at least as powerful as DFA, because DFA are a special case of NFA
-Are NFA more powerful than DFA?
-Surprisingly, they are not:
-Theorem:
For every NFA N there is DFA M : $L(M)=L(N)$
-Theorem:
For every NFA N there is DFA $M: L(M)=L(N)$
-Construction without ε transitions
-Given NFA N (Q, $\Sigma, \delta, q, F)$
-Construct DFA M (Q', $\left.\Sigma, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ where:
-Q' := Powerset(Q)
$\cdot q^{\prime}=\{q\}$

- $F^{\prime}=\left\{S: S \in Q^{\prime}\right.$ and S contains an element of $\left.F\right\}$
- $\delta^{\prime}(\mathrm{S}, \mathrm{a}):=\mathrm{U}_{\mathrm{s} \in \mathrm{S}} \delta(\mathrm{s}, \mathrm{a})$

$$
=\{t: t \in \delta(s, a) \text { for some } s \in S\}
$$

- It remains to deal with ε transitions
-Definition: Let S be a set of states.
$E(S):=\{q: q$ can be reached from some state s in S traveling along 0 or more ε transitions $\}$
-We think of following ε transitions at beginning, or right after reading an input symbol in Σ
-Theorem:
For every NFA N there is DFA M : $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{N})$
-Construction including ε transitions
- Given NFA N (Q, $\Sigma, \delta, q, F)$
-Construct DFA M (Q', $\left.\Sigma, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ where:
-Q' := Powerset(Q)
- $q^{\prime}=E(\{q\})$
- $F^{\prime}=\left\{S: S \in Q^{\prime}\right.$ and S contains an element of $\left.F\right\}$
- $\delta^{\prime}(S, a):=E\left(U_{s \in S} \delta(s, a)\right)$

$$
=\{t: t \in E(\delta(s, a)) \text { for some } s \in S\}
$$

Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

