Big picture

- All languages
- DecidableTuring machines
- NP
- P
- Context-free
 Context-free grammars, push-down automata
- Regular

Automata, non-deterministic automata, regular expressions

- States), this DFA has 4 states
- Transitions _____ labelled with elements of the alphabet $\Sigma = \{0,1\}$

- Begin in start state q_0
- Read input string in a one-way fashion
- Follow the arrows matching input symbols
- When input ends: ACCEPT if in accept state

REJECT if not

Example: Input string

Example: Input string

w = 0011 ACCEPT

because end in

accept state

Example: Input string

Example: Input string

$$w = 010$$

Example: Input string

Example: Input string

Example: Input string

Example: Input string

w = 010 REJECT
because does not
end in accept state

Example: Input string w = 01 ACCEPT

w = 010 REJECT

w = 0011 ACCEPT

w = 00110 REJECT

M recognizes language

L(M) = { w : w starts with 0 and ends with 1 } L(M) is the language of strings causing M to accept

Example: 0101 is an element of L(M), 0101 $\in L(M)$

$$\Sigma = \{0,1\}$$

- 00 causes M to accept, so 00 is in L(M) 00 ∈ L(M)
- 01 does not cause M to accept, so 01 not in L(M),

01 ∉ L(M)

- 0101 $\in L(M)$
- $01101100 \in L(M)$
- 011010 ∉ L(M)

$$\Sigma = \{0,1\}$$

L(M) = {w : w has an even number of 1 }

Note: If there is no 1, then there are zero 1, zero is an even number, so M should accept.

Indeed $0000000 \in L(M)$

$$\Sigma = \{0,1\}$$

$$\Sigma = \{0, 1\}$$

• L(M) = every possible string over {0,1}

$$= \{0,1\}^*$$

$$\Sigma = \{0, 1\}$$

• L(M) = all strings over $\{0,1\}$ except empty string ϵ = $\{0,1\}^*$ - $\{\epsilon\}$

• L(M) = ?

- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in ... what ?

- L(M) = { w : w starts and ends with same symbol }
- Memory is encoded in states.

DFA have finite states, so finite memory

Convention:

L(M) = { w : w starts with 0 and ends with 1 }

The arrow q_0

leads to a "sink" state.

If followed, M can never accept

Convention:

Don't need to write such arrows:

If, from some state, read symbol with no corresponding arrow, imagine M goes into "sink state" that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

Means 0

This makes pictures more compact.

Example $\Sigma = \{0,1\}$

$$M =$$

$$\longrightarrow$$
 \bigcirc $0,1$ \bigcirc

$$L(M) = ?$$

Example $\Sigma = \{0,1\}$

$$M =$$

$$\longrightarrow \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc$$

$$L(M) = \sum^2 = \{00,01,10,11\}$$

Example from programming languages:

Recognize strings representing numbers:

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,.\}$$

$$0,...,9$$

$$0,...,9$$

Note: 0,...,9 means 0,1,2,3,4,5,6,7,8,9: 10 transitions

Example from programming languages:

Recognize strings representing numbers:

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,.\}$$

$$0,...,9$$
Possibly put sign (+, -)
$$0,...,9$$

Follow with arbitrarily many digits, but at least one Possibly put decimal point

Follow with arbitrarily many digits, possibly none

Example from programming languages:

Input w = +2.35-. REJECT

Recognize strings representing numbers:

$$\Sigma = \{0,1,2,3,4,5,6,7,8,9,+,-,.\}$$

$$0,...,9$$

$$0,...,9$$
Input w = 17 ACCEPT 0,...,9
Input w = + REJECT
Input w = -3.25 ACCEPT

```
Example \Sigma = \{0,1\}
```

What about { w : w has same number of 0 and 1 }

Can you design a DFA that recognizes that?

It seems you need infinite memory

 We will prove later that there is no DFA that recognizes that language!

Next: formal definition of DFA

Useful to prove various properties of DFA

 Especially important to prove that things CANNOT be recognized by DFA.

Useful to practice mathematical notation

State diagram of a DFA:

• One or more states ()

Exactly one start state

Some number of accept states ①

• Labelled transitions exiting each state, $\underline{}$ for every symbol in Σ

Definition: A finite automaton (DFA) is a 5-tuple (Q, Σ, δ, q₀, F) where

- Q is a finite set of states
- Σ is the input alphabet
- δ : Q X $\Sigma \rightarrow$ Q is the transition function
- q₀ in Q is the start state
- F ⊆ Q is the set of accept states

Q X Σ is the set of ordered pairs (a,b) : a \in Q, b \in Σ Example {q,r,s}X{0,1}={(q,0),(q,1),(r,0),(r,1),(s,0),(s,1)}

- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = ?$

- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0 \delta(q_0, 1) = ?$

- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- $Q = \{ q_0, q_1 \}$
- $\bullet \Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0 \delta(q_0, 1) = q_1$

$$\delta(q_1, 0) = q_1 \quad \delta(q_1, 1) = q_0$$

- q₀ in Q is the start state
- F = ?

- Example: above DFA is 5-tuple (Q, Σ , δ , q₀, F) where
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = q_0 \quad \delta(q_0, 1) = q_1$
 - $\delta(q_1, 0) = q_1 \quad \delta(q_1, 1) = q_0$
- q₀ in Q is the start state
- F = $\{q_0\} \subseteq Q$ is the set of accept states

Definition: A DFA (Q, Σ, δ, q₀, F) accepts a string w if

• w = $w_1 w_2 ... w_k$ where, $\forall 1 \le i \le k$, w_i is in Σ (the k symbols of w)

• The sequence of k+1 states r_0 , r_1 , ..., r_k such that:

(1)
$$r_0 = q_0$$
, and

(2)
$$r_{i+1} = \delta(r_i, w_{i+1}) \ \forall \ 0 \le i < k$$

has r_k in F

(r_i = state DFA is in after reading i-th symbol in w)

• Above DFA (Q, Σ , δ , q₀, F) accepts w = 011

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

We must show that

• The sequence of 3+1=4 states r_0 , r_1 , r_2 , r_3 such that:

(1)
$$r_0 = q_0$$

(2)
$$r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < 3$$

has r_3 in F

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- r₁ := ?

Example $\begin{array}{c|c} & & & & & & \\ \hline & q_0 & & & \\ \hline & 1 & & \\ \hline & 0 & & \\ \end{array}$

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$
- r₂ := ?

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$
- $r_3 := ?$

Example
$$\begin{array}{c|c} & & & & & & \\ \hline & q_0 & & & \\ \hline & 1 & & \\ \hline & 0 & & \\ \end{array}$$

- Above DFA (Q, Σ , δ , q₀, F) accepts w = 011
- $w = 011 = w_1 w_2 w_3$ $w_1 = 0 w_2 = 1 w_3 = 1$

- $r_0 = q_0$
- $r_1 = \delta(r_0, w_1) = \delta(q_0, 0) = q_0$
- $r_2 = \delta(r_1, w_2) = \delta(q_0, 1) = q_1$
- $r_3 = \delta(r_2, w_3) = \delta(q_1, 1) = q_0$
- $r_3 = q_0$ in F

Ok

DONE!

 Definition: For a DFA M, we denote by L(M) the set of strings accepted by M:

 $L(M) := \{ w : M \text{ accepts } w \}$

We say M accepts or recognizes the language L(M)

Definition: A language L is regular

if \exists DFA M: L(M) = L

In the next lectures we want to:

Understand power of regular languages

Develop alternate, compact notation to specify regular languages

Example: Unix command *grep '\<c.*h\>' file* selects all words starting with c and ending with h in *file*

Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Are these languages regular?

Understand power of regular languages:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

 Terminology: Are regular languages closed under not, U, o, * ? • Theorem:

If A is a regular language, then so is (not A)

If A is a regular language, then so is (not A)

• Proof idea: ????????? the set of accept states

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:

L(M) =

{ w : w has even number of 1}

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:

L(M) =

L(M') = not L(M) =

{ w : w has even number of 1}

{ w : w has odd number of 1}

Theorem: If A is a regular language, then so is (not A)

Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A.

This definition is the creative step of this proof, the rest is (perhaps complicated but) mechanical "unwrapping definitions" • Theorem: If A is a regular language, then so is (not A)

Proof:

```
Given DFA M = (Q, \Sigma, \delta, q<sub>0</sub>, F) such that L(M) = A. 
Define DFA M' = (Q, \Sigma, \delta, q<sub>0</sub>, F'), where F' := not F.
```

 • Theorem: If A is a regular language, then so is (not A)

Proof:

Given DFA M = $(Q, \Sigma, \delta, q_0, F)$ such that L(M) = A. Define DFA M' = $(Q, \Sigma, \delta, q_0, F')$, where F' := not F.

- We need to show L(M') = not L(M), that is:
 for any w, M' accepts w ←→ M does not accept w.
- So let w be any string of length k, and consider the k+1 states $r_0, r_1, ..., r_k$ from the definition of accept:

(1)
$$r_0 = q_0$$
, and

(2)
$$r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < k$$
.

How do we conclude?

Theorem: If A is a regular language, then so is (not A)

Proof:

Given DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A. Define DFA M' = (Q, Σ , δ , q₀, F'), where F' := not F.

- We need to show L(M') = not L(M), that is:
 for any w, M' accepts w ←→ M does not accept w
- So let w be any string of length k, and consider the k+1 states r₀, r₁, ..., r_k from the definition of accept:

(1)
$$r_0 = q_0$$
, and

(2)
$$r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < k$$
.

Note that r_k in F' \longleftrightarrow r_k not in F, since F' = not F.

What is a proof?

 A proof is an explanation, written in English, of why something is true.

• Every sentence must be logically connected to the previous ones, often by "so", "hence", "since", etc.

Your audience is a human being, NOT a machine.

• Theorem: If A is a regular language, then so is (not A)

Proof:

DFA M = (Q, Σ , δ , q₀, F) such that L(M) = A DFA M' = (Q, Σ , δ , q₀, F'), where F' := not F. L(M') = not L(M)

M' accepts w ←→ M does not accept w

k+1 states
$$r_0$$
, r_1 , ..., r_k
(1) $r_0 = q_0$, and
(2) $r_{i+1} = \delta(r_i, w_{i+1}) \forall 0 \le i < k$.
 r_k in F' \longleftarrow r_k not in F, F' = not F.

What is a proof?

Complement the set of accept states

To know a proof means to know all the pyramid

Example
$$\Sigma = \{0,1\}$$

$$M =$$

$$\longrightarrow \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc \bigcirc$$

$$L(M) = \sum^2 = \{00,01,10,11\}$$

What is a DFA M':

 $L(M') = \text{not } \sum_{i=1}^{2} = \text{all strings except those of length 2 ?}$

Example
$$\Sigma = \{0, 1\}$$

$$M' =$$

$$\longrightarrow \bigcirc \stackrel{0,1}{\longrightarrow} \bigcirc$$

$$L(M') = \text{not } \Sigma^2 = \{0,1\}^* - \{00,01,10,11\}$$

Do not forget the convention about the sink state!

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }REGULAR
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B } }$
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Theorem: If A, B are regular, then so is A U B

Proof idea: Take Cartesian product of states
 In a pair (q,q'),
 q tracks DFA for A,
 q' tracks DFA for B.

• Next we see an example.

In it we abbreviate

with

{ w : w has even number of 1}

M_{AUB} := How many states?

{ w : w has even number of 1}

Proof:

```
Given DFA M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) such that L(M) = B. Define DFA M = (Q, \Sigma, \delta, q_0, F), where
```

Q := ?

Proof:

 $q_0 := ?$

```
Given DFA M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) such that L(M) = B. Define DFA M = (Q, \Sigma, \delta, q_0, F), where Q := Q_A \times Q_B
```

Proof:

```
Given DFA M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) such that L(M) = B. Define DFA M = (Q, \Sigma, \delta, q_0, F), where Q := Q_A \times Q_B
```

$$q_0 := (q_A, q_B)$$
 $F := ?$

Proof:

```
Given DFA M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) such that L(M) = B. Define DFA M = (Q, \Sigma, \delta, q_0, F), where Q := Q_A \times Q_B q_0 := (q_A, q_B)
```

$$F := \{(q,q') \in Q : q \in F_A \text{ or } q' \in F_B \}$$

$$\delta((q,q'), v) := (?,?)$$

 $F := \{(q,q') \in Q : q \in F_A \text{ or } q' \in F_B \}$

 $\delta((q,q'), v) := (\delta_{\Delta}(q,v), \delta_{B}(q',v))$

Proof:

```
Given DFA M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) such that L(M) = A, DFA M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) such that L(M) = B. Define DFA M = (Q, \Sigma, \delta, q_0, F), where Q := Q_A \times Q_B q_0 := (q_A, q_B)
```

We need to show L(M) = A U B that is, for any w:
 M accepts w ←→ M_A accepts w or M_B accepts w

- Proof M accepts w→M_A accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the sequence $(s_0\ , t_0\) = q_0 = (q_A\ , q_B\),$ $(s_{i+1},t_{i+1}) = \delta((s_i,t_i)\ ,w_{i+1}) = (\ \delta_A(s_i,w_{i+1}),\ \delta_B(t_i,w_{i+1})\ \forall 0 \le i < k \ has\ (s_k,t_k) \in ?$

- Proof M accepts w→M_A accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the sequence $(s_0, t_0) = q_0 = (q_A, q_B)$, $(s_{i+1}, t_{i+1}) = \delta((s_i, t_i), w_{i+1}) = (\delta_A(s_i, w_{i+1}), \delta_B(t_i, w_{i+1}) \ \forall 0 \le i < k \text{ has } (s_k, t_k) \in F.$
- By our definition of F, what can we say about (s_k,t_k)?

- Proof M accepts w→M_A accepts w or M_B accepts w
- Suppose that M accepts w of length k.
- From the definitions of accept and M, the sequence $(s_0, t_0) = q_0 = (q_A, q_B)$, $(s_{i+1}, t_{i+1}) = \delta((s_i, t_i), w_{i+1}) = (\delta_A(s_i, w_{i+1}), \delta_B(t_i, w_{i+1}) \ \forall 0 \le i < k \text{ has } (s_k, t_k) \in F.$
- By our definition of F, $s_k \in F_A$ or $t_k \in F_B$.
- Without loss of generality, assume $s_k \in F_A$.
- Then M_A accepts w because the sequence

$$s_0 = q_A, \ s_{i+1} = \delta_A \left(s_i \ , \ w_{i+1} \right) \ \forall \ 0 \le i < k,$$
 has $s_k \in F_A$.

- Proof M accepts w ←M_A accepts w or M_B accepts w
- W/out loss of generality, assume M_A accepts w, |w|
 =k.
- From the definition of M_A accepts w, the sequence $r_0 := q_A, \ r_{i+1} := \delta_A \left(r_i \ , w_{i+1} \right) \ \forall \ 0 \leq i < k, \ has \ r_k \ in \ ?$

- Proof M accepts w ←M_A accepts w or M_B accepts w
- W/out loss of generality, assume M_A accepts w, |w|
 =k.
- From the definition of M_A accepts w, the sequence $r_0 := q_A, \ r_{i+1} := \delta_A \left(r_i , w_{i+1} \right) \ \forall \ 0 \leq i < k, \ has \ r_k \ in \ F_A \ .$

- Define the sequence of k+1 states $t_0 := \mathsf{q}_B \;,\; t_{i+1} := \delta_B \; (t_i \;, w_{i+1} \;) \; \forall \; 0 \leq i < k.$
- M accepts w because the sequence
 ?????????? (recall states in M are pairs)

- Proof M accepts w ←M_A accepts w or M_B accepts w
- W/out loss of generality, assume M_A accepts w, |w|
 =k.
- From the definition of M_A accepts w, the sequence $r_0 := q_A, \ r_{i+1} := \delta_A \left(r_i \ , w_{i+1} \right) \ \forall \ 0 \leq i < k, \ has \ r_k \ in \ F_A \ .$

- Define the sequence of k+1 states $t_0 := q_B \ , \ t_{i+1} := \delta_B \ (t_i \ , w_{i+1} \) \ \forall \ 0 \leq i < k.$
- M accepts w because the sequence $(r_0, t_0) = q = (q_A, q_B),$ $(r_{i+1}, t_{i+1}) = \delta((r_i, t_i), w_{i+1}) = (\delta_A(r_i, w_{i+1}), \delta_B(t_i, w_{i+1}) \ \forall 0 \le i < k$ has (r_k, t_k) in F, by our definition of F.

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := { $w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} }$
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Other two are more complicated!

Plan: we introduce NFA
 prove that NFA are equivalent to DFA
 reprove A U B, prove A o B, A* regular, using NFA

Big picture

- All languages
- DecidableTuring machines
- NP
- P
- Context-free
 Context-free grammars, push-down automata
- Regular
 Automata, non-deterministic automata, regular expressions

Non deterministic finite automata (NFA)

 DFA: given state and input symbol, unique choice for next state, deterministic:

 Next we allow multiple choices, non-deterministic

We also allow ε-transitions:
 can follow without reading anything

Intuition of how it computes:

- Accept string w if there is a way to follow transitions that ends in accept state
- Transitions labelled with symbol in Σ = {a,b} must be matched with input
- ε transitions can be followed without matching

Example:

- Accept a (first follow ε-transition)
- Accept baaa

ANOTHER Example of NFA

Example:

- Accept bab (two accepting paths, one uses the ε-transition)
- Reject ba (two possible paths, but neither has final state = q₁)

• Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ , δ , q₀, F) where

- Q is a finite set of states
- Σ is the input alphabet
- δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- q₀ in Q is the start state
- F ⊆ Q is the set of accept states

Recall: Powerset(Q) = set of all subsets of Q
 Example: Powerset({1,2}) = ?

Definition: A non-deterministic finite automaton (NFA) is a 5-tuple (Q, Σ, δ, q₀, F) where

- Q is a finite set of states
- Σ is the input alphabet
- δ : Q X (Σ U { ϵ }) \rightarrow Powerset(Q)
- q₀ in Q is the start state
- F ⊆ Q is the set of accept states

Recall: Powerset(Q) = set of all subsets of Q
 Example: Powerset({1,2}) = {∅, {1}, {2}, {1,2} }

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0, 1\}$
- $\delta(q_0, 0) = \{q_0\} \delta(q_0, 1) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\}$ $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\}$ $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$ $\delta(q_1, 0) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\}$ $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$ $\delta(q_1, 0) = \emptyset$ $\delta(q_1, 1) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$

•
$$\delta(q_0, 0) = \{q_0\}$$
 $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$

$$\delta(q_1, 0) = \emptyset$$
 $\delta(q_1, 1) = \emptyset$ $\delta(q_1, \varepsilon) = ?$

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$

•
$$\delta(q_0, 0) = \{q_0\}$$
 $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$
 $\delta(q_1, 0) = \emptyset$ $\delta(q_1, 1) = \emptyset$ $\delta(q_1, \epsilon) = \{q_0\}$

- q₀ in Q is the start state
- F = ?

- Example: above NFA is 5-tuple (Q, Σ , δ , q₀, F)
- $Q = \{ q_0, q_1 \}$
- $\Sigma = \{0,1\}$
- $\delta(q_0, 0) = \{q_0\}$ $\delta(q_0, 1) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$ $\delta(q_1, 0) = \emptyset$ $\delta(q_1, 1) = \emptyset$ $\delta(q_1, \epsilon) = \{q_0\}$
- q₀ in Q is the start state
- F = $\{q_1\} \subseteq Q$ is the set of accept states

- Definition: A NFA (Q, Σ , δ , q₀, F) accepts a string w if \exists integer k, \exists k strings w₁, w₂, ..., w_k such that
- w = w₁ w₂ ... w_k where $\forall 1 \le i \le k$, w_i $\in \Sigma \cup \{\epsilon\}$ (the symbols of w, or ϵ)

- ∃ sequence of k+1 states r₀, r₁, .., r_k in Q such that:
- $r_0 = q_0$
- $r_{i+1} \in \delta(r_i, w_{i+1}) \ \forall \ 0 \le i < k$
- r_k is in F

Differences with DFA are in green

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = ?$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0, r_1 = ?$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \epsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0, r_1 = q_1, r_2 = ?$$

Transitions:

$$\mathbf{r}_1 \in \delta(\mathbf{r}_0, \mathbf{b}) = \{\mathbf{q}_1\}$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \epsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = ?$$

Transitions:

$$r_1 \in \delta(r_0, b) = \{q_1\} \quad r_2 \in \delta(r_1, a) = \{q_1, q_2\}$$

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = q_0, r_4 = ?$$

Transitions:

$$r_1 \in \delta(r_0, b) = \{q_1\} \quad r_2 \in \delta(r_1, a) = \{q_1, q_2\}$$

 $r_3 \in \delta(r_2, a) = \{q_0\}$

Accepts w = baaa

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0, r_1 = q_1, r_2 = q_2, r_3 = q_0, r_4 = q_2, r_5 = ?$$

Transitions:

$$r_1 \in \delta(r_0, b) = \{q_1\}$$
 $r_2 \in \delta(r_1, a) = \{q_1, q_2\}$
 $r_3 \in \delta(r_2, a) = \{q_0\}$ $r_4 \in \delta(r_3, \epsilon) = \{q_2\}$

Accepts w = baaa

$$w_1 = b$$
, $w_2 = a$, $w_3 = a$, $w_4 = \varepsilon$, $w_5 = a$

Accepting sequence of 5+1 = 6 states:

$$r_0 = q_0$$
, $r_1 = q_1$, $r_2 = q_2$, $r_3 = q_0$, $r_4 = q_2$, $r_5 = q_0$

Transitions:

$$r_1 \in \delta(r_0, b) = \{q_1\}$$
 $r_2 \in \delta(r_1, a) = \{q_1, q_2\}$
 $r_3 \in \delta(r_2, a) = \{q_0\}$ $r_4 \in \delta(r_3, \epsilon) = \{q_2\}$ $r_5 \in \delta(r_4, a) = \{q_0\}$

NFA are at least as powerful as DFA,
 because DFA are a special case of NFA

Are NFA more powerful than DFA?

Surprisingly, they are not:

Theorem:

For every NFA N there is DFA M : L(M) = L(N)

Theorem:

For every NFA N there is DFA M : L(M) = L(N)

- Construction without ε transitions
- Given NFA N (Q, Σ , δ , q, F)
- Construct DFA M (Q', Σ , δ ', q', F') where:
- Q' := Powerset(Q)
- $\bullet q' = \{q\}$
- F' = { S : S ∈ Q' and S contains an element of F}
- $\delta'(S, a) := U_{S \in S} \delta(s,a)$
 - = $\{ t : t \in \delta \text{ (s,a) for some s } \in S \}$

It remains to deal with ε transitions

Definition: Let S be a set of states.

E(S) := { q : q can be reached from some state s in S traveling along 0 or more ε transitions }

• We think of following ϵ transitions at beginning, or right after reading an input symbol in Σ

Theorem:

For every NFA N there is DFA M : L(M) = L(N)

- Construction including ε transitions
- Given NFA N (Q, Σ , δ , q, F)
- Construct DFA M (Q', Σ , δ ', q', F') where:
- Q' := Powerset(Q)
- $q' = E(\{q\})$
- F' = { S : S ∈ Q' and S contains an element of F}
- $\delta'(S, a) := E(U_{S \in S} \delta(s,a))$
 - = $\{ t : t \in E(\delta(s,a)) \text{ for some } s \in S \}$

 $= E(\emptyset \cup \{1\}) = \{1,3\}$

We can delete the unreachable states.

 $= E(\emptyset \cup \{3\}) = \{1,3\}$

$$o_{DFA}(\{1,3\}, b)$$
= $E(\delta_{NFA}(1,b) \cup \delta_{NFA}(3,b))$
 $\{2,3\}$

 $= E({2,3} \cup \varnothing) = {1,2,3}$

$$\delta_{\text{DFA}}(\{2,3\}, a)$$
= $E(\delta_{\text{NFA}}(2,a) \cup \delta_{\text{NFA}}(3,a))$ (2,3)

 $= E({3} \cup \emptyset) = {1,3}$

$$\delta_{\text{DFA}}(\{1,2,3\}, a)$$
= $\mathbf{E}(\delta_{\text{NFA}}(1,a) \cup \delta_{\text{NFA}}(2,a) \cup \delta_{\text{NFA}}(3,a))$

$$=E(\varnothing \cup \{3\} \cup \varnothing) = \{1,3\}$$

$$\delta_{DFA}(\emptyset, a) = \emptyset$$

 $\delta_{DFA}(\emptyset, b) = \emptyset$

We can delete the unreachable states.

Summary: NFA and DFA recognize the same languages

We now return to the question:

- Suppose A, B are regular languages, what about
- not A := { w : w is not in A }REGULAR
- A U B := { w : w in A or w in B } REGULAR
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Theorem: If A, B are regular languages, then so is A U B := { w : w in A or w in B }

• Proof idea: Given DFA M_A : $L(M_A) = A$,

DFA M_B : $L(M_B) = B$,

Construct NFA N : L(N) = A U B

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $Q := \{q\} \cup Q_A \cup Q_B$, F := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- \bullet Q := {q} U Q_A U Q_B , F := F_A U F_B
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
- $\delta(r,x) := ?$ if r in Q_B and $x \neq \epsilon$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- \bullet Q := {q} U Q_A U Q_B , F := F_A U F_B
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
- $\delta(r,x) := \{ \delta_B(r,x) \}$ if r in Q_B and $x \neq \epsilon$
- $\delta(q,\epsilon) := ?$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- \bullet Q := {q} U Q_A U Q_B , F := F_A U F_B
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \epsilon$
- $\delta(r,x) := \{ \delta_B(r,x) \}$ if r in Q_B and $x \neq \epsilon$
- $\delta(q,\epsilon) := \{q_A, q_B\}$
- We have L(N) = A U B

Is $L = \{w \text{ in } \{0,1\}^* : |w| \text{ is divisible by 3 OR}$ w starts with a 1} regular?

Is $L = \{w \text{ in } \{0,1\}^* : |w| \text{ is divisible by 3 OR}$ w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular

Is $L = \{w \text{ in } \{0,1\}^* : |w| \text{ is divisible by 3 OR}$ w starts with a 1} regular?

```
OR is like U, so try to write L = L_1 U L_2
where L_1, L_2 are regular
L_1 = \{w : |w| \text{ is div. by 3}\} L_2 = \{w : w \text{ starts with a 1}\}
```

Is $L = \{w \text{ in } \{0,1\}^* : |w| \text{ is divisible by 3 OR}$ w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

$$M_1 = 0,1$$
 $0,1$
 $0,1$

$$L(M_1) = L_1$$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular

$$L_1 = \{w : |w| \text{ is div. by 3}\}$$
 $L_2 = \{w : w \text{ starts with a 1}\}$

$$M_2 = 0.1$$

$$L(M_{2}) = L_{2}$$

Is L = {w in {0,1}* : |w| is divisible by 3 OR w starts with a 1} regular?

OR is like U, so try to write $L = L_1 U L_2$ where L_1 , L_2 are regular

 $L_1 = \{w : |w| \text{ is div. by 3}\}$ $L_2 = \{w : w \text{ starts with a 1}\}$

⇒ L is regular.

We now return to the question:

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }REGULAR
- AUB:= {w:winAorwinB}REGULAR
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Theorem: If A, B are regular languages, then so is

A o B := $\{ w : w = xy \text{ for some } x \text{ in A and } y \text{ in B } \}$.

Proof idea: Given DFAs M_A, M_B for A, B

construct NFA N : $L(N) = A \circ B$.

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- Q := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, q := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, $q := q_A$, F := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, $q := q_A$, $F := F_B$
- $\delta(r,x) := ?$ if r in Q_A and $x \neq \varepsilon$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, $q := q_A$, $F := F_B$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
- $\delta(r,\epsilon) := ?$ if r in F_A

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, $q := q_A$, $F := F_B$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
- $\delta(r,\epsilon) := \{ q_B \} \text{ if r in } F_A$
- $\delta(r,x) := ?$ if r in Q_B and $x \neq \varepsilon$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A,$ DFA $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B) : L(M_B) = B,$
- Construct NFA N = (Q, Σ , δ , q, F) where:
- $\bullet Q := Q_A U Q_B$, $q := q_A$, $F := F_B$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \varepsilon$
- $\delta(r,\epsilon) := \{ q_B \} \text{ if r in } F_A$
- $\delta(r,x) := \{ \delta_B(r,x) \}$ if r in Q_B and $x \neq \epsilon$
- We have L(N) = A o B

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ contains a 1 after a 0} \}$ regular?

Note: $L = \{01, 0001001, 111001, \dots \}$

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ contains a 1 after a 0} \}$ regular?

```
Let L_0 = \{w : w \text{ contains a 0}\}

L_1 = \{w : w \text{ contains a 1}\}. Then L = L_0 \text{ o } L_1.
```

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ contains a 1 after a 0} \}$ regular?

Let
$$L_0 = \{w : w \text{ contains a 0}\}$$

 $L_1 = \{w : w \text{ contains a 1}\}$. Then $L = L_0 \text{ o } L_1$.

$$M_0 = 0.1$$

$$0.1$$

$$L(M_0) = L_0$$

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ contains a 1 after a 0} \}$ regular?

Let
$$L_0 = \{w : w \text{ contains a } 0\}$$
 $L_1 = \{w : w \text{ contains a } 1\}.$ Then $L = L_0 \text{ o } L_1.$
 $M_0 = \begin{pmatrix} 0,1 \\ 0 \end{pmatrix} \begin{pmatrix} 0,1$

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ contains a 1 after a 0} \}$ regular?

Let
$$L_0 = \{w : w \text{ contains a } 0\}$$

$$L_1 = \{w : w \text{ contains a } 1\}. \quad \text{Then } L = L_0 \text{ o } L_1.$$

$$M = \underbrace{1 \quad 0,1 \quad 0}_{\epsilon} \quad 0,1$$

$$L(M) = L(M_0) \text{ o } L(M_1) = L_0 \text{ o } L_1 = L$$

⇒ L is regular.

We now return to the question:

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }REGULAR
- AUB:= {w:winAorwinB}REGULAR
- A o B := { $w_1 w_2 : w_1 \in A \text{ and } w_2 \in B$ } REGULAR
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

Theorem: If A is a regular language, then so is $A^* := \{ w : w = w_1...w_k, w_i \text{ in A for } i=1,...,k \}$

Proof idea: Given DFA M_A: L(M_A) = A,

Construct NFA N : $L(N) = A^*$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
- Q := ?

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
- $Q := \{q\} \cup Q_A, F := ?$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
- Q := $\{q\} \cup Q_A$, F := $\{q\} \cup F_A$
- $\delta(r,x) := ?$ if r in Q_A and $x \neq \varepsilon$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
- Q := $\{q\} \cup Q_A$, F := $\{q\} \cup F_A$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \epsilon$
- $\delta(r,\epsilon) := ?$ if r in $\{q\} \cup F_A$

- Given DFA $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A) : L(M_A) = A$, Construct NFA $N = (Q, \Sigma, \delta, q, F)$ where:
- Q := $\{q\} \cup Q_A$, F := $\{q\} \cup F_A$
- $\delta(r,x) := \{ \delta_A(r,x) \}$ if r in Q_A and $x \neq \epsilon$
- $\delta(r,\epsilon) := \{ q_A \} \text{ if r in } \{q\} \cup F_A$
- We have $L(N) = A^*$

Is $L = \{w \text{ in } \{0,1\}^* : w \text{ has even length} \}$ regular?

Is L = {w in {0,1}* : w has even length} regular?

Let $L_0 = \{w : w \text{ has length} = 2\}$. Then $L = L_0^*$.

Is L = {w in {0,1}* : w has even length} regular?

Let
$$L_0 = \{w : w \text{ has length} = 2\}$$
. Then $L = L_0^*$.

$$M_0 = 0,1 0,1$$

$$L(M_0) = L_0$$

Is L = {w in {0,1}* : w has even length} regular?

Let
$$L_0 = \{w : w \text{ has length} = 2\}$$
. Then $L = L_0^*$.

$$M = \underbrace{\begin{array}{c} \varepsilon \\ 0,1 \\ 0,1 \\ \end{array}}$$

$$L(M) = L(M_0)^* = L_0^* = L$$

$$\Rightarrow L \text{ is regular.}$$

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

are all regular!

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := $\{ w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B} \}$
- $A^* := \{ w_1 w_2 ... w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

What about $A \cap B := \{ w : w \text{ in } A \text{ and } w \text{ in } B \} ?$

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B } }$
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0 , w_i \text{ in } A \text{ for every } i \}$

De Morgan's laws: A ∩ B = not ((not A) U (not B))
By above, (not A) is regular, (not B) is regular,
(not A) U (not B) is regular,
not ((not A) U (not B)) = A ∩ B regular

- Suppose A, B are regular languages, then
- not A := { w : w is not in A }
- A U B := { w : w in A or w in B }
- A o B := { $w_1 w_2 : w_1 \text{ in A and } w_2 \text{ in B } }$
- $A^* := \{ w_1 w_2 \dots w_k : k \ge 0, w_i \text{ in } A \text{ for every } i \}$
- A ∩ B := { w : w in A and w in B }

are all regular

Big picture

- All languages
- DecidableTuring machines
- NP
- P
- Context-free
 - Context-free grammars, push-down automata
- Regular

Automata, non-deterministic automata,

regular expressions

How to specify a regular language?

Write a picture → complicated

Write down formal definition → complicated

$$\delta(q_0, 0) = q_{0, ...}$$

Use symbols from Σ and operations *, o, U \rightarrow good

({0} * U {1}) o {001}

Regular expressions: anything you can write with \emptyset , ϵ , symbols from Σ , and operations *, o, U

Conventions:

- Write a instead of {a}
- Write AB for A o B
- Write \sum for $U_{a \in \sum} a$ So if $\sum = \{a,b\}$ then $\sum = a \cup b$
- Operation * has precedence over o, and o over U
 so 1 U 01* means 1U(0(1)*)

Example: 110, 0*, Σ^* , Σ^* 001 Σ^* , $(\Sigma\Sigma)^*$, 01 U 10

Definition Regular expressions RE over ∑ are:

Ø

3

a if a in Σ

R R' if R, R' are RE

RUR' if R, R' are RE

R* if R is RE

Definition The language described by RE:

$$L(\varnothing) = \varnothing$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(a) = \{a\} \qquad \text{if a in } \Sigma$$

$$L(R R') = L(R) \circ L(R')$$

$$L(R U R') = L(R) U L(R')$$

$$L(R^*) = L(R)^*$$

RE

Language

- ab U ba
- ?

- a*
- (a U b)*
- a*ba*
- ∑*p∑*
- ∑*aab∑*
- $(\sum \sum)^*$
- (a*ba*ba*)*
- a*baba*a Ø

RE Language

- ab U ba {ab, ba}
- a*
- (a U b)*
- a*ba*
- ∑*p∑*
- ∑*aab∑*
- $(\sum \sum)^*$
- (a*ba*ba*)*
- a*baba*a Ø

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w has only a\}$

- (a U b)*
- a*ba*
- ∑*p∑*
- ∑*aab∑*
- $(\sum \sum)^*$
- (a*ba*ba*)*
- a*baba*a Ø

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w \text{ has only a}\}$

• (a U b)*

all strings

- a*ba*
- ∑*p∑*
- ∑*aab∑*
- $(\sum \sum)^*$
- (a*ba*ba*)*
- a*baba*a Ø

RE

Language

• ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w \text{ has only a}\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

∑*b∑*

∑*aab∑*

• $(\sum \sum)^*$

(a*ba*ba*)*

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w \text{ has only a}\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

∑*p∑*

{w : w has at least one b}

∑*aab∑*

• $(\sum \sum)^*$

(a*ba*ba*)*

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w has only a\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

∑*b∑*

{w : w has at least one b}

∑*aab∑*

{w : w contains the string aab}

• $(\sum \sum)^*$

(a*ba*ba*)*

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w has only a\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

• $\sum *b\sum *$

{w : w has at least one b}

∑*aab∑*

{w : w contains the string aab}

• $(\sum \sum)^*$

{w : w has even length}

(a*ba*ba*)*

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w \text{ has only a}\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

• $\sum *b\sum *$

{w : w has at least one b}

∑*aab∑*

{w : w contains the string aab}

• $(\sum \sum)^*$

{w : w has even length}

(a*ba*ba*)*

{w : w contains even number of b}

```
Example \Sigma = \{ a, b \}
```

RE

Language

ab U ba

{ab, ba}

a*

 $\{\varepsilon, a, aa, ...\} = \{w : w \text{ has only a}\}$

• (a U b)*

all strings

a*ba*

{w : w has exactly one b}

∑*b∑*

{w : w has at least one b}

∑*aab∑*

{w : w contains the string aab}

• $(\sum \sum)^*$

{w : w has even length}

(a*ba*ba*)*

{w : w contains even number of b}

a*baba*a Ø

 \emptyset (anything o $\emptyset = \emptyset$)

Theorem: For every RE R there is NFA M: L(M) = L(R)

•
$$R = \emptyset$$
 $M := ?$

•
$$R = \varepsilon$$
 $M := ?$

•
$$R = a$$
 $M := ?$

• R = R U R' ?

• R = a
$$M := -$$

- R = R U R' use construction for A U B seen earlier
- $R = R \circ R'$?

- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- $R = R^*$?

Theorem: For every RE R there is NFA M: L(M) = L(R) Construction:

- R = R U R' use construction for A U B seen earlier
- R = R o R' use construction for A o B seen earlier
- R = R* use construction for A* seen earlier

$$RE = (ab U a)^*$$

$$RE = (ab U a)^*$$

$$M_a = -0$$

$$L(M_a)=L(a)$$

$$RE = (ab U a)^*$$

$$M_a = -0^a$$

$$L(M_a)=L(a)$$
 $L(M_b)=L(b)$

$$RE = (ab U a)^*$$

$$M_{ab} = \frac{ab}{-0.00}$$

$$L(M_{ab}) = L(ab)$$

$$RE = (ab U a)^*$$

$$M_{ab} = M_{a} = -0^{a} = M_{a} = -0^{a} = 0$$

$$-0^{a} = 0^{e} = 0^{b} = 0$$

$$L(M_{ab}) = L(ab)$$

$$L(M_{a}) = L(a)$$

$$RE = (ab U a)^*$$

$$L(M_{ab\ U\ a})=L(ab\ U\ a)$$

$$RE = (ab U a)^*$$

$$L(M_{(ab\ U\ a)^*})=L((ab\ U\ a)^*)=L(RE)$$

RE =(
$$\varepsilon$$
 U a)ba*

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{\epsilon} = -0$$

$$L(M_{\epsilon})=L(\epsilon)$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{\epsilon} = -0$$

$$M_{a} = -0$$

$$L(M_{\epsilon})=L(\epsilon)$$
 $L(M_{a})=L(a)$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{\varepsilon \cup a} = 0$$

$$E \cup a$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{\epsilon \cup a} = M_{b} = -0^{b} \otimes L(M_{b}) = L(b)$$

$$L(M_{\epsilon \cup a}) = L(\epsilon \cup a)$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{(\varepsilon U a)b}$$

$$L(M_{(\varepsilon \cup a)b})=L((\varepsilon \cup a)b)$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{(\varepsilon \cup a)b} = M_{a} = -0^{a} \cdot 0^{b}$$

$$L(M_{(\varepsilon \cup a)b}) = L((\varepsilon \cup a)b)$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{(\varepsilon \cup a)b} = M_{a^*} = 0$$

$$L(M_{(\varepsilon \cup a)b}) = L((\varepsilon \cup a)b)$$

RE =(
$$\varepsilon$$
 U a)ba*

$$M_{(\varepsilon U a)ba^*} =$$

$$L(M_{(\varepsilon \cup a)ba^*})=L((\varepsilon \cup a)ba^*)=L(RE)$$

Recap:

Here "⇒" means "can be converted to"

We have seen: $RE \Rightarrow NFA \Leftrightarrow DFA$

Next we see: $DFA \Rightarrow RE$

In two steps: DFA \Rightarrow Generalized NFA \Rightarrow RE

Generalized NFA (GNFA)

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)

Convention:

Unique final state

Exactly one transition between each pair of states except nothing going into start state nothing going out of final state

If arrow not shown in picture, label = \emptyset

- Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, Σ , δ , q₀, q_a) where
- Q is a finite set of states
- Σ is the input alphabet
- δ : (Q {q_a}) X (Q {q₀}) \rightarrow Regular Expressions
- q₀ in Q is the start state
- q_a in Q is the accept state

- Definition: GNFA (Q, Σ , δ , q₀, q_a) accepts a string w if
- \exists integer k, \exists k strings w_1 , w_2 , ..., $w_k \in \Sigma^*$ such that $w = w_1 w_2 ... w_k$ (divide w in k strings)

- ∃ sequence of k+1 states r₀, r₁, .., r_k in Q such that:
- $r_0 = q_0$
- $w_{i+1} \in L(\delta(r_i, r_{i+1})) \forall 0 \le i < k$
- $r_k = q_a$

Differences with NFA are in green

Accepts w = aaabbab $w_1 = ?$

Accepts w = aaabbab $w_1 = aaa$ $w_2 = ?$

Accepts w = aaabbab $w_1 = aaa$ $w_2 = bb$ $w_3 = ab$ $r_0 = q_0$ $r_1 = ?$

Accepts w = aaabbab $w_1 = aaa$ $w_2 = bb$ $w_3 = ab$ $r_0 = q_0$ $r_1 = q_1$ $r_2 = ?$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

Accepts w = aaabbab $w_1 = aaa$ $w_2 = bb$ $w_3 = ab$ $r_0 = q_0$ $r_1 = q_1$ $r_2 = q_1$ $r_3 = ?$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

 $w_2 = bb \in L(\delta(r_1, r_2)) = L(\delta(q_1, q_1)) = L(b^*)$

Accepts w = aaabbab $w_1 = aaa$ $w_2 = bb$ $w_3 = ab$ $r_0 = q_0$ $r_1 = q_1$ $r_2 = q_1$ $r_3 = q_a$

$$w_1 = aaa \in L(\delta(r_0, r_1)) = L(\delta(q_0, q_1)) = L(a^*)$$

 $w_2 = bb \in L(\delta(r_1, r_2)) = L(\delta(q_1, q_1)) = L(b^*)$
 $w_3 = ab \in L(\delta(r_2, r_3)) = L(\delta(q_1, q_a)) = L(ab)$

Theorem: ∀ DFA M ∃ GNFA N : L(N) = L(M)

Construction:

To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:

Theorem: \forall GNFA N \exists RE R : L(R) = L(N)

Construction:

If N has 2 states, then N = q_0 S thus R := S

If N has > 2 states, eliminate some state $q_r \neq q_0$, q_a : for every ordered pair q_i , q_j (possibly equal) that are connected through q_i

Repeat until 2 states remain

Eliminate q₁: re-draw GNFA with all other states

Eliminate q₁: find a path through q₁

Eliminate q₁: add edge to new GNFA

Don't forget: no arrow means label Ø

Eliminate q₁: simplify RE on new edge

Eliminate q₁: if no more paths through q₁, start over

Eliminate q₂: re-draw GNFA with all other states

Eliminate q₂: find a path through q₂

Eliminate q₂: add edge to new GNFA

$$- \bullet \stackrel{\mathsf{q}_0}{\bullet} \qquad \bullet \stackrel{\mathsf{a}^* \text{ (b U c) b}^* \varepsilon \mathsf{U} \varnothing}{\bullet}$$

Eliminate q₂: simplify RE on new edge

Eliminate q_2 : if no more paths through q_2 , start over

Only two states remain:

$$RE = a^* (b U c) b^*$$

all other states

find a path through q₁

new GNFA

find another path through q₁

add edge to

new GNFA

find another path through q₁

find another path through q₁

new GNFA

through q₁, start over

re-draw GNFA with

all other states

find a path through q₂

add edge to new GNFA

when no more paths through q₂, start over

Eliminate q₃:

re-draw GNFA with all other states

don't forget: no arrow means Ø

(a*c(ca*c U b)*(ca*b U a) U a*b) Ø* ε U Ø

Eliminate q₃:

when no more paths through q_3 , start over (and simplify REs)

don't forget: \emptyset *= ϵ

Only two states remain:

RE = a*c(ca*c U b)*(ca*b U a) U a*b

Recap:

Here "⇒" means "can be converted to"

RE
$$\Leftrightarrow$$
 DFA \Leftrightarrow NFA

Any of the three recognize exactly the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using *grep*

- The RE is converted to an NFA
- Then the NFA is converted to a DFA
- The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

Is $\{0^n 1^n : n \ge 0\} = \{\epsilon, 01, 0011, 000111, ...\}$ regular?

$$\forall w \in L, |w| \ge p$$

$$\exists x,y,z : w=xyz, |y|>0, |xy|\leq p$$

$$\forall i \ge 0 : xy^i z \in L$$

Pumping lemma:
L regular language
$$\Rightarrow$$
 $\exists p \ge 0$ $\forall w \in L, |w| \ge p$ $\exists x,y,z: w=xyz, |y| > 0, |xy| \le p$ $\forall i \ge 0: xy^iz \in L$
Recall $y^0 = \varepsilon$, $y^1 = y$, $y^2 = yy$, $y^3 = yyy$, ...

Pumping lemma:

L regular language
$$\Rightarrow$$
 $\exists p \ge 0$ $\forall w \in L, |w| \ge p$ $\exists x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\forall i \ge 0 : xy^iz \in L$

We will not see the proof. But here's the idea:

p := |Q| for DFA recognizing L

If $w \in L$, $|w| \ge p$, then during computation

2 states must be the same $q \in Q$

y = portion of w that brings back to q can repeat y and still accept string

Pumping lemma:

$$\forall w \in L, |w| \ge p$$

L regular language
$$\Rightarrow$$
 $\exists p \ge 0$ $\forall w \in L, |w| \ge p$ $\exists x,y,z : w = xyz, |y| > 0, |xy| \le p$ $\forall i \ge 0 : xy^iz \in L$

$$\forall i \ge 0 : xy^i z \in L$$

Useful to prove L NOT regular. Use contrapositive:

L regular language ⇒ A

same as

 $(not A) \Rightarrow L not regular$

Pumping lemma (contrapositive)

$$\forall$$
 p ≥0 not A
 \exists w ∈ L, $|w| \ge p$
 \forall x,y,z: w = xyz, $|y| > 0$, $|xy| \le p$
 \exists i ≥ 0: xyⁱz $\not\in$ L

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

⇒ L not regular

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like

∀ bla ∃ bla ∀ bla ∃ bla bla

means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

Two players:

You, Adversary.

Rules:

First Adversary says a number.

Then You say a number.

You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

Two players:

You, Adversary.

Rules:

First Adversary says a number.

Then You say a number.

You win if your number is bigger.

You have winning strategy:

if adversary says x, you say x+1

Example NAME THE BIGGEST NUMBER GAME

Two players:

You, Adversary.

∃, ∀

Rules:

First Adversary says a number.

 $\forall x \exists y : y > x$

Then You say a number.

You win if your number is bigger.

You have winning strategy: if adversary says x, you say x+1

Claim is true

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game What is it?

Another example:

Theorem: \forall NFA N \exists DFA M : L(M) = L(N)

We already saw a winning strategy for this game The power set construction. Games with more moves:

Chess, Checkers, Tic-Tac-Toe

You can win if

∀ move of the Adversary

3 move You can make

∀ move of the Adversary

3 move You can make

. . .

: You checkmate

Pumping lemma (contrapositive)

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

$$\exists i \geq 0 : xy^iz \notin L$$

⇒ L not regular

Rules of the game:

Adversary picks p,

You pick $w \in L$ of length $\geq p$,

Adversary decomposes w in xyz, where |y| > 0, $|xy| \le p$

You pick i ≥ 0

Finally, you win if xyⁱz ∉ L

∀ p ≥0

 $\exists w \in L, |w| \ge p$

 $\exists i \geq 0 : xy^iz \notin L$

 \forall x,y,z : w = xyz, |y| > 0, $|xy| \le p$

Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^p 1^p$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0

So $xyyz = 0^{p + |y|} 1^{p}$

Since |y| > 0, this is not of the form $0^n 1^n$

DONE

Same Proof:

Use pumping lemma

Adversary moves p

You move w := ?

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

$$\exists i \geq 0 : xy^iz \notin L$$

Same Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^p 1^p$

Adversary moves x,y,z

You move i := ?

```
\forall p ≥0

\exists w ∈ L, |w| \ge p

\forall x,y,z : w = xyz, |y| > 0, |xy| \le p

\exists i ≥ 0 : xy<sup>i</sup>z \notin L
```

Same Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^p 1^p$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since |xy|≤p and w = xyz = 0^p 1^p, y only has 0

So xyyz = ?

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

Same Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^p 1^p$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$ and $w = xyz = 0^p 1^p$, y only has 0

So $xyyz = 0^{p + |y|} 1^{p}$

Since |y| > 0, not as many 0 as 1

∀ p ≥0

 $\exists w \in L, |w| \ge p$

 \forall x,y,z : w = xyz, |y| > 0, $|xy| \le p$

 $\exists i \geq 0 : xy^i z \notin L$

DONE

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := ?

```
∀ p ≥0
```

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular

Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^{p+1} 1^p$

Adversary moves x,y,z

You move i := ?

```
\forall p ≥0

∃ w ∈ L, |w| ≥ p

\forall x,y,z : w = xyz, |y| > 0, |xy| ≤ p
```

 $\exists i \geq 0 : xy^i z \notin L$

Theorem: L := $\{0^j \ 1^k : j > k\}$ is not regular

Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^{p+1} 1^p$

Adversary moves x,y,z

You move i := 0

You must show xz ∉ L:

Since |xy|≤p and w = xyz = 0^{p+1} 1^p, y only has 0

So $xz = 0^{p+1} - |y| 1^{p}$

Since |y| > 0, this is not of the form $0^j 1^k$ with j > k

∀ p ≥0

 $\exists w \in L, |w| \ge p$

 \forall x,y,z : w = xyz, |y| > 0, $|xy| \le p$

∃ i ≥ 0 : xyⁱz ∉ L

Theorem: L := $\{uu : u \in \{0,1\}^*\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := ?

```
\forall p ≥0

\exists w ∈ L, |w| \ge p

\forall x,y,z : w = xyz, |y| > 0, |xy| \le p

\exists i ≥ 0 : xy<sup>i</sup>z \notin L
```

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

Proof:

Use pumping lemma
Adversary moves p
You move $w := 0^p1 0^p 1$

Adversary moves x,y,z

You move i := ?

```
\forall p ≥0

\exists w ∈ L, |w| \ge p

\forall x,y,z : w = xyz, |y| > 0, |xy| \le p

\exists i ≥ 0 : xy<sup>i</sup>z \notin L
```

Theorem: L := {uu : $u \in \{0,1\}^*$ } is not regular

∀ p ≥0

 $\exists w \in L, |w| \ge p$

∃ i ≥ 0 : xyⁱz ∉ L

 \forall x,y,z : w = xyz, |y| > 0, $|xy| \le p$

Proof:

Use pumping lemma

Adversary moves p

You move $w := 0^p \cdot 1 \cdot 0^p \cdot 1$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$ and $w = xyz = 0^p \cdot 1 \cdot 0^p \cdot 1$, y only has 0

So $xyyz = 0^{p + |y|} 1 0^{p} 1$

Since |y| > 0, first half of xyyz only 0, so xyyz ∉ L

Proof:

Use pumping lemma

Adversary moves p

You move w := ?

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, |y| > 0, |xy| \leq p

Proof:

Use pumping lemma

Adversary moves p

You move $w := 1p^2$

Adversary moves x,y,z

You move i := ?

```
\forall p ≥0

∃ w ∈ L, |w| ≥ p

\forall x,y,z : w = xyz, |y| > 0, |xy| ≤ p
```

 $\exists i \ge 0 : xy^iz \notin L$

Proof:

Use pumping lemma

Adversary moves p

You move $w := 1p^2$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since |xy|≤p, |xyyz| ≤?

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

$$\exists i \geq 0 : xy^iz \notin L$$

Proof:

Use pumping lemma

Adversary moves p

You move $w := 1p^2$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$

Since |y| > 0, |xyyz| > ?

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, |y| > 0, |xy| \leq p

Proof:

Use pumping lemma

Adversary moves p

You move $w := 1p^2$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$

Since |y| > 0, $|xyyz| > p^2$

So |xyyz| cannot be ... what ?

∀ p ≥0

 $\exists w \in L, |w| \ge p$

 \forall x,y,z : w = xyz, |y| > 0, |xy| ≤ p

∃ i ≥ 0 : xyⁱz ∉ L

Proof:

Use pumping lemma

Adversary moves p

You move $w := 1p^2$

Adversary moves x,y,z

You move i := 2

You must show xyyz ∉ L:

Since $|xy| \le p$, $|xyyz| \le p^2 + p < (p+1)^2$

Since |y| > 0, $|xyyz| > p^2$

So |xyyz| cannot be a square. xyyz ∉ L

$$\exists w \in L, |w| \ge p$$

$$\forall$$
 x,y,z : w = xyz, $|y| > 0$, $|xy| \le p$

Big picture

- All languages
- DecidableTuring machines
- NP
- P
- Context-free

Context-free grammars, push-down automata

Regular

Automata, non-deterministic automata, regular expressions