Big picture

- All languages
- Decidable

Turing machines
-NP
-P

- Context-free

Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

DFA (Deterministic Finite Automata)

DFA (Deterministic Finite Automata)

- States \bigcirc, this DFA has 4 states
- Transitions

labelled with elements of the alphabet $\Sigma=\{0,1\}$

DFA (Deterministic Finite Automata)

Computation on input w:

- Begin in start state \longrightarrow q $_{0}$
- Read input string in a one-way fashion
- Follow the arrows matching input symbols
- When input ends: ACCEPT if in accept state REJECT if not

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

always start in start state

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=0011 \quad \text { ACCEPT }
$$

because end in accept state

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

always start in start state

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010
$$

DFA (Deterministic Finite Automata)

Example: Input string

$$
w=010 \quad \text { REJECT }
$$

because does not end in accept state

DFA (Deterministic Finite Automata)

Example: Input string w = 01 ACCEPT

$$
\begin{array}{ll}
\mathrm{w}=010 & \text { REJECT } \\
\mathrm{w}=0011 & \text { ACCEPT } \\
\mathrm{w}=00110 & \text { REJECT }
\end{array}
$$

DFA (Deterministic Finite Automata)

M recognizes language
$L(M)=\{w: w$ starts with 0 and ends with 1$\}$
$L(M)$ is the language of strings causing M to accept

Example: 0101 is an element of $L(M), 0101 \in L(M)$

Example
 $$
\Sigma=\{0,1\}
$$

- 00 causes M to accept, so 00 is in $L(M) \quad 00 \in L(M)$
- 01 does not cause M to accept, so 01 not in $L(M)$,

- $0101 \in \mathrm{~L}(\mathrm{M})$
- $01101100 \in L(M)$
- $011010 \notin \mathrm{~L}(\mathrm{M})$

Example

$\Sigma=\{0,1\}$

$L(M)=\{w: w$ has an even number of 1$\}$

Note: If there is no 1 , then there are zero 1 , zero is an even number, so M should accept.

Indeed $0000000 \in L(M)$

Example

$$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$?

Example

- $\mathrm{L}(\mathrm{M})=$ every possible string over $\{0,1\}$

$$
=\{0,1\}^{*}
$$

Example

$$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$?

Example
 $$
\Sigma=\{0,1\}
$$

- $\mathrm{L}(\mathrm{M})=$ all strings over $\{0,1\}$ except empty string ε

$$
=\{0,1\}^{*}-\{\varepsilon\}
$$

- $\mathrm{L}(\mathrm{M})=$?

Example

 $\Sigma=\{0,1\}$

- $L(M)=\{w: w$ starts and ends with same symbol $\}$
- Memory is encoded in ... what?

Example

 $\Sigma=\{0,1\}$

- $L(M)=\{w: w$ starts and ends with same symbol $\}$
- Memory is encoded in states.

DFA have finite states, so finite memory

Convention:

$L(M)=\{w: w$ starts with 0 and ends with 1$\}$
The arrow (90 leads to a "sink" state.
If followed, M can never accept

Convention:

Don't need to write such arrows:
If, from some state, read symbol with no
corresponding arrow, imagine M goes into "sink state" that is not shown, and REJECT.

This makes pictures more compact.

Another convention:

List multiple transition on same arrow:

Means

This makes pictures more compact.

Example $\Sigma=\{0,1\}$

$M=$

$\mathrm{L}(\mathrm{M})=$?

Example $\Sigma=\{0,1\}$

$M=$

$L(M)=\Sigma^{2}=\{00,01,10,11\}$

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Note: $0, \ldots, 9$ means $0,1,2,3,4,5,6,7,8,9: 10$ transitions

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Follow with arbitrarily many digits, but at least one
Possibly put decimal point
Follow with arbitrarily many digits, possibly none

Example from programming languages:

Recognize strings representing numbers:

$$
\Sigma=\{0,1,2,3,4,5,6,7,8,9,+,-, .\}
$$

Input w = 17
Input w = +
ACCEPT
REJECT

Input w = +2.35-. REJECT

Example
$\Sigma=\{0,1\}$

- What about $\{\mathrm{w}$: w has same number of 0 and 1 \}
- Can you design a DFA that recognizes that?
- It seems you need infinite memory
- We will prove later that there is no DFA that recognizes that language!

Next: formal definition of DFA

- Useful to prove various properties of DFA
- Especially important to prove that things CANNOT be recognized by DFA.
- Useful to practice mathematical notation

State diagram of a DFA:

- One or more states

- Exactly one start state

- Some number of accept states
- Labelled transitions exiting each state, $\xrightarrow{1}$ for every symbol in Σ
- Definition: A finite automaton (DFA) is a 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- q_{0} in Q is the start state
- $F \subseteq Q$ is the set of accept states

Q $\times \Sigma$ is the set of ordered pairs $(a, b): a \in Q, b \in \Sigma$ Example $\{q, r, \mathrm{r}\} \times\{0,1\}=\{(\mathrm{q}, 0),(\mathrm{q}, 1),(\mathrm{r}, 0),(\mathrm{r}, 1),(\mathrm{s}, 0),(\mathrm{s}, 1)\}$

- Example: above DFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=$?

- Example: above DFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\mathrm{q}_{0} \quad \delta\left(\mathrm{q}_{0}, 1\right)=?$

- Example: above DFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(q_{0}, 0\right)=q_{0} \quad \delta\left(q_{0}, 1\right)=q_{1}$
$\delta\left(\mathrm{q}_{1}, 0\right)=\mathrm{q}_{1} \quad \delta\left(\mathrm{q}_{1}, 1\right)=\mathrm{q}_{0}$
- q_{0} in Q is the start state
-F = ?

- Example: above DFA is 5 -tuple (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ where
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(q_{0}, 0\right)=q_{0} \quad \delta\left(q_{0}, 1\right)=q_{1}$ $\delta\left(\mathrm{q}_{1}, 0\right)=\mathrm{q}_{1} \quad \delta\left(\mathrm{q}_{1}, 1\right)=\mathrm{q}_{0}$
- q_{0} in Q is the start state
- $F=\left\{q_{0}\right\} \subseteq Q$ is the set of accept states
- Definition: A DFA (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, F\right)$ accepts a string w if
- $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{k}} \quad$ where, $\forall 1 \leq \mathrm{i} \leq \mathrm{k}, \quad \mathrm{w}_{\mathrm{i}}$ is in Σ
(the k symbols of w)
- The sequence of $k+1$ states $r_{0}, r_{1}, . ., r_{k}$ such that:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$
has r_{k} in F
($r_{i}=$ state DFA is in after reading i-th symbol in w)

Example

- Above DFA (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, F\right)$ accepts $\mathrm{w}=011$

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$

$$
w_{1}=0 \quad w_{2}=1 \quad w_{3}=1
$$

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$

We must show that
-The sequence of $3+1=4$ states $r_{0}, r_{1}, r_{2}, r_{3}$ such that:
(1) $r_{0}=q_{0}$
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<3$
has r_{3} in F

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3}$

$$
w_{1}=0 \quad w_{2}=1 \quad w_{3}=1
$$

- $r_{0}=q_{0}$
- $r_{1}:=$?

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
- $r_{2}:=$?

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
- $r_{2}=\delta\left(r_{1}, w_{2}\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $r_{3}:=$?

Example

- Above DFA (Q, $\left.\Sigma, \delta, q_{0}, F\right)$ accepts $w=011$
- $\mathrm{w}=011=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \quad \mathrm{w}_{1}=0 \quad \mathrm{w}_{2}=1 \quad \mathrm{w}_{3}=1$
- $r_{0}=q_{0}$
- $r_{1}=\delta\left(r_{0}, w_{1}\right)=\delta\left(q_{0}, 0\right)=q_{0}$
- $r_{2}=\delta\left(r_{1}, w_{2}\right)=\delta\left(q_{0}, 1\right)=q_{1}$
- $r_{3}=\delta\left(r_{2}, w_{3}\right)=\delta\left(q_{1}, 1\right)=q_{0}$
- $r_{3}=q_{0}$ in F
- Definition: For a DFA M, we denote by $L(M)$ the set of strings accepted by M :

$$
L(M):=\{\text { w : M accepts w }\}
$$

We say M accepts or recognizes the language $L(M)$

- Definition: A language L is regular

$$
\text { if } \exists \mathrm{DFA} M: L(M)=L
$$

In the next lectures we want to:

- Understand power of regular languages
- Develop alternate, compact notation to specify regular languages

Example: Unix command grep ' $<$ c. *hl>' file selects all words starting with c and ending with h in file

- Understand power of regular languages:
- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or win $B\}$
- A o $B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Are these languages regular?
- Understand power of regular languages:
- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- A o $B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Terminology: Are regular languages closed under not, U, o, *?
- Theorem:

If A is a regular language, then so is (not A)

- Theorem:

If A is a regular language, then so is ($\operatorname{not} A$)
-Proof idea: ?????????? the set of accept states

- Theorem:

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example
- Theorem:

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:

M :=

$\mathrm{L}(\mathrm{M})=$
$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\}$

- Theorem:

If A is a regular language, then so is (not A)

- Proof idea: Complement the set of accept states
- Example:

M :=

$\mathrm{L}(\mathrm{M})=$
$L\left(M^{\prime}\right)=\operatorname{not} L(M)=$
$\{w: w$ has even number of 1$\}$
$\{\mathrm{w}: \mathrm{w}$ has odd number of 1 \}

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$ such that $\mathrm{L}(\mathrm{M})=\mathrm{A}$.
Define DFA M' = ??????????????????????????

This definition is the creative step of this proof, the rest is (perhaps complicated but) mechanical "unwrapping definitions"

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M $=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=\operatorname{not} F$.

- We need to show $L\left(M^{\prime}\right)=$ not $L(M)$, that is:
for any w, ??????????????????????????
- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=\operatorname{not} F$.

- We need to show $L(M ')=$ not $L(M)$, that is:
for any $w, ~ M '$ accepts $w \longleftrightarrow M$ does not accept w.
- So let w be any string of length k, and consider the $\mathrm{k}+1$ states $\mathrm{r}_{0}, \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{k}}$ from the definition of accept:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.

How do we conclude?

- Theorem: If A is a regular language, then so is (not A)
- Proof:

Given DFA M $=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$.
Define DFA M' $=\left(Q, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}^{\prime}\right)$, where $\mathrm{F}^{\prime}:=\operatorname{not} F$.

- We need to show $L\left(M^{\prime}\right)=$ not $L(M)$, that is:
for any w, M^{\prime} accepts $w \longleftrightarrow M$ does not accept w
- So let w be any string of length k, and consider the $\mathrm{k}+1$ states $\mathrm{r}_{0}, \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{k}}$ from the definition of accept:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.

Note that r_{k} in $F^{\prime} \longleftrightarrow r_{k}$ not in F, since $F^{\prime}=\operatorname{not} F$.

What is a proof?

- A proof is an explanation, written in English, of why something is true.
- Every sentence must be logically connected to the previous ones, often by "so", "hence", "since", etc.
- Your audience is a human being, NOT a machine.
- Theorem: If A is a regular language, then so is (not A)
- Proof:

DFAM $=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$
$\left.D F A M^{\prime}=Y Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=$ pot F.
$L(M ')=\operatorname{not} L(M)$
M^{\prime} accepts $w \leftrightarrow M$ does not accept w
$k+1$ states r_{0}, r_{1}, r_{k}
(1) $r_{0}=\frac{10}{}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.
r_{k} in $F^{\prime} \longleftrightarrow r_{k}$ not in F,
$F^{\prime}=$ not F.

What is a proof?

Complement the set of accept states

Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ such that $L(M)=A$. Define DFA M' $=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$, where $F^{\prime}:=$ not F.

- We need to show $L\left(M^{\prime}\right)=$ not $L(M)$, that is: for any w, M' accepts $w \longleftrightarrow M$ does not accept w Consider the $k+1$ states $r_{0}, r_{1}, \ldots, r_{k}$ such that:
(1) $r_{0}=q_{0}$, and
(2) $r_{i+1}=\delta\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$.

Note that r_{k} in $F^{\prime} \longleftrightarrow r_{k}$ not in F, since $F^{\prime}=$ not F.

To know a proof means to know all the pyramid

Example $\Sigma=\{0,1\}$

$$
\mathrm{M}=
$$

$L(M)=\Sigma^{2}=\{00,01,10,11\}$

What is a DFA M' :
$\mathrm{L}\left(\mathrm{M}^{\prime}\right)=\operatorname{not} \Sigma^{2}=$ all strings except those of length 2 ?

Example $\Sigma=\{0,1\}$

$$
M^{\prime}=
$$

$$
L\left(M^{\prime}\right)=\operatorname{not} \sum^{2}=\{0,1\}^{*}-\{00,01,10,11\}
$$

Do not forget the convention about the sink state!

- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or w in $B\}$
- AoB := $\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
-Theorem: If A, B are regular, then so is $A \cup B$
- Proof idea: Take Cartesian product of states

In a pair ($\mathrm{q}, \mathrm{q}^{\prime}$), q tracks DFA for A, q' tracks DFA for B.

- Next we see an example. In it we abbreviate

Example $\mathrm{M}_{\mathrm{A}}:=\rightarrow$ (a) $\rightarrow \mathrm{B}^{\mathrm{b}}$
$M_{B}=\longrightarrow \bigcirc$

$L\left(M_{A}\right)=A=?$

$$
L\left(M_{B}\right)=B=?
$$

Example $\mathrm{M}_{\mathrm{A}}:=-$ (a
0
$L\left(M_{A}\right)=A=$

$$
L\left(M_{B}\right)=B=
$$

$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\} \square\{\mathrm{w}: \mathrm{w}$ has odd number of 0$\}$
$\mathrm{M}_{\mathrm{AUB}}:=$ How many states?

Example

$$
\mathrm{L}\left(\mathrm{M}_{\mathrm{B}}\right)=\mathrm{B}=
$$

$L\left(M_{A}\right)=A=$
$\{\mathrm{w}: \mathrm{w}$ has even number of 1$\} \square\{\mathrm{w}: \mathrm{w}$ has odd number of 0$\}$

$$
\mathrm{M}_{\mathrm{AUB}}:=
$$

$L\left(M_{A \cup B}\right)=A \cup B=$
$\{w: w$ has even number of 1 ,

or odd number of 0$\}$

- Theorem: If A, B are regular, then so is $A \cup B$
- Proof:

Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$, DFA $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$ such that $L(M)=B$.
Define DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where
Q := ?
-Theorem: If A, B are regular, then so is $A \cup B$

- Proof:

Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$, DFA $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$ such that $L(M)=B$.
Define DFA M $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$, where

$$
\begin{aligned}
& \mathrm{Q}:=\mathrm{Q}_{\mathrm{A}} \times \mathrm{Q}_{\mathrm{B}} \\
& \mathrm{q}_{0}:=?
\end{aligned}
$$

- Theorem: If A, B are regular, then so is $A \cup B$
- Proof:

Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$, DFA $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$ such that $L(M)=B$.
Define DFA M $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$, where

$$
\begin{aligned}
Q & :=Q_{A} \times Q_{B} \\
q_{0} & :=\left(q_{A}, q_{B}\right) \\
F & :=?
\end{aligned}
$$

-Theorem: If A, B are regular, then so is $A \cup B$

- Proof:

Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$, DFA $M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right)$ such that $L(M)=B$.
Define DFA M $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$, where

$$
\begin{aligned}
& Q:=Q_{A} \times Q_{B} \\
& q_{0}:=\left(q_{A}, q_{B}\right) \\
& F:=\left\{\left(q, q^{\prime}\right) \in Q: q \in F_{A} \text { or } q^{\prime} \in F_{B}\right\}
\end{aligned}
$$

$$
\delta\left(\left(q, q^{\prime}\right), v\right):=(?, ?)
$$

-Theorem: If A, B are regular, then so is $A \cup B$

- Proof:

Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right)$ such that $L(M)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right) \text { such that } L(M)=B \text {. }
$$

Define DFA M $=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$, where

$$
\begin{aligned}
& Q:=Q_{A} \times Q_{B} \\
& q_{0}:=\left(q_{A}, q_{B}\right) \\
& F:=\left\{\left(q, q^{\prime}\right) \in Q: q \in F_{A} \text { or } q^{\prime} \in F_{B}\right\} \\
& \delta\left(\left(q, q^{\prime}\right), v\right):=\left(\delta_{A}(q, v), \delta_{B}\left(q^{\prime}, v\right)\right)
\end{aligned}
$$

- We need to show $L(M)=A \cup B$ that is, for any w: M accepts $w \longleftrightarrow M_{A}$ accepts w or M_{B} accepts w
- Proof M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w
- Suppose that M accepts w of length k .
- From the definitions of accept and M, the sequence $\left(s_{0}, t_{0}\right)=q_{0}=\left(q_{A}, q_{B}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\right.$ k has $\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right) \in$?
- Proof M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w
- Suppose that M accepts w of length k .
- From the definitions of accept and M, the sequence $\left(s_{0}, t_{0}\right)=q_{0}=\left(q_{A}, q_{B}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\right.$ k has $\left(s_{k}, t_{k}\right) \in F$.
- By our definition of F, what can we say about $\left(s_{k}, t_{k}\right)$?
- Proof M accepts $w \rightarrow M_{A}$ accepts w or M_{B} accepts w
- Suppose that M accepts w of length k .
- From the definitions of accept and M, the sequence $\left(s_{0}, t_{0}\right)=q_{0}=\left(q_{A}, q_{B}\right)$,
$\left(\mathrm{s}_{\mathrm{i}+1}, \mathrm{t}_{\mathrm{i}+1}\right)=\delta\left(\left(\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}\right), \mathrm{w}_{\mathrm{i}+1}\right)=\left(\delta_{\mathrm{A}}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right), \delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\right.$ k has $\left(s_{k}, t_{k}\right) \in F$.
- By our definition of $F, s_{k} \in F_{A}$ or $t_{k} \in F_{B}$.
- Without loss of generality, assume $\mathrm{s}_{\mathrm{k}} \in \mathrm{F}_{\mathrm{A}}$.
- Then M_{A} accepts w because the sequence

$$
s_{0}=q_{A}, s_{i+1}=\delta_{A}\left(s_{i}, w_{i+1}\right) \forall 0 \leq i<k,
$$

has $\mathrm{s}_{\mathrm{k}} \in \mathrm{F}_{\mathrm{A}}$.

- Proof M accepts $w<M_{A}$ accepts w or M_{B} accepts w - W/out loss of generality, assume M_{A} accepts $w,|w|$ $=k$.
- From the definition of M_{A} accepts w , the sequence

$$
r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k, \text { has } r_{k} \text { in ? }
$$

- Proof M accepts $w<M_{A}$ accepts w or M_{B} accepts w
- W/out loss of generality, assume M_{A} accepts $\mathrm{w},|\mathrm{w}|$ $=k$.
- From the definition of M_{A} accepts w , the sequence

$$
r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k, \text { has } r_{k} \text { in } F_{A} .
$$

- Define the sequence of $\mathrm{k}+1$ states

$$
\mathrm{t}_{0}:=\mathrm{q}_{\mathrm{B}}, \mathrm{t}_{\mathrm{i}+1}:=\delta_{\mathrm{B}}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\mathrm{k} .
$$

- M accepts w because the sequence ?????????? (recall states in M are pairs)
- Proof M accepts $w<M_{A}$ accepts w or M_{B} accepts w - W/out loss of generality, assume M_{A} accepts $w,|w|$ $=k$.
- From the definition of M_{A} accepts w , the sequence $r_{0}:=q_{A}, r_{i+1}:=\delta_{A}\left(r_{i}, w_{i+1}\right) \forall 0 \leq i<k$, has r_{k} in F_{A}.
- Define the sequence of $\mathrm{k}+1$ states

$$
t_{0}:=q_{B}, t_{i+1}:=\delta_{B}\left(t_{i}, w_{i+1}\right) \forall 0 \leq i<k .
$$

- M accepts w because the sequence $\left(r_{0}, t_{0}\right)=q=\left(q_{A}, q_{B}\right)$, $\left(r_{i+1}, t_{i+1}\right)=\delta\left(\left(r_{i}, t_{i}\right), w_{i+1}\right)=\left(\delta_{A}\left(r_{i}, w_{i+1}\right), \delta_{B}\left(t_{i}, w_{i+1}\right) \forall 0 \leq i<k\right.$ has $\left(r_{1}, t_{1}\right)$ in F, by our definition of F.
- Suppose A, B are regular languages, what about
- not $A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or win $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- Other two are more complicated!
- Plan: we introduce NFA prove that NFA are equivalent to DFA reprove $A \cup B$, prove A o B, A^{*} regular, using NFA

Big picture

- All languages
- Decidable

Turing machines

- NP
-P
- Context-free

Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

Non deterministic finite automata (NFA)

- DFA: given state and input symbol, unique choice for next state, deterministic:
- Next we allow multiple choices, non-deterministic

- We also allow ε-transitions: can follow without reading anything

Example of NFA

Intuition of how it computes:

- Accept string w if there is a way to follow transitions that ends in accept state
- Transitions labelled with symbol in $\Sigma=\{a, b\}$ must be matched with input
- ε transitions can be followed without matching

Example of NFA

Example:

- Accept a
(first follow ε-transition)
- Accept baaa

ANOTHER Example of NFA

Example:

- Accept bab (two accepting paths, one uses the ε-transition)
- Reject ba (two possible paths, but neither has final state $=q_{1}$)
- Definition: A non-deterministic finite automaton (NFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow$ Powerset(Q)
- q_{0} in Q is the start state
- $F \subseteq Q$ is the set of accept states
- Recall: Powerset $(Q)=$ set of all subsets of Q

Example: Powerset $(\{1,2\})=$?

- Definition: A non-deterministic finite automaton (NFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta: \operatorname{Q~X~(~} \Sigma \cup\{\varepsilon\}) \rightarrow$ Powerset(Q)
- q_{0} in Q is the start state
- $F \subseteq Q$ is the set of accept states
- Recall: Powerset $(\mathrm{Q})=$ set of all subsets of Q Example: Powerset $(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}$

- Example: above NFA is 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=$?

- Example: above NFA is 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=$?

- Example: above NFA is 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=$?

- Example: above NFA is 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$ $\delta\left(\mathrm{q}_{1}, 0\right)=$?

- Example: above NFA is 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$ $\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=$?

- Example: above NFA is 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, \varepsilon\right)=$?

- Example: above NFA is 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(q_{1}, \varepsilon\right)=\left\{q_{0}\right\}$
- q_{0} in Q is the start state
- $F=$?

- Example: above NFA is 5 -tuple ($\left.Q, \Sigma, \delta, q_{0}, F\right)$
- $Q=\left\{q_{0}, q_{1}\right\}$
- $\Sigma=\{0,1\}$
- $\delta\left(\mathrm{q}_{0}, 0\right)=\left\{\mathrm{q}_{0}\right\} \quad \delta\left(\mathrm{q}_{0}, 1\right)=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\} \quad \delta\left(\mathrm{q}_{0}, \varepsilon\right)=\varnothing$
$\delta\left(\mathrm{q}_{1}, 0\right)=\varnothing \quad \delta\left(\mathrm{q}_{1}, 1\right)=\varnothing$
$\delta\left(q_{1}, \varepsilon\right)=\left\{q_{0}\right\}$
- q_{0} in Q is the start state
- $F=\left\{q_{1}\right\} \subseteq Q$ is the set of accept states

- Definition: A NFA (Q, $\left.\Sigma, \delta, \mathrm{q}_{0}, F\right)$ accepts a string w if

 \exists integer $k, \exists k$ strings $w_{1}, w_{2}, \ldots, w_{k}$ such that- $\mathrm{w}=\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{k}} \quad$ where $\forall 1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{w}_{\mathrm{i}} \in \Sigma \mathrm{U}\{\varepsilon\}$
(the symbols of w, or ε)
- \exists sequence of $k+1$ states $r_{0}, r_{1}, . ., r_{k}$ in Q such that:
- $r_{0}=q_{0}$
- $\mathrm{r}_{\mathrm{i}+1} \in \delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}+1}\right) \forall 0 \leq \mathrm{i}<\mathrm{k}$
- r_{k} is in F
- Differences with DFA are in green

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=?
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=?
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=?
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\}$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=?
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\}$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=?
$$

Transitions:

$$
\begin{aligned}
& r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\} \\
& r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\}
\end{aligned}
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=q_{2}, \quad r_{5}=?
$$

Transitions:

$$
\begin{array}{ll}
r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} & r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\} \\
r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\} & r_{4} \in \delta\left(r_{3}, \varepsilon\right)=\left\{q_{2}\right\}
\end{array}
$$

Back to first example NFA:

Accepts w = baaa

$$
\mathrm{w}_{1}=\mathrm{b}, \quad \mathrm{w}_{2}=\mathrm{a}, \quad \mathrm{w}_{3}=\mathrm{a}, \quad \mathrm{w}_{4}=\varepsilon, \quad \mathrm{w}_{5}=\mathrm{a}
$$

Accepting sequence of $5+1=6$ states:

$$
r_{0}=q_{0}, \quad r_{1}=q_{1}, \quad r_{2}=q_{2}, \quad r_{3}=q_{0}, \quad r_{4}=q_{2}, \quad r_{5}=q_{0}
$$

Transitions:
$r_{1} \in \delta\left(r_{0}, b\right)=\left\{q_{1}\right\} \quad r_{2} \in \delta\left(r_{1}, a\right)=\left\{q_{1}, q_{2}\right\}$
$r_{3} \in \delta\left(r_{2}, a\right)=\left\{q_{0}\right\} \quad r_{4} \in \delta\left(r_{3}, \varepsilon\right)=\left\{q_{2}\right\} \quad r_{5} \in \delta\left(r_{4}, a\right)=\left\{q_{0}\right\}$

- NFA are at least as powerful as DFA, because DFA are a special case of NFA
- Are NFA more powerful than DFA?
- Surprisingly, they are not:
- Theorem:

For every NFA N there is DFA M : $L(M)=L(N)$

- Theorem:

For every NFA N there is DFA $M: L(M)=L(N)$

- Construction without ε transitions
- Given NFA N (Q, $\Sigma, \delta, q, F)$
- Construct DFA M (Q', $\left.\Sigma, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ where:
- Q' := Powerset(Q)
- $q^{\prime}=\{q\}$
- $F^{\prime}=\left\{S: S \in Q^{\prime}\right.$ and S contains an element of $\left.F\right\}$
- $\delta^{\prime}(\mathrm{S}, \mathrm{a}):=\mathrm{U}_{\mathrm{s} \in \mathrm{S}} \delta(\mathrm{s}, \mathrm{a})$

$$
=\{t: t \in \delta(s, a) \text { for some } s \in S\}
$$

- It remains to deal with ε transitions
- Definition: Let S be a set of states.
$E(S):=\{q: q$ can be reached from some state s in S traveling along 0 or more ε transitions $\}$
- We think of following ε transitions at beginning, or right after reading an input symbol in Σ
-Theorem:
For every NFA N there is DFA M : $L(M)=L(N)$
- Construction including ε transitions
- Given NFA N (Q, $\Sigma, \delta, q, F)$
- Construct DFA M (Q', $\left.\Sigma, \delta^{\prime}, q^{\prime}, F^{\prime}\right)$ where:
- Q' := Powerset(Q)
- $q^{\prime}=E(\{q\})$
- $F^{\prime}=\left\{S: S \in Q^{\prime}\right.$ and S contains an element of $\left.F\right\}$
- $\delta^{\prime}(\mathrm{S}, \mathrm{a}):=\mathrm{E}\left(\mathrm{U}_{\mathrm{s} \in \mathrm{S}} \delta(\mathrm{s}, \mathrm{a})\right)$

$$
=\{t: t \in E(\delta(s, a)) \text { for some } s \in S\}
$$

Example: NFA \rightarrow DFA conversion

ANOTHER Example: NFA \rightarrow DFA conversion

Summary: NFA and DFA recognize the same languages

We now return to the question:

- Suppose A, B are regular languages, what about
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or w in $B\}$ REGULAR
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$

Theorem: If A, B are regular languages, then so is $A \cup B:=\{w: w$ in A or w in $B\}$

- Proof idea: Given DFA $M_{A}: L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}: L\left(M_{B}\right)=B
$$

- Construct NFA N : L(N) = A U B

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B \text {, }
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\operatorname{DFA~}_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=$?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, x):=$? if r in Q_{B} and $x \neq \varepsilon$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if r in Q_{B} and $x \neq \varepsilon$
- $\delta(\mathrm{q}, \varepsilon):=$?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DEA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=\{q\} \cup Q_{A} \cup Q_{B}, F:=F_{A} \cup F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if r in Q_{B} and $x \neq \varepsilon$
- $\delta(\mathrm{q}, \varepsilon):=\left\{\mathrm{q}_{\mathrm{A}}, \mathrm{q}_{\mathrm{B}}\right\}$
- We have $L(N)=A \cup B$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by 3 OR w starts with a 1\} regular?

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like U, so try to write $L=L_{1} U L_{2}$ where L_{1}, L_{2} are regular

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like U, so try to write $L=L_{1} U L_{2}$
where L_{1}, L_{2} are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1$\}$

OR is like U, so try to write $L=L_{1} U L_{2}$
where L_{1}, L_{2} are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

$L\left(M_{1}\right)=L_{1}$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1\}

OR is like U, so try to write $L=L_{1} U L_{2}$
where L_{1}, L_{2} are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

$$
L\left(M_{1}\right)=L_{1}
$$

$$
L\left(M_{2}\right)=L_{2}
$$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}:|w|$ is divisible by $30 R$ w starts with a 1\}

OR is like U, so try to write $L=L_{1} U L_{2}$
where L_{1}, L_{2} are regular
$L_{1}=\{w:|w|$ is div. by 3$\} \quad L_{2}=\{w: w$ starts with a 1$\}$

We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or w in $B\}$ REGULAR
- A o $B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$

Theorem: If A, B are regular languages, then so is
A o B := \{ w : w = xy for some
x in A and y in $B\}$.

- Proof idea: Given DFAs M_{A}, M_{B} for A, B
construct NFA N:L(N)=A o B.

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $\mathrm{Q}:=\mathrm{Q}_{\mathrm{A}} \cup \mathrm{Q}_{\mathrm{B}}$, $\mathrm{q}:=$?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=$?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=$? if r in Q_{A} and $x \neq \varepsilon$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=$? if r in F_{A}

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, q, F)$ where:
- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=\left\{\mathrm{q}_{\mathrm{B}}\right\}$ if $\mathrm{in} \mathrm{F}_{\mathrm{A}}$
- $\delta(r, x):=$? if r in Q_{B} and $x \neq \varepsilon$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

$$
\text { DFA } M_{B}=\left(Q_{B}, \Sigma, \delta_{B}, q_{B}, F_{B}\right): L\left(M_{B}\right)=B,
$$

- Construct NFA N = (Q, $\Sigma, \delta, q, F)$ where:
- $Q:=Q_{A} \cup Q_{B}, q:=q_{A}, F:=F_{B}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=\left\{q_{B}\right\}$ if r in F_{A}
- $\delta(r, x):=\left\{\delta_{B}(r, x)\right\}$ if r in Q_{B} and $x \neq \varepsilon$
- We have $L(N)=A$ o B

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Note: $L=\{01,0001001,111001, \ldots\}$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

$$
\text { Let } \begin{aligned}
L_{0} & =\{w: w \text { contains a } 0\} \\
L_{1} & =\{w: w \text { contains a } 1\} . \quad \text { Then } L=L_{0} \circ L_{1} .
\end{aligned}
$$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$. Then $L=L_{0} \circ L_{1}$.
C_{0}^{1}
$L\left(M_{0}\right)=L_{0}$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$.

$$
\text { Then } L=L_{0} \circ L_{1} \text {. }
$$

$M_{0}=$

$$
L\left(M_{0}\right)=L_{0}
$$

$$
L\left(M_{1}\right)=L_{1}
$$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ contains a 1 after a 0$\}$ regular?

Let $L_{0}=\{w: w$ contains a 0$\}$
$L_{1}=\{w: w$ contains a 1$\}$. Then $L=L_{0} \circ L_{1}$.

$$
L(M)=L\left(M_{0}\right) \circ L\left(M_{1}\right)=L_{0} \circ L_{1}=L
$$

$\Rightarrow L$ is regular.

We now return to the question:

- Suppose A, B are regular languages, then
- $\operatorname{not} A:=\{w: w$ is not in $A\}$ REGULAR
- $A \cup B:=\{w: w$ in A or w in $B\}$ REGULAR
- A o $B:=\left\{w_{1} w_{2}: w_{1} \in A\right.$ and $\left.w_{2} \in B\right\}$ REGULAR
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$

Theorem: If A is a regular language, then so is

$$
A^{*}:=\left\{w: w=w_{1} \ldots w_{k}, w_{i} \text { in } A \text { for } i=1, \ldots, k\right\}
$$

- Proof idea: Given DFA $M_{A}: L\left(M_{A}\right)=A$,

Construct NFA N : L(N) = A*

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$, Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
-Q := ?

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$, Construct NFA N $=(\mathrm{Q}, \Sigma, \delta, \mathrm{q}, \mathrm{F})$ where:
- $Q:=\{q\} \cup Q_{A}, F:=?$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$, Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, F)$ where:
- $Q:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$
- $\delta(r, x):=$? if r in Q_{A} and $x \neq \varepsilon$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$, Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, F)$ where:
- $Q:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=$? \quad if r in $\{q\} \cup F_{A}$

Construction:

- Given DFA $M_{A}=\left(Q_{A}, \Sigma, \delta_{A}, q_{A}, F_{A}\right): L\left(M_{A}\right)=A$,

Construct NFA N = (Q, $\Sigma, \delta, \mathrm{q}, F)$ where:

- $Q:=\{q\} \cup Q_{A}, F:=\{q\} \cup F_{A}$
- $\delta(r, x):=\left\{\delta_{A}(r, x)\right\}$ if r in Q_{A} and $x \neq \varepsilon$
- $\delta(r, \varepsilon):=\left\{q_{A}\right\}$ if r in $\{q\} \cup F_{A}$
- We have $L(N)=A^{*}$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

$$
M_{0}=
$$

$$
L\left(M_{0}\right)=L_{0}
$$

Example

Is $L=\left\{w\right.$ in $\{0,1\}^{*}: w$ has even length $\}$ regular?

Let $L_{0}=\{w: w$ has length $=2\}$. Then $L=L_{0}{ }^{*}$.

$$
\begin{aligned}
\mathrm{M}= & \xrightarrow[L]{\text { L(M) }} \text { L(M,1})^{*}=L_{0}^{*}=\mathrm{L} \\
& \Rightarrow \mathrm{~L} \text { is regular. }
\end{aligned}
$$

We now return to the question:

- Suppose A, B are regular languages, then
- not $A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
are all regular!

We now return to the question:

- Suppose A, B are regular languages, then
- not $A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$

What about $\mathrm{A} \cap \mathrm{B}:=\{\mathrm{w}: \mathrm{w}$ in A and w in B$\}$?

We now return to the question:

- Suppose A, B are regular languages, then
- not $A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$

De Morgan's laws: $\mathrm{A} \cap \mathrm{B}=\operatorname{not}((\operatorname{not} \mathrm{A}) \mathrm{U}(\operatorname{not} \mathrm{B}))$
By above, $(\operatorname{not} A)$ is regular, $(\operatorname{not} B)$ is regular, $(\operatorname{not} A) \cup(\operatorname{not} B)$ is regular, $\operatorname{not}((\operatorname{not} A) U(\operatorname{not} B))=A \cap B$ regular

We now return to the question:

- Suppose A, B are regular languages, then
- not $A:=\{w: w$ is not in $A\}$
- $A \cup B:=\{w: w$ in A or w in $B\}$
- $A \circ B:=\left\{w_{1} w_{2}: w_{1}\right.$ in A and w_{2} in $\left.B\right\}$
- $A^{*}:=\left\{w_{1} w_{2} \ldots w_{k}: k \geq 0, w_{i}\right.$ in A for every $\left.i\right\}$
- $A \cap B:=\{w: w$ in A and w in $B\}$
are all regular

Big picture

- All languages
- Decidable

Turing machines

- NP
-P
- Context-free

Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

How to specify a regular language?

Write a picture \rightarrow complicated

Write down formal definition \rightarrow complicated

$$
\delta\left(q_{0}, 0\right)=q_{0}, \ldots
$$

Use symbols from Σ and operations ${ }^{*}, \mathrm{o}, \mathrm{U} \rightarrow \operatorname{good}$

$$
(\{0\} * \cup\{1\}) \circ\{001\}
$$

Regular expressions: anything you can write with \varnothing, ε, symbols from Σ, and operations *, o, U

Conventions:

- Write a instead of $\{\mathrm{a}\}$
- Write AB for $\mathrm{A} \circ \mathrm{B}$
- Write \sum for $U_{a \in \Sigma} a$ So if $\Sigma=\{a, b\}$ then $\Sigma=a \cup b$
- Operation * has precedence over o, and o over U so $1 \mathrm{U} 01^{*}$ means $1 \mathrm{U}\left(0(1)^{*}\right)$

Example: $110,0^{*}, \Sigma^{*}, \Sigma^{*} 001 \Sigma^{*},(\Sigma \Sigma)^{*}, 01 \mathrm{U} 10$

Definition Regular expressions RE over \sum are:

\varnothing

ε
if a in Σ
$R R^{\prime} \quad$ if R, R^{\prime} are $R E$
$R U R^{\prime} \quad$ if R, R^{\prime} are $R E$
R^{*}
if R is $R E$

Definition The language described by RE:
$\mathrm{L}(\varnothing)=\varnothing$
$\mathrm{L}(\varepsilon)=\{\varepsilon\}$
$\mathrm{L}(\mathrm{a})=\{\mathrm{a}\}$
$L\left(R R^{\prime}\right)=L(R)$ o $L\left(R^{\prime}\right)$
$L\left(R \cup R^{\prime}\right)=L(R) \cup L\left(R^{\prime}\right)$
$L\left(R^{*}\right)=L(R)^{*}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\sum^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\sum^{*} b \sum^{*}$
- $\sum^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b)*
- a*ba*
- $\sum^{*} \mathrm{~b} \sum^{*}$
- $\sum^{*} a a b \sum^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b) ${ }^{*}$
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} a a b \sum^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b) ${ }^{*}$
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} a a b \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
$\{w: w$ has exactly one $b\}$

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b) ${ }^{*}$
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a$, aa, $\ldots\}=\{w$: w has only $a\}$
all strings
\{w:w has exactly one b\}
$\{w: w$ has at least one b\}

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b) ${ }^{*}$
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} a a b \sum^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
$\{w: w$ has at least one b\}
$\{w: w$ contains the string aab\}

Example $\Sigma=\{a, b\}$

RE

- ab U ba
- a*
- (a U b) ${ }^{*}$
- a*ba*
- $\Sigma^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} a a b \sum^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø

Language
\{ab, ba\}
$\{\varepsilon, a, a a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w:w has exactly one b\}
$\{w: w$ has at least one b\}
\{w: w contains the string aab\} \{w:w has even length\}

Example $\Sigma=\{a, b\}$

RE

Language

- ab U ba
- a*
- $(\mathrm{a} \mathrm{U} \mathrm{b})^{*}$
- a*ba*
- $\sum^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a Ø
\{ab, ba\}
$\{\varepsilon, a, a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w : w has exactly one b\}
\{w:w has at least one b\}
\{w : w contains the string aab\} \{w:w has even length $\}$
\{w : w contains even number of b\}

Example $\Sigma=\{a, b\}$

RE

Language

- ab U ba
- a*
- $(\mathrm{a} \mathrm{U} \mathrm{b})^{*}$
- a*ba*
- $\sum^{*} \mathrm{~b} \Sigma^{*}$
- $\sum^{*} \mathrm{aab} \Sigma^{*}$
- $(\Sigma \Sigma)^{*}$
- (a*ba*ba*)*
- a*baba*a \varnothing
\{ab, ba\}
$\{\varepsilon, a, a, \ldots\}=\{w: w h a s$ only $a\}$
all strings
\{w : w has exactly one b\}
$\{w: w$ has at least one b\}
\{w : w contains the string aab\} \{w:w has even length\}
\{w : w contains even number of b\}
$\varnothing \quad$ (anything $\circ \varnothing=\varnothing$)

Theorem: For every RE R there is NFA M: $L(M)=L(R)$

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing \quad \mathrm{M}:=$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$
Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon \quad \mathrm{M}:=?$

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $R=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \mathrm{O}
$$

- $\mathrm{R}=\mathrm{a} \quad \mathrm{M}:=$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$

- $\mathrm{R}=\mathrm{a}$

- $\mathrm{R}=\mathrm{R} \cup \mathrm{R}^{\prime}$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$

$$
\mathrm{M}:=\longrightarrow \text { O }
$$

- $\mathrm{R}=\mathrm{a}$

- $R=R \cup R^{\prime}$ use construction for $A \cup B$ seen earlier
-R $=\mathrm{R} \circ \mathrm{R}^{\prime}$?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$
M :=

- $\mathrm{R}=\mathrm{a}$

- $R=R \cup R^{\prime}$ use construction for $A \cup B$ seen earlier
- $R=R \circ R^{\prime}$ use construction for $A \circ B$ seen earlier
- $\mathrm{R}=\mathrm{R}^{*}$
?

Theorem: For every RE R there is NFA M: $L(M)=L(R)$ Construction:

- $\mathrm{R}=\varnothing$ $\mathrm{M}:=\longrightarrow$
- $\mathrm{R}=\varepsilon$
M :=

- $\mathrm{R}=\mathrm{a}$

- $R=R \cup R^{\prime}$ use construction for $A \cup B$ seen earlier
- $R=R \circ R^{\prime}$ use construction for $A \circ B$ seen earlier
- $R=R^{*} \quad$ use construction for A^{*} seen earlier

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$L\left(M_{a}\right)=L(a)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$$
L\left(M_{a}\right)=L(a)
$$

$$
L\left(M_{b}\right)=L(b)
$$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b}=$

$L\left(M_{a b}\right)=L(a b)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b}=$

$\mathrm{M}_{\mathrm{a}}=\rightarrow \mathrm{O}^{\mathrm{a}} \mathrm{O}$

$\mathrm{L}\left(\mathrm{M}_{\mathrm{ab}}\right)=\mathrm{L}(\mathrm{ab})$

$L\left(M_{a}\right)=L(a)$

Example: RE \rightarrow NFA

$R E=(a b U a)^{*}$

$M_{a b \cup a}=$

$L\left(M_{a b \cup a}\right)=L(a b U a)$

Example: RE \rightarrow NFA

$$
R E=(a b U a)^{*}
$$

M
$=$
(ab U a)*

$$
\mathrm{L}\left(\mathrm{M}_{(\mathrm{ab} \mathrm{a})}\right)=\mathrm{L}\left((\mathrm{ab} \cup \mathrm{a})^{*}\right)=\mathrm{L}(\mathrm{RE})
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon \cup a) b a^{*}$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon \cup a) b a *$

$$
M_{\varepsilon}=\rightarrow 0
$$

$$
\mathrm{L}\left(\mathrm{M}_{\varepsilon}\right)=\mathrm{L}(\varepsilon)
$$

ANOTHER Example: RE \rightarrow NFA

RE =($\varepsilon \mathrm{U}$ a)ba*

$\mathrm{M}_{\mathrm{a}}=\rightarrow \mathrm{O}^{\mathrm{a}} \rightarrow$ ©

$$
L\left(M_{\varepsilon}\right)=L(\varepsilon)
$$

$$
L\left(M_{a}\right)=L(a)
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon U a) b a^{*}$

$\mathrm{M}_{\varepsilon \cup \mathrm{a}}=$

$$
L\left(M_{\varepsilon \cup a}\right)=L(\varepsilon \cup a)
$$

ANOTHER Example: RE \rightarrow NFA

RE =($\varepsilon \mathrm{U}$ a)ba*

M

$$
L\left(M_{b}\right)=L(b)
$$

$$
L\left(M_{\varepsilon \cup a}\right)=L(\varepsilon \cup a)
$$

ANOTHER Example: RE \rightarrow NFA

$R E=(\varepsilon U a) b a^{*}$

$\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}=$

$$
L\left(M_{(\varepsilon \cup a) b}\right)=L((\varepsilon \cup a) b)
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup a) b a^{*}
$$

$$
L\left(M_{a}\right)=L(a)
$$

$$
\mathrm{L}\left(\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}\right)=\mathrm{L}((\varepsilon \mathrm{U} \mathrm{a}) \mathrm{b})
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup \mathrm{a}) \mathrm{ba}{ }^{*}
$$

$M_{(\varepsilon \cup \mathrm{a}) \mathrm{b}}=$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{a}^{*}}=\rightarrow \underbrace{0}_{-0} \overbrace{\square}^{\varepsilon} \\
& L\left(M_{a^{*}}\right)=L\left(a^{*}\right)
\end{aligned}
$$

$$
L\left(M_{(\varepsilon \cup a) b}\right)=L((\varepsilon \cup a) b)
$$

ANOTHER Example: RE \rightarrow NFA

$$
\text { RE =(} \varepsilon \cup a) b a^{*}
$$

M ($\varepsilon \cup \mathrm{a}$) ba*

$$
\mathrm{L}\left(\mathrm{M}_{(\varepsilon \cup \mathrm{a}) \mathrm{ba}} \mathrm{a}^{*}\right)=\mathrm{L}\left((\varepsilon \cup \mathrm{U}) \mathrm{ba}^{*}\right)=\mathrm{L}(\mathrm{RE})
$$

Recap:

Here " \Rightarrow " means "can be converted to"

We have seen: RE \Rightarrow NFA \Leftrightarrow DFA

Next we see: $\quad D F A \Rightarrow R E$

In two steps: $\quad D F A \Rightarrow$ Generalized $N F A \Rightarrow R E$

Generalized NFA (GNFA)

Nondeterministic

Transitions labelled by RE

Read blocks of input symbols at a time

Generalized NFA (GNFA)

Convention:
Unique final state
Exactly one transition between each pair of states except nothing going into start state nothing going out of final state
If arrow not shown in picture, label = \varnothing

- Definition: A generalized finite automaton (GNFA)
- is a 5-tuple (Q, $\Sigma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{a}}$) where
- Q is a finite set of states
- Σ is the input alphabet
- $\delta:\left(Q-\left\{q_{a}\right\}\right) X\left(Q-\left\{q_{0}\right\}\right) \rightarrow$ Regular Expressions
- q_{0} in Q is the start state
- q_{a} in Q is the accept state
- Definition: GNFA $\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{q}_{\mathrm{a}}\right)$ accepts a string wif
- \exists integer $k, \exists k$ strings $w_{1}, w_{2}, \ldots, w_{k} \in \Sigma^{*}$ such that $w=w_{1} w_{2} \ldots w_{k}$
(divide w in k strings)
- \exists sequence of $k+1$ states $r_{0}, r_{1}, \ldots, r_{k}$ in Q such that:
- $r_{0}=q_{0}$
- $\mathrm{w}_{\mathrm{i}+1} \in L\left(\delta\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}+1}\right)\right) \forall 0 \leq \mathrm{i}<\mathrm{k}$
- $r_{k}=q_{a}$
- Differences with NFA are in green

Accepts w = aaabbab

$$
w_{1}=?
$$

Accepts w = aaabbab $\mathrm{w}_{1}=$ aaa $\mathrm{w}_{2}=$?

Accepts w = aaabbab
$w_{1}=a a a \quad w_{2}=b b \quad w_{3}=a b$ $r_{0}=q_{0} \quad r_{1}=?$

Example

Accepts w = aaabbab
$w_{1}=a a a \quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=$?
$\mathrm{w}_{1}=$ aaa $\in \mathrm{L}\left(\delta\left(\mathrm{r}_{0}, \mathrm{r}_{1}\right)\right)=\mathrm{L}\left(\delta\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right)\right)=\mathrm{L}\left(\mathrm{a}^{*}\right)$

Example

Accepts w = aaabbab
$w_{1}=$ aaa $\quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=q_{1} \quad r_{3}=?$
$w_{1}=$ aaa $\in L\left(\delta\left(r_{0}, r_{1}\right)\right)=L\left(\delta\left(q_{0}, q_{1}\right)\right)=L\left(a^{*}\right)$
$w_{2}=b b \quad \in L\left(\delta\left(r_{1}, r_{2}\right)\right)=L\left(\delta\left(q_{1}, q_{1}\right)\right)=L\left(b^{*}\right)$

Example

Accepts w = aaabbab
$w_{1}=$ aaa $\quad w_{2}=b b \quad w_{3}=a b$
$r_{0}=q_{0} \quad r_{1}=q_{1} \quad r_{2}=q_{1} \quad r_{3}=q_{a}$
$w_{1}=$ aaa $\in L\left(\delta\left(r_{0}, r_{1}\right)\right)=L\left(\delta\left(q_{0}, q_{1}\right)\right)=L\left(a^{*}\right)$
$w_{2}=b b \quad \in L\left(\delta\left(r_{1}, r_{2}\right)\right)=L\left(\delta\left(q_{1}, q_{1}\right)\right)=L\left(b^{*}\right)$
$\mathrm{w}_{3}=\mathrm{ab} \quad \in \mathrm{L}\left(\delta\left(\mathrm{r}_{2}, \mathrm{r}_{3}\right)\right)=\mathrm{L}\left(\delta\left(\mathrm{q}_{1}, \mathrm{q}_{\mathrm{a}}\right)\right)=\mathrm{L}(\mathrm{ab})$

Theorem: \forall DFA $\mathrm{M} \exists \mathrm{GNFA} \mathrm{N}: \mathrm{L}(\mathrm{N})=\mathrm{L}(\mathrm{M})$

 Construction:To ensure unique transition between each pair:

To ensure unique final state, no transitions ingoing start state, no transitions outgoing final state:

Theorem: \forall GNFA $N \exists \operatorname{RE} R: L(R)=L(N)$
Construction:

If N has >2 states, eliminate some state $q_{r} \neq q_{0}, q_{a}$: for every ordered pair q_{i}, q_{j} (possibly equal) that are connected through q_{r}

Repeat until 2 states remain

Example: DFA \rightarrow GNFA \rightarrow RE

DFA

Example: DFA \rightarrow GNFA \rightarrow RE

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : re-draw GNFA with all other states

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{1} : find a path through q_{1}

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : add edge to new GNFA
Don't forget: no arrow means label \varnothing

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : simplify RE on new edge

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{1} : if no more paths through q_{1}, start over

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : re-draw GNFA with all other states

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{2} : find a path through q_{2}

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : add edge to new GNFA

a* (b U c) $\mathrm{b}^{*} \varepsilon \cup \varnothing$

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : simplify RE on new edge

Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} : if no more paths through q_{2}, start over

a* (b Uc) b*

Example: DFA \rightarrow GNFA \rightarrow RE

Only two states remain:

$$
R E=a^{*}(b \cup c) b^{*}
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

DFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

 new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

 new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{1} : add edge to new GNFA
don't forget current $\mathrm{q}_{2} \rightarrow \mathrm{q}_{3}$ edge!
This time is not \varnothing !

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

path through q_{1}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate $\mathbf{q}_{\mathbf{1}}$: add edge to new GNFA

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

through q_{1}, start over
(and simplify
REs)

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{2} :
re-draw GNFA with
all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

find a path through q_{2}

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate \mathbf{q}_{2} :

 add edge to new GNFA$$
a^{*} c\left(c a^{*} c \cup b\right)^{*}(c a * b \cup a) \cup a^{*} b
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

when no more paths
through q_{2}, start over

$$
a^{*} c\left(c a^{*} c \cup b\right)^{*}\left(c a^{*} b \cup a\right) \cup a^{*} b
$$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{3} :

re-draw GNFA with all other states

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

don't forget: no arrow means \varnothing

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Eliminate q_{3} :

when no more paths through q_{3}, start over
(and simplify REs)

$$
\text { don't forget: } \varnothing^{*}=\varepsilon
$$

\rightarrow (a) $a^{*} c\left(c a^{*} c \cup b\right)^{*}\left(c a^{*} b \cup a\right) \cup a^{*} b$

ANOTHER Example: DFA \rightarrow GNFA \rightarrow RE

Only two states remain:

$$
R E=a^{*} c(c a * c \cup b)^{*}(c a * b \cup a) \cup a * b
$$

Recap:
Here " \Rightarrow " means "can be converted to"

$R E \Leftrightarrow D F A \Leftrightarrow N F A$

Any of the three recognize exactly
the regular languages (initially defined using DFA)

These conversions are used every time you enter an RE, for example for pattern matching using grep

- The RE is converted to an NFA
- Then the NFA is converted to a DFA
- The DFA representation is used to pattern-match

Optimizations have been devised, but this is still the general approach.

What language is NOT regular?

$$
\text { Is }\left\{0^{n} 1^{n}: n \geq 0\right\}=\{\varepsilon, 01,0011,000111, \ldots\} \text { regular? }
$$

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p|
$$

$$
\forall i \geq 0: x y^{\prime} z \in L
$$

Recall $\mathrm{y}^{0}=\varepsilon, \mathrm{y}^{1}=\mathrm{y}, \mathrm{y}^{2}=\mathrm{y} y, \mathrm{y}^{3}=\mathrm{yy} y, \ldots$

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\forall \mathrm{i} \geq 0: x^{i} z \in \mathrm{~L}
$$

We will not see the proof. But here's the idea:
$p:=|Q|$ for DFA recognizing L
If $w \in L,|w| \geq p$, then during computation
2 states must be the same $q \in Q$
$y=$ portion of w that brings back to q can repeat y and still accept string

Pumping lemma:

L regular language $\Rightarrow \exists p \geq 0$

$$
|\forall w \in L,|w| \geq p
$$

$$
|\exists x, y, z: w=x y z,|y|>0,|x y| \leq p|
$$

$$
\forall \mathrm{i} \geq 0: x^{i} z \in L
$$

Useful to prove L NOT regular. Use contrapositive:
L regular language $\Rightarrow A$
same as
$(\operatorname{not} A) \Rightarrow L$ not regular

Pumping lemma (contrapositive)

$$
|\forall p \geq 0 \quad \operatorname{not} A|
$$

$$
|\exists w \in L,|w| \geq p
$$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$

To prove L not regular it is enough to prove not A

Not A is the stuff in the box.

Proving something like
 \forall bla \exists bla \forall bla \exists bla bla means winning a game

Theory is all about winning games!

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

- Rules:

First Adversary says a number.
Then You say a number.
You win if your number is bigger.

Can you win this game?

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

- Rules:

First Adversary says a number.
Then You say a number.
You win if your number is bigger.

You have winning strategy:
if adversary says x, you say $x+1$

Example NAME THE BIGGEST NUMBER GAME

- Two players:

You, Adversary.

$$
\exists, \forall
$$

- Rules:

First Adversary says a number.
$\forall x \exists y: y>x$
Then You say a number.
You win if your number is bigger.

You have winning strategy:
Claim is true
if adversary says x, you say $x+1$

Another example:

Theorem: \forall NFA $N \exists$ DFA $M: L(M)=L(N)$

We already saw a winning strategy for this game What is it?

Another example:

Theorem: \forall NFA $N \exists$ DFA $M: L(M)=L(N)$

We already saw a winning strategy for this game
The power set construction.

Games with more moves:
Chess, Checkers, Tic-Tac-Toe

You can win if
\forall move of the Adversary
\exists move You can make
\forall move of the Adversary
\exists move You can make
: You checkmate

Pumping lemma (contrapositive)

$$
\forall \mathrm{p} \geq 0
$$

$\exists w \in L,|w| \geq p$
$\Rightarrow L$ not regular
$\exists i \geq 0: x y^{i} z \notin L$
Rules of the game:
Adversary picks p,
You pick $w \in L$ of length $\geq p$,
Adversary decomposes win xyz, where $|y|>0,|x y| \leq p$
You pick $\mathrm{i} \geq 0$
Finally, you win if $x y^{i} z \notin L$

Theorem: $\mathrm{L}:=\left\{0^{\mathrm{n}} 1^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\forall \mathrm{p} \geq 0
$$

$$
|\exists w \in L,|w| \geq p
$$

Adversary moves p
You move w:= $0^{\mathrm{p}} 1^{\mathrm{p}}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{i} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0 So byz $=0^{p+|y|} 1^{p}$
Since $|y|>0$, this is not of the form $0^{n} 1^{n}$

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:
Use pumping lemma Adversary moves p
You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq p$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:

Use pumping lemma
Adversary moves p
You move w := $0^{p} 1^{p}$
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$
Adversary moves x,y,z
You move i := ?

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

 Same Proof:Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists \mathrm{w} \in \mathrm{~L},|\mathrm{w}| \geq \mathrm{p}
\end{aligned}\right.
$$

Adversary moves p
You move w := $0^{p} 1^{p}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves $\mathrm{x}, \mathrm{y}, \mathrm{z}$
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0 So $x y y z=$?

Theorem: $L:=\{w: w$ has as many 0 as 1$\}$ not regular

Same Proof:

Use pumping lemma

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 1^{p}, y$ only has 0
So $x y y z=0^{p+|y|} 1^{p}$
Since $|y|>0$, not as many 0 as 1

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := $0^{p+1} 1^{p}$
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\mathrm{i} z} \notin \mathrm{~L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{0^{j} 1^{k}: j>k\right\}$ is not regular Proof:

Use pumping lemma
Adversary moves p
You move w:= $0^{p+1} 1^{p}$

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 0
You must show cz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p+1} 1^{p}, y$ only has 0
So $x z=0^{p+1-|y|} 1^{p}$
Since $|y|>0$, this is not of the form $0^{j} 1^{k}$ with $j>k$

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?
$\forall \mathrm{p} \geq 0$
$\exists \mathrm{w} \in \mathrm{L},|\mathrm{w}| \geq \mathrm{p}$
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular

Proof:

Use pumping lemma
Adversary moves p
You move w := op $0^{\mathrm{p}} 1$
$\exists \mathrm{i} \geq 0: x^{i} \mathrm{z} \notin \mathrm{L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{u u: u \in\{0,1\}^{*}\right\}$ is not regular Proof:

Use pumping lemma

$$
|\exists w \in L,|w| \geq p
$$

Adversary moves p

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

You move w := Op $10^{\text {p }} 1$

$$
\forall \mathrm{p} \geq 0
$$

$\exists \mathrm{i} \geq 0: \mathrm{xy}^{i} \mathrm{z} \notin \mathrm{L}$
Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p$ and $w=x y z=0^{p} 10^{p} 1$, y only has 0
So $x y y z=0^{p+|y|} 10^{p} 1$
Since $|y|>0$, first half of xyyz only 0 , so $x y y z \notin L$

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma Adversary moves p You move w := ?

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\exists i \geq 0: x y^{\prime} z \notin L
$$

Theorem: $\mathrm{L}:=\left\{1^{\mathrm{n}^{2}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
$\exists \mathrm{i} \geq 0: \mathrm{xy}^{\prime} z \notin \mathrm{~L}$
Adversary moves x, y, z
You move i := ?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& |\exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
$\forall x, y, z: w=x y z,|y|>0,|x y| \leq p$
You move $w:=1 p^{2}$

```
\existsi\geq0: xy'z & L
```

Adversary moves x,y,z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq ?$

Theorem: $\mathrm{L}:=\left\{1^{\mathrm{n}^{2}}: \mathrm{n} \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
You move $w:=1 p^{2}$

$$
|\forall x, y, z: w=x y z,|y|>0,|x y| \leq p
$$

$$
\exists \mathrm{i} \geq 0: \mathrm{xy}^{\prime} \mathrm{z} \notin \mathrm{~L}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>$?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p \\
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{\prime} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin L$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>p^{2}$
So |xyyz| cannot be ... what?

Theorem: $L:=\left\{1^{n^{2}}: n \geq 0\right\}$ is not regular

Proof:

Use pumping lemma

$$
\left\lvert\, \begin{aligned}
& \forall p \geq 0 \\
& \exists w \in L,|w| \geq p
\end{aligned}\right.
$$

Adversary moves p
You move $w:=1 p^{2}$

$$
\begin{aligned}
& \forall x, y, z: w=x y z,|y|>0,|x y| \leq p \\
& \exists i \geq 0: x y^{i} z \notin L
\end{aligned}
$$

Adversary moves x, y, z
You move i := 2
You must show xyyz $\notin \mathrm{L}$:
Since $|x y| \leq p,|x y y z| \leq p^{2}+p<(p+1)^{2}$
Since $|y|>0,|x y y z|>p^{2}$
So |xyyz| cannot be a square. xyyz $\notin L$

Big picture

- All languages
- Decidable

Turing machines

- NP
-P
- Context-free

Context-free grammars, push-down automata

- Regular

Automata, non-deterministic automata, regular expressions

