
CSG399: Gems of Theoretical Computer Science. Lecture 9. Feb. 06, 2009.
Instructor: Emanuele Viola Scribe: Dimitrios Kanoulas

Powering, iterated product, and weak prime number theorem

1 Powering

Today we restate and look more thoroughly at each step of the powering algorithm we begun
at the end of the last class; we also present the weak form of prime number theorem.

Firstly recall the Chinese Remainder Theorem that we will use in our proofs.

Theorem 1 (Chinese Remainder Theorem). Let p1, . . . pl be distinct primes and p̄ := Πi(pi).
Then Zp̄ is isomorphic to Zp1 , . . .Zpl

, with the following mapping: x ∈ Zp̄ → (x mod p1, . . . , x mod pl) ∈
Zp1 × · · · × Zpl

.
For the converse direction of the isomorphism, ∃α1, . . . , αl with |αi| ≤ poly(p̄) such that

for any (x mod p1, . . . , x mod pn) ∈ Zp1 × · · · × Zpl
, x =

∑l
i=1 αi(x mod pi).

We restate the powering theorem we have seen at the end of previous class.

Theorem 2 (Powering). Given x ∈ {0, 1}n, we can compute xn by a circuit of depth O(log n)
with fan-in 2 (and hence poly(n)).

The algorithm for powering is the following:

Algorithm 1 (Powering). Input: x ∈ {0, 1}n. Let l := n3.

1. Compute: (x mod p1, . . . , x mod pl)

2. Compute: (xn mod p1, . . . , x
n mod pl)

3. Compute: xn.

Last time we proved the correctness of Algorithm 1. Today we will prove that each step
is computable in depth O(log n). We recall the following fact which we saw earlier in the
course.

Fact 1. Any function f : {0, 1}n → {0, 1} can be computed by a circuit of depth O(n) and
size 2O(n), with fan-in 2.

Before presenting the proof, we note that in general we may want to take as input both
x ∈ {0, 1}n and i ≤ n and output xi. This generalization is easily obtained, e.g. by developing
n different circuits one for each possible value of i. This more general version is used e.g. in
the division algorithm.

1

1.1 Algorithm 1 in depth O(log n)

Step 1

Let pi, . . . , pl be the first l prime numbers. It is an immediate consequence of the Prime
Number Theorem that they are all poly(n).

Then, if xj is the jth bit of the binary representation of x, we have that

x (mod pi) =
n−1∑
j=0

(2jxj)(mod pi)

= [
n−1∑
j=0

(2jmod pi)xj](mod pi).

So, ∀j, i we precompute ai,j = (2jmod pi), which are independent of x. We only have to
compute

= [
n−1∑
j=0

ai,jxj](mod pi).

Each ai,jxj can easily be done in depth O(log n). Using iterated addition, we can also do the
sum

∑n−1
j=0 ai,jxj in depth O(log n). This final sum is at most poly(n), and thus the length

of its binary representation is O(log n). The same holds for pi as we noted before. So the
final modular reduction is an operation on O(log n) bits and can be computed by brute-force
circuits of depth O(log n) (Fact 1).

Step 2

In Step 2, we want to compute (xn mod pi) given (x mod pi), ∀i ≤ n. Note that this is a
function from O(log(n))-bits to O(log(n))-bits. Again the result follows via brute-force (Fact
1).

Step 3

By the Chinese Remainder Theorem, xn =
∑l

i=1 αi(x
n mod pi). We use multiplication to

compute each αi(x
n mod pi) and iterated addition to sum them all.

2 Iterated Product

In iterated product our input is: x1, . . . xn ∈ {0, 1}n and the output is: Πixi.

Theorem 3 (Iterated Product). Iterated product can be computed in depth O(log n).

2

Iterated product is of particular interest because it can be used to compute in small
depth “pseudorandom functions” based e.g. on the hardness of factoring. Such objects in
turn shed light on our ability to prove lower bounds via the “Natural Proofs” connection
which we expect to see later in this course.

The algorithm for iterated product is similar to Algorithm 1:

Algorithm 2. Input: x1, . . . , xn ∈ {0, 1}n. Let l := n3.

1. Compute: (x1 mod p1, . . . , x1 mod pl), . . . , (xn mod p1, . . . , xn mod pl)

2. Compute: (Πn
i=1xi mod p1), . . . , (Πn

i=1xi mod pl)

3. Compute: Πixi.

The correctness proof of Algorithm 2 is the same as that of Algorithm 1 which we have
seen in the previous lecture.

Proof that Algorithm 2 can be implemented by circuits of depth O(log n). Step 1 and Step 3
are implemented as the corresponding steps in Algorithm 1.

Step 2 amounts to a smaller version of the problem: for each j ≤ l, we want to compute
(Πn

i=1xi mod pj) from (x1 mod pj, . . . , xn mod pj), where each (xi mod pj) is at most poly(n)
and thus has a representation of O(log n) bits. Let us fix j.

First, if some (xi mod pj) = 0, then the whole product is 0.
So let us assume that for every i, (xi mod pj) 6= 0. We use the following fact:

Fact 2. If p is a prime, then (Zp − {0}) is a cyclic group, meaning that there exists a
generator g ∈ (Zp − {0}) : ∀x ∈ (Zp − {0}), x = gi, for some i ∈ Z.

Therefore, we write:

(x1 mod pj, . . . , xn mod pj) = (glogg x1 , . . . , glogg xn).

Then the product we want is:

(Πn
i=1xi mod pj) = (g

∑n
i=1 logg xi).

We now show the above approach can be implemented in depth O(log n).
Taking logs, i.e. going from (x mod pj) to logg x can be done via a brute-force circuit

(Fact 1).
Summing the logs is iterated addition.
Exponentiating, i.e. going from

∑n
i=1 logg xi to (g

∑n
i=1 logg xi) = (Πn

i=1xi mod pj) can be
done via brute-force (Fact 1), because note that the sum of the logs is at most poly(n).

All the circuits we have seen in this lecture and in the previous one can be constructed
“very explicitly,” cf. Eric Allender’s survey: “The Division Breakthroughs.”

3

3 Weak Prime Number Theorem

Theorem 4 (Weak Prime Number Theorem). For arbitrarily large j, (# of primes ≤ j)
≥ j/ logc j, for an absolute constant c.

Remark 5. The Prime Number Theorem gives c = 1. We will get “close” to this result.
The proof can be easily extended to get c = 1 + ε for arbitrarily small ε.

The Prime Number Theorem holds ∀j sufficient large. We will get arbitrarily large j.

We will show an equivalent statement that for arbitrary large j, pj ≤ j · logc j, where pj

is the jth prime. This means that: (# primes ≤ j logc j) ≥ j, which gives the theorem by
inverting the function (j logc j).

We are going to show how we can “compress” every n-bit integer in s bits: We show that
there exists a function f : {0, 1}s → {0, 1}n, such that f is onto. Since f is onto we must
have s ≥ n. On the other hand, we will prove that one can take s ≈ pj − j and thus get our
Theorem.

Proof. Given any integer k, we will show that ∃j ≥ k : pj ≤ j logc j (this is the meaning of
arbitrarily large j). Consider the function f : {0, 1}s → {0, 1}n, for large n and a suitable s
to be determined later, defined for input x ∈ {0, 1}s by:

If the first bit of x is 1, then interpret the rest of x as a1, . . . , ak and f(x) := pa1
1 , . . . , p

ak
k .

If the first bit of x is 0, then interpret the rest of x as j ≥ k, b and f(x) := pj · b. Note
that we assume that j ≥ k, we can e.g. think of summing k to the appropriate bits of x, or
of the function being undefined if j ≤ k

Claim 1. f is onto {0, 1}n.

Proof. For any y ∈ {0, 1}n, let pj be the largest prime that divides y. If pj ≤ pk then
y = pa1

1 · · · p
ak
k and we encode y as (1, a1, . . . , ak). Otherwise, we encode y as (0, j, y/pj).

Claim 2. Can implement f with s = 1 + max{ bits from case 1, bits from case 2 } =
1 +max{k(log n+O(1)),maxj≥k{2 log log j + log j + n− log pj +O(1)}}.

Proof. There are two cases:
Case 1: We need to specify k exponents a1, . . . , ak. Since each prime is at least 2, the

exponents are at most n: ∀i : ai ≤ n. Therefore we just need k(log(n) + 1)-bits.
Warm-up for Case 2: We need to specify j, b. Observe that b ≤ 2n/pj, and so the binary

representation of b takes n− log pj +O(1) bits. If we write down j, b using a self-terminating
encoding for j: (1 j0 1 j1 1 j2, . . . , 1 jlog j 0 b), we get length 2(log j) + log b + O(1) ≤
2(log j) + n − log pj + O(1) bits. This doesn’t quite give the claim and the theorem (the
theorem would have

√
j instead of j/poly log j).

Case 2: We use a self-terminating encoding for log j:

(1 (log j)1 1 (log j)2 1 . . . 1 (log j)log log j 0 j b).

This has length 2 log log j + log j + log b+O(1) ≤ 2 log log j + log j + n− log pj +O(1), and
gives the claim.

4

Since f is onto we have:

s ≥ n ⇒ 1 +max{k(log n+O(1)),maxj≥k{2 log log j + log j + n− log pj +O(1)}} ≥ n

⇒ For n ≥ k2 : maxj≥k{2 log log j + log j + n− log pj +O(1)} ≥ n

⇒ ∃j ≥ k : 2 log log j + log j +O(1) ≥ log pj

⇒ j · poly log j ≥ pj.

5

