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Parity requires large constant-depth circuits (II)

Correlation bounds for parity

1 Computing parity with constant-depth circuits

In this section we will build on the last two lectures and finish the proof that computing
parity requires large constant-depth circuits.

Recall from last lecture that we say a polynomial p over {−1, 1}n weakly computes
∏

i xi
if p 6≡ 0 and ∀x : p(x) 6= 0 ⇒ sign(p(x)) =

∏
i xi. We will now see how to transform

a polynomial which computes
∏

i xi with high probability into one which weakly computes∏
i xi. Intuitively, this is done by “zeroing out” the points on which the product function is

not correctly computed.

Lemma 1. Let p be a polynomial over {−1, 1}n which computes
∏

i xi correctly on more
than half of its inputs. Specifically, let S ⊂ {−1, 1}n be the subset of size |S| = 2n · γ (for a
constant γ < 1/2) such that x ∈ S ⇔ p(x) 6=

∏
i xi. Then, there exists a polynomial p̄ such

that sign(p̄(x)) weakly computes
∏

i xi, and degree(p̄) = degree(p)+n− ε′
√
n, for a constant

ε′ which depends only on γ.

Proof. We first define a polynomial q such that q 6≡ 0 and x ∈ S ⇒ q(x) = 0. Let M be the
set of all monomials of size at most 1

2
(n− ε′

√
n) (for a parameter ε′ to be chosen later) over

variables x1, . . . , xn each having degree at most 1. Formally,

M =

{∏
i∈I

xi : I ⊂ [n], |I| ≤ 1

2
(n− ε′

√
n)

}
.

Then, let q(x) =
∑

m∈M (am ·m(x)) be the weighted sum of these monomials, for a set of
weights {am}m∈M . We want to choose the weights in order to give q the properties already
stated, which is equivalent to finding a non-trivial solution to a certain system of equations.
Denote S = {s1, . . . , s|S|} and M = {m1, . . . ,m|M |}. Then, the system of equations we would
like to solve is 

m1(s1) m2(s1) · · · m|M |(s1)
m1(s2) m2(s2) · · · m|M |(s2)

...
. . .

m1(s|S|) m2(s|S|) · · · m|M |(s|S|)




a1

a2
...

a|M |

 =


0
0
...
0


From linear algebra, we know that this system has a non-trivial solution if there are more
variables (the ais) than equations (rows in the matrix). Here, this is equivalent to |M | > |S|,
which we will now show.

1



|M | =
∑ 1

2
(n−ε′

√
n)

i=0

(
n
i

)
=

∑n
2
i=0

(
n
i

)
−
∑n

2

i= 1
2
(n−ε′

√
n)

(
n
i

)
= 2n−1 −

∑n
2

i= 1
2
(n−ε′

√
n)

(
n
i

)
> 2n−1 − ε′

2

√
n ·
(
n
n/2

)
using

(
n
n/2

)
for all terms of the summation

= 2n−1 − ε′

2

√
n ·Θ

(
2n√
n

)
Stirling’s approximation

= 2n
(

1
2
−Θ(ε′)

)
.

Because γ is bounded away from 1
2
, we can choose ε′ small enough so that

|M | > 2n
(

1
2
−Θ(ε′)

)
> 2n · γ = |S|. We have now shown the existence of the polynomial q.

Finally, let
p̄ := p · q2.

It can be easily checked that sign(p̄(x)) satisfies the requirements for weakly computing∏
i xi. Furthermore, degree(q) = 1

2
(n − ε′

√
n), so degree(q2) = n − ε′

√
n, and degree(p̄) =

degree(p) + n− ε′
√
n.

With this last piece in place, we are now ready to prove our main theorem.

Theorem 2. Let C be a circuit with n inputs, depth d and size w which computes parity.
Then, w ≥ 2n

ε/d
, for a fixed universal constant ε.

Proof. This proof simply combines the results that we have proved in the last few lectures.
Let C be as stated in the theorem. Then we know there exists a polynomial p such that

Prx∈{0,1}n
[
p(x) = C(x)

def
= parity(x)

]
≥ 2

3
and degree(p) = logO(d)w. By normalizing ap-

propriately, as we saw in the previous lecture, we can get another polynomial p′ such that
Prx∈{−1,1}n [p′(x) =

∏
i xi] ≥

2
3

and degree(p′) = degree(p). This polynomial satisfies the
requirements for Lemma 1, and so we obtain a polynomial p̄ which weakly computes

∏
i xi

and has degree logO(d)w+n− ε′
√
n. From the lemma at the end of the last lecture, we know

that the degree of p̄ must be at least n, and thus we can see the following:

logO(d)w + n− ε′
√
n ≥ n =⇒ logO(d)w ≥ ε′

√
n

=⇒ logw ≥ (ε′
√
n)1/O(d)

=⇒ w ≥ 2(ε′
√
n)1/O(d)

=⇒ w ≥ 2n
ε/d

for some absolute constant ε.
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2 Correlating with parity using constant-depth circuits

In this section, we will prove a theorem, analogous to Theorem 2, which gives a lower bound
on the size of constant-depth circuits that can only correlate with parity. This is done by
showing that a circuit which correlates with parity implies the existence of a certain type
of circuit that computes parity, enabling us to make use of the lower bound obtained in
the last section.

To get an idea of the intuition behind the proof, imagine that you are given a biased coin.
That is, for some p ∈

(
1
2
, 1
]
, the coin either has probability p of landing heads or probability

p of landing tails. Your job is to determine which is the case. The näıve algorithm for this
problem simply flips the coin a large number of times and takes the majority, and in fact,
this is essentially what we will do with our circuit that correlates with parity: evaluate it
many times, and output 1 iff the majority of the evaluations were 1. We will see that, for
a large enough choice of the number of evaluations, this will allow us to compute parity
exactly. This type of algorithm is captured with the following definition.

Definition 3. A majority-on-top circuit is a circuit of the following form:

where x1, . . . , xn are the inputs, the output gate is a majority gate, and each intermediate
C1, . . . , Ct is a circuit on n inputs with only and, or and not gates.

We now proceed by proving the following two results:

1. Any majority-on-top circuit computing parity exactly has large size. (Theorem 5)

2. A circuit which correlates with parity implies the existence of a majority-on-top cir-
cuit which computes parity and whose size is only polynomially larger. (Theorem 6)

The following lemma is very similar to one proved in Lecture 5.

Lemma 4. Let C be a majority-on-top circuit with n inputs, depth d and size w. Then,
there exists a polynomial p : {0, 1}n → R of degree logO(d)(w/ε) such that

Pr
x∈{0,1}n

[
sign(p(x)) + 1

2
= C(x)

]
≥ 1− ε.
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Proof. Let C be the circuit stated in the lemma, and denote its subcircuits by C1, . . . , Ct.
We apply a lemma from the last lecture with ε′ = ε/t to get polynomials p1, . . . , pt such that
∀i : Prx [pi(x) = Ci(x)] ≥ 1 − ε′. The degree of each pi is at most logO(d)(w/ε′), since each
circuit Ci has size ≤ w and depth ≤ d. Then, define p(x) :=

∑
i pi(x)− t

2
, and note that the

degree of p is equal to the maximum degree of any pi, which is logO(d)(w/ε′) = logO(d)(w/ε)

(because t ≤ w). Notice that whenever we have pi(x) = Ci(x) for all i, then sign(p(x))+1
2

=
majority (C1(x), . . . , Ct(x)) = C(x). By a union bound, this happens with probability at
least 1− t · ε′ = 1− ε.

By the same series of steps that led to Theorem 2, we can obtain the following analog.

Theorem 5. Let C be a majority-on-top circuit with n inputs, depth d and size w which
computes parity. Then, w ≥ 2n

ε/d
, for a fixed universal constant ε.

Next, we prove the existence of a majority-on-top circuit computing parity, starting from
one that only correlates with parity.

Theorem 6. Let C be a circuit of depth d and size w such that cor(parity, C) ≥ 1
w

. Then,
there exists a majority-on-top circuit C̄ of depth O(d) and size poly(w) which computes
parity exactly.

The following proof of Theorem 6 appears here for the first time. It is due to Adam
Klivans and Salil Vadhan who kindly agreed to have it presented in this class.

Proof. From the definition of correlation, we know that |Exe [C(x) + parity(x)]| ≥ 1
w

.
W.l.o.g., we drop the absolute value signs. We rewrite the inequality as Prx [C(x) = parity(x)] ≥
1
2

+ 1
2w

. The intuition now is that we have a circuit C that computes parity 51% of the
time, and we want a circuit C̄ that computes it 100% of the time.

We will now make use of the random self-reducibility of parity. Let a ∈ {0, 1}n, and
consider the circuit C ′a defined by

C ′a(x) := C(a+ x) + parity(a).

First of all, notice that for any fixed a, C ′a is an O(d)-depth O(w)-size circuit because the
step of adding parity(a), which is just a bit, can be done with a constant number of extra
gates and wires. Now observe that for any fixed x,

Eae [C ′a(x) + parity(x)] = Eae [C(a+ x) + parity(a) + parity(x)]
= Eae [C(a+ x) + parity(a+ x)]
= Eae [C(a) + parity(a)] ≥ 1

w

and therefore Pra [C ′a(x) = parity(x)] ≥ 1
2

+ 1
2w

. So, we will let our intermediate circuits
be of the form C ′a. That is, for any choice of a1, . . . , at ∈ {0, 1}n, define the majority-on-top
circuit C̄a1,...,at(x) = majority

(
C ′a1

(x), . . . , C ′at(x)
)
, and note that C̄a1,...,at has depth O(d)

and size O(t · w). Remember that the goal for the size of our final circuit was poly(w); the
following lemma shows that this is achievable.
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Lemma 7. We can choose t = poly(w) such that ∀x,

Pr
a1,...,at

[
C̄a1,...,at(x) 6= parity(x)

]
< 2−n.

Deferring the proof for a moment, let’s finish the theorem assuming this lemma. A simple
union bound gives us that Pra1,...,at

[
∃x : C̄a1,...,at(x) 6= parity(x)

]
< 2n · 2−n = 1. Another

way of stating this is that Pra1,...,at

[
∀x : C̄a1,...,at(x) = parity(x)

]
> 0. Thus, there is some

fixed choice of a1, . . . , at which results in a (O(d)-depth, poly(w)-size) majority-on-top circuit
that computes parity.

We now turn to the proof of the lemma.

Proof. (of Lemma 7) Fix an input x ∈ {0, 1}n. Define indicator random variables Y1, . . . , Yt,
where Yi := 1 iff C ′ai(x) = parity(x). Let ε ∈

[
1

2w
, 1

2

]
be the “advantage” that each C ′ai

has, so that Prai [Yi = 1] = 1
2

+ ε. Then, we can rewrite the probability of interest as
Pr [majority(Y1, . . . , Yt) 6= 1] = Pr

[∑
i Yi <

t
2

]
. This is equal to the probability that at

least t
2

of the Yis are 0, i.e.

∑
I⊆[t],|I|≥ t

2
Pr [Yi = 0 ∀i ∈ I] · Pr [Yi = 1 ∀i 6∈ I]

=
∑

I

(
1
2
− ε
)|I| · (1

2
+ ε
)t−|I|

≤
∑

I

(
1
2
− ε
)t/2 · (1

2
+ ε
)t/2

multiply by
(

1
2 − ε

)t/2−|I| (1
2 + ε

)|I|−t/2 ≥ 1

≤ 2t ·
(

1
4
− ε2

)t/2 ≤ (1− 1
w2

)t/2
≤ e−t/(2·w

2) .

The latter quantity if less than 2−n for t = poly(w, n) = poly(n), concluding the proof of
the claim.

Combining Theorems 2, 5 and 6, we have the main result of this section.

Theorem 8. Let C be a circuit with n inputs, depth d and size w such that
cor(C,parity) ≥ 1/w. Then, w ≥ 2n

ε/d
, for a fixed universal constant ε.

3 An Application of Constant-Depth Circuits

In this section, we will solve Problem 3 from the list of problems for this course. Here is the
setup:

Imagine you are handed an algorithm M : ({0, 1}a)b → {0, 1} that on input
(x1, . . . , xb) evaluates to 1 iff ∀i : xi ∈ Ai, where A1, . . . , Ab ⊆ {0, 1}a are arbitrary
fixed subsets. Your goal is to compute an approximation ε to the volume V =∏b

i=0 |Ai|/2a, so that |ε− V | ≤ 1
100

, while only making 2poly(a,log b) queries to M .
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First, notice that by making 2ab queries to M (i.e. one for each element of ({0, 1}a)b), we
could compute the volume exactly. If b� a, the number of queries we are allowed to make
is much less than this.

The key observation is that, however algorithm M operates, it is computable by a constant-
depth circuit of size poly(2a · b). This is because, for each set Ai, there is a “brute force”
circuit Ci of depth 3 and size O(2a) which tests for membership in Ai. (This was Fact 2 in
the first lecture.) So, by placing circuits C1, . . . , Cb in parallel and wiring their outputs to a
single and gate (which is also the output gate), we get a circuit that computes M . For the
remainder, say that this circuit has constant depth d and size w = poly(2a · b).

We have seen (for example in Problem 2) that there is an explicit pseudorandom gener-
ator G : {0, 1}s → {0, 1}w, where s = logO(d)w, that fools circuits of size w and depth d
with error 1

w
. So, our algorithm for computing ε is to iterate over all seeds x of length s, and

return ε = 2−s ·
∑

xM(G(x)), where M(G(x)) denotes the result of querying M on the first
ab bits of G(x). Note that the number of queries is 2s = 2poly(a,log b) as required. Assume for
contradiction that |ε− V | > 1

100
. Then, because the volume is simply the fraction of inputs

that evaluate to 1, we would have
∣∣Prx∈{0,1}ab [M(x) = 1]− Prx∈{0,1}s [M(G(x)) = 1]

∣∣ > 1
100

,
contradicting the fact that G fools constant-depth circuits.

4 Log-Depth Circuits

We now move to considering circuits with logarithmic depth. While with constant-depth
circuits we allowed our gates to have unbounded fan-in, we will now restrict ourselves to
gates with fan-in 2. We first note that these circuits are, in a sense, at least as powerful as
the circuits we previously considered.

Theorem 9. Let C be a circuit on n inputs of size w and depth d with unbounded fan-in.
Then there is a circuit C ′ on n inputs with size O(w) and depth O(d · logw) with fan-in 2
such that C(x) = C ′(x) ∀x.

Note that in particular, if w = poly(n), the depth of C ′ is O(log n).

Proof. Let g be a gate in C which has fan-in fg > 2. We replace g in C ′ with a depth-
O(log fw) “binary tree” of gates (of the same type), each of which has fan-in 2. Because fg
must be less than w, the total depth of the circuit increases by a factor of O(logw). Also,
the number of wires in the gate-tree that replaced g is at most 2fg, so the size of C ′ only
increases by a constant factor.
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