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Nisan-Wigderson pseudorandom generator and design constuction

1 Nisan-Wigderson pseudorandom generator

Today we prove the Nisan-Wigderson pseudorandom generator theorem; we also present a
design construction.

If x ∈ {0, 1}s and S ⊆ [s], we denote by x|S the |S| bits of x indexed by S.

Theorem 1 (Nisan-Wigderson). Let f : {0, 1}l → {0, 1} satisfy COR(f, size w) ≤ 1
w

and

set n := w
1
3 (e.g., think w = lω(1)). Let S1, . . . , Sn be a design over universe of size s, where:

|Si| = l, |Si ∩ Sj| ≤ α and α = log n = 1
3

logw.
Then the Nisan-Wigderson generator G : {0, 1}s → {0, 1}n defined as

G(x) = f(x|S1) · · · f(x|Sn)

fools circuits of size n with error 1
n

.

Proof. Assume for the sake of contradiction that there exists a circuit c which “breaks” the
generator: ∣∣Ex∈{0,1}se[c(G(s))]− Eue[c(u)]

∣∣ ≥ 1

n
,

where u is uniformly distributed over {0, 1}n. By Yao’s next-bit predictor Lemma we have:
∃c′ : |c′| ≤ |c|+O(1),∃i ≤ n:∣∣Ex∈{0,1}se[c′(f(x|S1) · · · f(x|Si−1)) + f(x|Si)]

∣∣ ≥ 1

n2
.

From c′ we will construct another circuit c̄ that correlates with f , giving a contradiction.

x|Si

x|[s]−Si

Figure 1: Input x

We break the input x in two parts: x|([s]− Si) and x|Si (Figure 1), and write:

Ex|[s]−Si
[∣∣Ex|Sie[c′(f(x|S1) · · · f(x|Si−1)) + f(x|Si)]

∣∣] ≥ 1

n2
.
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We now fix x|[s]− Si to a value that maximizes the above expectation, and for j < i we
let fj(x|Si∩Sj) be the function f(x|Sj) where the bits of x outside of Si are fixed accordingly.
For this fixing and notation we:∣∣Ex|Sie[c′(f1(x|S1 ∩ Si) · · · fi−1(x|Si−1 ∩ Si)) + f(x|Si)]

∣∣ ≥ 1

n2
(?)

Note. Each fj is a function of α bits of x|Si, and thus computable by a circuit of size
O(α2α).

Now we are going to exhibit the circuit c̄ that correlates with f(x|Si). Given an input
y ∈ {0, 1}l, we let x ∈ {0, 1}s be such that y = x|Si, and the other bits of x are fixed as
before, and c̄ outputs:

c̄(y) := c′(f1(x|S1 ∩ Si) · · · fi−1(x|Si−1 ∩ Si)).
Correlation: By our definition of c̄ and (?), we have

Eye[c̄(y) + f(y)] ≥ 1

n2
=

1

(w
1
3 )2

=
1

w
2
3

� 1

w
.

Size of c̄: We need to show that the size of circuit c̄ is less than w. Recalling that
n = w1/3 and α = log n, we have:

Size(c̄) ≤ |c′|+ size required to compute fi(x|S1 ∩ Si) · · · fi−1(x|Si−1 ∩ Si)
≤ |c|+O(1) + (i− 1)O(α2α)

≤ n+O(1) + nO(n log n)

≤ O(n2 log n),

≤ O(w
2
3 logw

1
3 )

� w.

Thus, we have constructed a circuit of size at most w which has correlation at least 1/w
with f . This contradicts our hypothesis and proves the theorem.

We mention the following corollary, whose “in particular part” is Problem 1.

Corollary 2. For every fixed ε > 0, there exists a constant c: if f : {0, 1}l → {0, 1} is
computable in time 2O(l) and COR(f, size 2εl) ≤ 1

2εl
, then ∃ generator: G : {0, 1}c logn →

{0, 1}n that fools circuits of size n with error 1/n and it is computable in time poly(n). In
particular, P = BPP.

Impagliazzo and Wigderson have strengthened the above result to hold under the weaker
hypothesis that COR(f, size 2εl) < 1, as opposed to COR(f, size 2εl) ≤ 1

2εl
. In particular,

this leads to the following striking disjunction:

Either SAT : {0, 1}` → {0, 1} has circuits of size 2`/100000 for arbitrarily large `, or P=BPP.

Back from heaven, our goal now is to get an unconditional result. Specifically, we will
construct a generator G : {0, 1}logO(1) n → {0, 1}n that fools small circuits of fixed depth. We
start with the design construction (which of course can be used in other contexts too).
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Design Construction

Now we will see how we can construct designs. Designs that are good enough for Corollary
2 can be found by an exhaustive brute-force procedure, in poly(n) time.

We can construct more explicit designs using finite fields. We recall some basic facts
about finite fields.

Fact 1. Fields of size 2l can be constructed and operations over them can be performed in
time poly(l). A polynomial of degree d over a field F , i.e. P : F → F , P (x) =

∑d
i=0 x

ici,
has at most d roots over F .

Theorem 3. ∀ h power of 2, ∀ constant c, ∃ design S1, . . . , Sn such that
n = 2h,
|Si ∩ Sj| ≤ h,∀i 6= j,
|Si| = hc,
the universe has size (set size)2 = h2c, and
Si is computable in time poly(h).

We are packing exponentially many sets whose pairwise intersection is a small power of
the set size, over a universe roughly as large as the set size

Proof. Pick a field F of size hc, note x ∈ F has size |x| = log h = c log log n. Our universe is
F × F . Given a string i ∈ {0, 1}logn = {0, 1}h, construct Si as follows:

...................................cloglogn cloglogn

Figure 2: string i

View i as the coefficients of a polynomial pi over F. The degree of pi is logn
c log logn

≤ log n = h.
The set Si will be the graph of the polynomial pi:

Si := {(a, pi(a)) : a ∈ F} ⊆ F × F,

cf. Figure 3.
Note |Si| = F = hc, and we have n = {0, 1}h sets.
To bound the intersection size, observe that |Si ∩ Sj| is the number of roots of the poly-

nomial (pi− pj). Since pi− pj has degree less than h, we bound from above the intersection
size by h, using Fact 1.

Finally, using again Fact 1, Si is computable in poly(h) time.
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Figure 3: Graph of polynomial

roots of different polynomials

F

F

Figure 4: Bound on the intersection size

Constant-depth circuits

The depth of a circuit denotes the maximum distance from an input to an output gate (and
recall circuits in these lectures have unbounded fan-in; our complexity measure is the number
of wires).

Remark 4. The depth in Nisan-Wigderson’s proof increases by an absolute constant. There-
fore, given f : {0, 1}l → {0, 1} such that COR(f , size w and depth d) ≤ 1

w
, the Nisan-

Wigderson construction gives a generator G : {0, 1}s → {0, 1}n that fools circuits of size n
and depth d−O(1) with error 1/n.

The complete proof of the next theorem will be given in next lectures.

Theorem 5. The parity function on l bits, Parity(x1, . . . , xl) := x1+. . .+xl mod 2, satisfies:

COR(f, size w = 2l
ε/d

and depth d) ≤ 1/w, where ε is an absolute constant.
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Now, Problem 2 asks you to put together the Nisan-Wigderson construction, the design
construction from the previous section, and the above theorem, to obtain the following.

Corollary 6 (Nisan). ∀d,∃ explicit generator G : {0, 1}logO(d) n → {0, 1}n, that fools circuits
of size n and depth d, with error 1/n.

For an application of this corollary, see Problem 3.
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