
CSG399: Gems of Theoretical Computer Science. Lecture 28. Apr. 21, 2009.
Instructor: Emanuele Viola Scribe: Emanuele Viola

Natural Proofs

The central challenge of computational complexity is to prove lower bounds, i.e. exhibiting
explicit functions that cannot be computed with limited resources. In this lecture we discuss
the Natural Proofs result by Razborov and Rudich which shows that some of the known
techniques for lower bounds fall in a class of techniques which, under well-known assumptions,
cannot prove the strong, desired lower bounds such as that NP cannot be computed by
polynomial-size circuits. In some cases, for example to establish an exponential lower bound
for the discrete-log function, one needs no assumption but can prove unconditionally that
the class of techniques cannot prove such bounds.

Informally, to show that some function f : {0, 1}n → {0, 1} cannot be computed with
limited resources (e.g., by small circuits), most lower bounds proceed by exhibiting some
property P (f) of boolean functions such that:

1. P holds for functions computable with limited resources, and

2. P does not hold for f .

For example, when we showed that parity cannot be computed by small constant-depth
circuits, the property P (f) was “f is approximable by a low-degree polynomial.” For the
communication lower bound, P was “R(f) is close to 1.”

As it turns out, many lower bound proofs actually show more and give a property P that
satisfies:

I. (1, unchanged) P holds for functions computable with limited resources, and

II. P does not hold for 2−cn fraction of n-bit functions (i.e., a noticeable fraction of func-
tions), and

III. P is efficiently computable: Given a truth-table of length 2n of a function f : {0, 1}n →
{0, 1}, P (f) ∈ {0, 1} can be computed by a circuit of size ≤ 2cn (i.e., polynomial in the
input length).

A proof that yields a property P satisfying the three conditions above is called natural.
In the communication lower bound the quantity R is indeed efficiently computable (if k is
not too large), and the same is true for many other properties in the literature. (Warning:
as far as I know, it has not been pointed out whether the property we used for the lower
bound for parity is efficiently computable, though related properties are.)

The idea is that such a proof will not work for models like polynomial-size circuits because
the associated property P could be used to distinguish random functions (i.e., a random truth
table of length 2n) from functions f : {0, 1}n → {0, 1} computable in the model. But this is
known to be impossible under well-known assumptions.

1



Theorem 1. Assume for every k there is a function f : {0, 1}k → {0, 1}k that is one-way
with the following parameters:

• f is computable by circuits of size poly(k),

• f is 2kΩ(1)
-hard to invert.

Then, interpreting “limited resources” in (I) with “poly(n)-size circuits,” we have that (I)
+ (II) + (III) is impossible.

As we discussed, a candidate function for the hypothesis of the theorem is basically
integer multiplication (under the assumption that factoring integers is sufficiently hard).

Proof sketch. Set k := nd for d to be chosen later. From f , we construct a distribution
Ca : {0, 1}n → {0, 1} such that

• For every a, Ca is computable by circuits of size poly(n), and

• there is ε > 0 (independent from d) such that any circuit D of size 2kε
is fooled by Ca:∣∣∣Pr

a
[D(Ca(0)Ca(1) . . . Ca(2n − 1)) = 1]− Pr

U
[D(U) = 1]

∣∣∣ ≤ 2−kε

,

where U is the uniform distribution over truth-tables of length 2n.

But this yields a contradiction as follows: P is computable by a circuit of size 2cn (by III)
and we have∣∣∣Pr

a
[P (Ca(0)Ca(1) . . . Ca(2n − 1)) = 1]− Pr

U
[P (U) = 1]

∣∣∣ ≥ 1− (1− 2cn) ≥ 2cn,

where we use (I) and (II). This is a contradiction for d = 2/ε.

How do we construct Ca? The generic construction has two steps. First, we construct
a length-doubling pseudorandom generator G : {0, 1}` → {0, 1}2` where ` = poly(k), then
we use a tree construction to obtain Ca. The tree is binary; each node is an application of
G whose input is half the output of the parent. The root is fed with a. The input to Ca

specifies a path in the tree and the output is, say, the first bit of the leaf we reach.

This construction has large depth and is not usable for constant-depth circuits. But
Naor and Reingold showed how, under more specific assumptions (the hardness of factoring
is among them), a suitable Ca can be computed by unbounded fan-in depth-5 circuits with
majority gates. So the natural proofs result already applies to this seemingly restricted
computational model.

2


