
CSG399: Gems of Theoretical Computer Science. Lectures 23-24. Apr. 3-7, 2009
Instructor: Emanuele Viola Scribes: Dimitrios Kanoulas & Eric Miles

Succinct Data Structures

Consider the following problem: we are given n ternary elements 〈t1, t2, . . . , tn〉 ∈ {0, 1, 2}n
and we want to represent them using b bits so that (1) each element ti ∈ {0, 1, 2} can be
recovered by reading as few bits as possible and (2) b is close to the information-theoretic
minimum (log2 3)n: b = (log2 3)n + r where r is some small redundancy.

• The simplest solution to this problem is to use 2 bits per ti. With such an encoding
we can retrieve each ti ∈ {0, 1, 2} by reading just 2 bits (which is optimal). The space
used is b = 2n and we have linear redundancy.

• Another solution to this problem is what is called arithmetic coding: we think of the
concatenated elements as forming a ternary number between 0 and 3n−1, and we write
down its binary representation. To retrieve ti we need to read all the b = O(n) bits,
but the space needed is only b = dn(log2 3)e ≤ n(log2 3) + 1, i.e. we have redundancy
1 (which is optimal).

These solutions represent the two extremes for solving the problem. The first one optimizes
the retrieval time but not the redundancy, and the second optimizes the redundancy but not
the retrieval time.

A polynomial tradeoff. To trade between these two extremes, we can group the ti’s into
blocks. If we take blocks of t ternary elements and encode each block with arithmetic coding,
the retrieval time will be O(t) bits and the needed space will be (n/t)dt(log2 3)e ≤ n(log2 3)+
n/t (assuming t divides n). Thus block-wise arithmetic coding gives a polynomial trade-off
between retrieval time and redundancy. (Using number-theoretic results on logarithmic
forms, one can show that this last inequality is tight up to changing n/t into n/tΘ(1), so
indeed this approach gives a polynomial tradeoff.)

We now present a recent work by Pǎtraşcu, later refined with Thorup, giving an expo-
nential trade-off: retrieval time O(t) bits and redundancy n/2t + O(1). In particular, if we
set t = O(log n), we get retrieval time O(log n) and redundancy O(1). Moreover, the bits
read are all consecutive, so this can be implemented in the RAM model with cells of size
O(log n) to obtain retrieval time O(1) cells and redundancy O(1).

1 An exponential trade-off between retrieval time and

redundancy

Definition 1 (Encoding and redundancy). An encoding of a set A into a set B is a one-to-
one (a.k.a. injective) map f : A→ B. The redundancy of the encoding f is log2 |B|−log2 |A|.

1

The following lemma gives the building-block encoding we will use.

Lemma 2. For all sets X and Y , there is an integer b, a set K and an encoding
f : (X × Y)→

(
{0, 1}b ×K

)
such that the following four properties hold:

1. f has redundancy ≤ c/
√
|Y |,

2. x ∈ X can be recovered just by reading the b bits in f(x, y),

where c is a constant independent of X, Y .

Note that Property (1) says that b + log |K| − log |X| − log |Y | ≤ c/
√
|Y |. For Property

(2) to hold we must have b ≥ log |X|. Combining this with the previous expression we obtain
log |K| − log |Y | ≤ c/

√
|Y |. In particular we get that |K| ≤ 2c · |Y | (in fact it will be the

case that |K| ≤ c ·
√
|Y |, but the looser bound is sufficient).

The basic idea for proving the lemma is to break Y into C ×K and then encode X ×C
by using b bits:

X × Y → X × C ×K → {0, 1}b ×K.

There is however a subtle point. If we insist on always having |C| equal to, say,
√
|Y | or

some other quantity, then one can cook up sets that make us waste a lot (i.e., almost one
bit) of space. The same of course happens in the more basic approach that just sets Y = K
and encodes all of X with b bits. The main idea will be to “reason backwards,” i.e., we will
first pick b and then try to stuff as much as possible inside {0, 1}b. Still, our choice of b will
make |C| about

√
|Y |.

Proof. Pick any two sets X and Y , where |Y | > 1 without loss of generality. Define b :=⌈
log2

(
|X| ·

√
|Y |
)⌉

, and let B := {0, 1}b. To simplify notation, define d := 2b/ |X| =

Θ
(√

Y
)

.

How much can we stuff into B? For a set C of size |C| = b|B| / |X|c, we can encode
elements from X×C in B. The redundancy of such an encoding can be bounded as follows:

log |B| − log |X| − log |C| = log
2b

|X|
− log

⌊
2b

|X|

⌋
= log d− log bdc ≤ log d− log (d− 1) = log

(
1 +

1

d− 1

)
≤ O

(
1

d− 1

)
(because for every x ∈ R, (1 + x) ≤ ex)

≤ O

(
1√
|Y | − 1

)
≤ O

(
1√
|Y |

)
.

2

To calculate the total redundancy, we still need to examine the encoding from Y to C ×K.
Choose K of size |K| = d|Y | / |C|e, so that this encoding is possible. With a calculation
similar to the previous one, we see that the redundancy is:

log |C|+ log |K| − log |Y | = log

(⌈
|Y |
|C|

⌉)
− log

(
|Y |
|C|

)

≤ log

(
1 +
|C|
|Y |

)
≤ O

(
|C|
|Y |

)
≤ O

⌊

2b

|X|

⌋
|Y |

 ≤ O

(
2b

|X| · |Y |

)

≤ O
(

2(log |X|·
√
|Y |)+1/(|X| · |Y |)

)
≤ O

(√
|Y |
|Y |

)
= O

(
1√
|Y |

)
.

The total redundancy is O
(

1/
√
|Y |
)

+ O
(

1/
√
|Y |
)

= O
(

1/
√
|Y |
)

, which gives Prop-

erty 1.
For Property 2, it is clear from the construction that any x ∈ X can be recovered from

the element of B only.

From this building block, we can now construct the encoding.

Theorem 3. Any n ternary elements 〈t1, t2, . . . , tn〉 ∈ {0, 1, 2}n can be encoded by n(log2 3)+
n/2t + O(1) bits in such a way that any ti can be retrieved by reading O(t) bits. This holds
for any t; in particular, we can encode the ternary elements using n(log2 3) + O(1) bits with
retrieval time O(log n).

Proof. Break the ternary elements into blocks of size t: 〈t′1, t′2, . . . , t′n/t〉 ∈ T1×T2× . . .×Tn/t,

where Ti = {0, 1, 2}t for all i. The encoding, illustrated in Figure 1, is constructed as follows,
where we use fL to refer to the encoding guaranteed by Lemma 2.

1. Compute fL(t′1, t
′
2) = (b1, k1) ∈ B1 ×K1.

2. For i = 2, . . . , n/t− 1 compute fL(ki−1, t
′
i+1) := (bi, ki) ∈ Bi ×Ki.

3. Encode kn/t−1 in binary as bn/t using arithmetic coding.

The final encoding is (b1, b2, . . . , bn/t). We now compute the redundancy and retrieval time.

Redundancy: From Property 1 of Lemma 2, the first n/t− 1 encodings have redundancy
O
(
3−t/2

)
= 1/2Ω(t). For the last (arithmetic) encoding, the redundancy is at most 1. So the

total redundancy is at most
(n

t
− 1
)
· 1

2Ω(t)
+ 1 =

n

2Ω(t)
+ O(1). One can visualize this as a

“hybrid argument” transforming a product of blocks of ternary elements into a product of
blocks of binary elements, one block at the time.

3

Retrieval Time: Say that we want to recover some tj which is in block t′i. To recover
block t′i, Lemma 2 guarantees that we only need to look at bi−1 and bi. This is because ki−1

can be recovered by reading only bi, and t′i can be recovered by reading ki−1 and bi−1. Thus
to complete the proof it suffices to show that each bi has length O(t).

This is not completely obvious because one might have thought that the Ki become larger
and larger, and so we apply the lemma to larger and larger inputs and the Bi get large too.
However, recall that each |Ki| � O(|Ti|) = O(3t) from the comment after the statement of
Lemma 2. Hence, every time we apply the lemma on an input of size at most s ≤ 3O(t).
Since the lemma wastes little entropy (Property 1 in Lemma 2), none of its outputs can be
much larger than its input, and so |Bi| = 2O(t).

3

Lemma

Lemma

Lemma

Lemma

TTT T1 2 3 4 n/tT

B
1

B

B

B

K

K

K

K

2

3

(n/t)−1 (n/t)−1

1

2

Figure 1: Succinct Encoding

Notes revised on October 6, 2009.
Minor revision on August 10, 2015.

4

