
CSG399: Gems of Theoretical Computer Science. Lec. 21-23. Mar. 27-Apr. 3, 2009.
Instructor: Emanuele Viola Scribe: Ravi Sundaram

Matrix multiplication: a group-theoretic approach

Given two n × n matrices A and B we want to compute their product c = A · B. The
trivial algorithm runs in time n3 (this and the next running times are meant up to lower
order factors no(1)). In 1967 Strassen improved the running time to ≤ n2.81 and in 1990
Coppersmith and Winograd improved it further to ≤ n2.38, which continues to be the best
to date. Since the output is of size ≥ n2 it is clear that the best possible running time one
can aspire for is n2. Remarkably, it is believed that this is attainable.

In this lecture we present a group-theoretic approach to matrix multiplication developed
by H. Cohn and C. Umans (2003), later with R. Kleinberg and B. Szegedy (2005). This
approach gives a conceptually clean way to get fast algorithms, and also provides specific
conjectures that if proven yield the optimal n2 running time. In what follows we first present
some notation, then we cover polynomial multiplication, and lastly we present matrix mul-
tiplication.

1 Notation

Let G be a group.

Definition 1. The group algebra C[G] is the set of formal sums
∑

g∈G g · ag where ag ∈ C.

An element of the group algebra can be thought of as a vector of |G| complex numbers
(ag1 , ag2 , . . . , ag|G|). The operations of addition and multiplication are as expected:(∑

g

g · ag

)
+

(∑
g

g · bg

)
:=
∑

g

g · (ag + bg),

(
∑

g

g · ag) · (
∑

g

g · bg) :=
∑

g

g · cg where cg =
∑

i,j:i·j=g

ai · bj.

2 Polynomial Multiplication

To explain matrix multiplication, it is best to start with polynomial multiplication. Consider
the task of multiplying two polynomials A(x) =

∑n
i=0 xi · ai and B(x) =

∑n
i=0 xi · bi. We

think of each polynomial as being given as a vector of coefficients, and we are interested
in computing the vector of coefficients of the product polynomial C(x) := A(x) · B(x) =∑2n

i=0 xici, where ci =
∑i

j=0 aj · bi−j.

The naive algorithm for multiplying two n-degree polynomials takes time n2. The Fast
Fourier Transform achieves time n (recall in this discussion we are ignoring lower order

1

factors). The Fourier Transform amounts to interpreting polynomials as elements of a group
algebra, i.e. A(x) =

∑n
i=0 xi · ai can be viewed as an element Ā ∈ C[G], where G = Zm for

m = O(n) (think of G = {gi|0 ≤ i ≤ m − 1}). Observe how multiplication in this group
algebra precisely corresponds to polynomial multiplication (for this to happen one needs to
work over a group of size slightly larger than n, to avoid “wrapping around,” this is why we
take the group size to be O(n) rather than n).

Now, the trick in Fast Fourier Transform is to transform the group algebra into another
isomorphic algebra C|G| such that multiplication in the original group algebra C[G] becomes
point-wise multiplication in the new algebra C|G| (addition continues to be point-wise in the
new algebra as well). The speedup of the Fast Fourier Transform comes from the fact that
such an isomorphism exists and that it can be computed efficiently. This can be visualized
via the following diagram:

A(x) =
∑n

i=0 xi · ai · B(x) =
∑n

i=0 xi · bi C(x) :=
∑2n

i=0 xi
(∑i

j=0 aj · bi−j

)
↓ ↑

Ā ∈ C[G] · B̄ ∈ C[G] C̄ ∈ C[G]
(convolution)

↓ ↑
C|G| · C|G| → C|G|

(point-wise) time n

3 Matrix Multiplication

The basic idea for matrix multiplication is similar to that of Fourier Transform: we em-
bed matrices as elements of a group algebra, and then via a transform we map these into
another algebra such that the original multiplication is transformed into component-wise
multiplication (of smaller matrices). There are however a few notable differences with poly-
nomial multiplication, arising from the recursive nature of matrix multiplication. First, for
matrix multiplication, the time required to compute the isomorphism is negligible (unlike
polynomial multiplication, where speeding up this isomorphism via Fast Fourier Transform
is the main source of the overall time improvement); also, the existence of good algorithms
(as measured in terms of multiplications) for a constant-size input implies an asymptotic
improvement for all input lengths.

We now state the isomorphism theorem without proof.

Theorem 2. For every group G, C[G] ' Cd1×d1 × Cd2×d2 × . . .× Cdk×dk . The operations in
the resulting algebra are component-wise matrix addition and multiplication. The integers di

are called the character degrees of G, or the dimensions of the irreducible representations
of G. Counting dimensions we readily see that

∑k
i=1 d2

i = |G|. Moreover, ∀i, di ≤ |G|/|H|
where H is any abelian subgroup of G.

Note that if G is abelian then all its character degrees are 1.

2

Like polynomial multiplication, the group-theoretic approach to matrix multiplication
can be visualized via the following diagram

A n× n · B n× n C = A ·B n× n
↓ ↑

Ā ∈ C[G] · B̄ ∈ C[G] C̄ ∈ C[G]
↓ ↑

Cd1×d1 × . . .× Cdk×dk · Cd1×d1 × . . .× Cdk×dk → Cd1×d1 × . . .× Cdk×dk

(point-wise)

Where to compute the product in the last line we again use matrix multiplication. The gain
will be that that the matrix dimensions d1, . . . , dk will be smaller than n.

We now proceed to give the details of the approach.

3.1 Embedding

We now explain how to embed the n × n matrices A, B, C into the group algebra C[G]
(for C we are not performing this embedding directly, but rather think of it when reading
the coefficients of C from a group algebra element, as we explain later). Given 3 sets
S1, S2, S3 ⊆ G, |Si| = n, we let

Ā :=
∑

s−1
1 ∈S−1

1 ,s2∈S2

(s−1
1 · s2) · As1s2 ,

B̄ :=
∑

s−1
2 ∈S−1

2 ,s3∈S3

(s−1
2 · s3) ·Bs2s3 ,

C̄ :=
∑

s−1
1 ∈S−1

1 ,s3∈S3

(s−1
1 · s3) · Cs1s3 .

This embedding works when the cancelations in Ā · B̄ correspond to those in A ·B. This
is guaranteed whenever the sets satisfy the following property.

Definition 3. The sets S1, S2, S3 satisfy the triple-product property if ∀si ∈ Si, ti ∈ Si

s−1
1 · s2 · t−1

2 · s3 = t−1
1 t3 ⇒ si = ti,∀i ≤ 3.

The next claim indeed shows that if the sets satisfy that property, then the coefficients
of the matrix product appear as coefficients in the group algebra.

Claim 1. If S1, S2, S3 satisfy the triple-product property then (A ·B)t1t3 is the coefficient of
t−1
1 · t3 in (ĀB̄), t1 ∈ S1, t3 ∈ S3.

3

Proof. We have

Ā · B̄ =
∑

(s−1
1 · s2 · t−1

2 · s3) · As1s2Bt2s3 ,∀s1 ∈ S1, s2, t2 ∈ S2, s3 ∈ S3.

Since by the triple-product property s−1
1 · s2 · t−1

2 · s3 multiplies to t−1
1 · t3 only when s1 = t1

and s2 = t2 and s3 = t3, we see that the coefficient of t−1
1 · t3 is∑

s2

At1s2Bs2t3 = (A ·B)t1t3 .

3.2 Running time

Looking at the diagram, we see that we reduce multiplication of n× n matrices to k matrix
multiplications of dimensions d1, . . . , dk. Thus, intuitively, is ω is the exponent of the running
time of matrix multiplication, provided the embedding works we should have nω ≤

∑
i d

ω
i .

This can be formalized in the following theorem we do not prove.

Theorem 4. If there exists S1, S2, S3 ⊆ G of size n satisfying the triple-product property
then, for ω the exponent of matrix multiplication,

nω ≤
∑

i

dω
i

where the integers di are the character degrees of G.

3.3 An example

Here is a simple example. Let G = Zn × Zn × Zn = {(a, b, c)|0 ≤ a, b, c ≤ n}, (a, b, c) ·
(a′, b′, c′) := (a + a′, b + b′, c + c′). Let

S1 := {(a, 0, 0)|a < n},
S2 := {(0, b, 0)|b < n},
S3 := {(0, 0, c)|c < n}.

It is straightforward to verify that S1, S2, S3 satisfy the triple-product property, i.e.

(−a, 0, 0) · (0, b, 0) · (0,−b′, 0) · (0, 0, c) = (−a′, 0, 0) · (0, 0, c′)⇒ a = a′, b = b′, c = c′.

Since G is abelian it follows that all the character degrees di are 1 and hence, using Theorem
2, we get the expression nω ≤

∑
dω

i =
∑

d2
i = |G| = n3. Thus this does not rule out

that ω = 3. This is no better than the naive algorithm with cubic running time. In fact, no
abelian group does better. In the next section we give a non-trivial example via a non-abelian
group.

4

4 A group yielding ω < 3

Now we give an example of a group and embedding giving a nontrivial algorithm, i.e., ω < 3.
Given any group H we define a new group

G := {(a, b)zJ |a, b ∈ H, J ∈ {0, 1}, z is a new symbol}.

It is easy to see that |G| = 2|H|2. For clarity, note (a, b)z0 = (a, b)1 = (a, b). The group
operation +G for G is defined by the following three rules:

• (a, b) +G (a′, b′) = (a +H a′, b +H b′),

• (a, b)z = z(b, a),

• z · z = 1.

In other words, we take two copies of H, and we let z act on them by swapping them. Those
versed in group theory will recognize G as a wreath product.

As an exercise it is good to verify that

((a, b)z)−1 = (−b,−a)z.

Now, let H := H1×H2×H3, where for every i, Hi := Zn is the additive group of integers
modulo n. This is the group we use for matrix multiplication. Again for clarity, note

0G = (0H , 0H) = ((0, 0, 0), (0, 0, 0)).

We now define the three sets for the embedding. For ease of notation, let H4 := H1. For
1 ≤ i ≤ 3, we define

Si := {(a, b)zJ |a ∈ Hi \ {0}, b ∈ Hi+1, J ∈ {0, 1}}.

Removing the element 0 is crucial to obtain a non-trivial exponent < 3.

Lemma 5. S1, S2, S3 as defined above satisfy the triple-product property.

Proof. We need to prove that ∀si ∈ Si, ti ∈ Si

s−1
1 · s2 · t−1

2 · s3 = t−1
1 t3 ⇒ si = ti,∀i ≤ 3

Equivalently, we have to prove that

t1 · s−1
1 · s2 · t−1

2 · s3 · t−1
3 = 0⇒ si = ti,∀i ≤ 3

We first see that we can represent si · t−1
i in a normal form.

5

Claim 2. ∀si, ti ∈ Si, either
si · t−1

i = (ai, bi)z(a′i, b
′
i)

or
(ai, bi)(a

′
i, b
′
i)

for some ai, a
′
i ∈ Hi \ {0}, bi, b

′
i ∈ Hi+1.

Proof. If ti contains no z then it is easy to see that one of the two forms will occur depending
on the presence or absence of z in si. Alternately, if ti = (a′i, b

′
i)z then t−1

i = (−b′i,−a′i)z =
z(−a′i,−b′i), from which the result follows. Specifically, the absence or presence of z in the
final form depends on the presence or absence of z in si.

Given the above normal form we can rewrite our equation t1 · s−1
1 · s2 · t−1

2 · s3 · t−1
3 = 0 as

(a1, b1)z
J1(a′1, b

′
1)(a2, b2)z

J2(a′2, b
′
2)(a3, b3)z

J3(a′3, b
′
3) = ((0, 0, 0), (0, 0, 0)).

Observe that there can only be an an even number of z’s, since they annihilate in pairs
and there is none on the right hand side.

If there are no z’s then by equating componentwise we get that ∀i ≤ 3, ai+a′i = bi+b′i = 0
and hence si = ti,∀i ≤ 3.

If there are 2 z’s then assuming without loss of generality that J3 = 0 we get that

(a1, b1)z(a′1, b
′
1)(a2, b2)z(a′2, b

′
2)(a3, b3)(a

′
3, b
′
3)

= (a1, b1)(b
′
1, a
′
1)(b2, a2)(a

′
2, b
′
2)(a3, b3)(a

′
3, b
′
3)

= (a1 + b′1 + b2 + a′2 + a3 + a′3, b1 + a′1 + a2 + b′2 + b3 + b′3).

Note that if

(a1 + b′1 + b2 + a′2 + a3 + a′3, b1 + a′1 + a2 + b′2 + b3 + b′3) = ((0, 0, 0), (0, 0, 0))

then it must be the case that

a1 + b′1 + b2 + a′2 + a3 + a′3 = (0, 0, 0).

However, since ai ∈ Hi \ 0 and bi ∈ Hi+1 this can never happen: a1 is the only term with
an entry in the first component, but by definition it is non-zero. (The only other elements
that could contribute to making the first component non-zero are a′1, b3, and b′3, but all these
moved to the second copy of H.)

Having verified the embedding capability of G, we now observe that the relative size of
the sets Si in G yield non-trivial exponents via Theorem 4.

Claim 3. The group G and associated sets S1, S2, S3 with the triple-product property yields
a matrix multiplication exponent ω < 3.

6

Proof. Elementary counting shows |G| = 2|H|2 = 2n6, |Si| = 2n(n−1),∀i ≤ 3. Since H×H
is an abelian subgroup of G we have by Theorem 2 that all character degrees di ≤ |G|/|H| =
2.

Theorem 4 shows that the exponent ω of matrix multiplication satisfies

(2n(n− 1))3 ≤
∑

dω
i .

We prove that ω < 3 by showing that ω = 3 yields a contradiction. Suppose ω = 3, then

(2n(n− 1))3 ≤
∑

d3
i ≤ 2

∑
d2

i = 4n6,

which is false for n = 5. Hence ω < 3. The best bound with this approach is ω ≈ 2.9.

7

