
CSG399: Gems of Theoretical Computer Science. Lecture 2. Jan. 13, 2009.
Instructor: Emanuele Viola Scribe: Ravi Sundaram

Stretching by 1 bit and Yao’s next bit predictor

1 A first non-trivial generator

We restate and prove the theorem begun at the end of last class. The theorem exhibits a
simple non-trivial generator that extends the seed by one bit.

Theorem 1. Let f : {0, 1}l → {0, 1} satisfy CORuniform(f, circuits of size w) ≤ ε. Then,
G(x) = x ◦ f(x), G : {0, 1}l → {0, 1}l+1 fools circuits of size w −O(1) with error ε.

Proof. Suppose for contradiction that circuit C distinguishes G from the uniformly random
distribution, i.e.

|Ex∈uniforme[C(x ◦ f(x))]− Ex,u∈uniforme[C(x ◦ u)]| > ε

where x ∈ {0, 1}l and u ∈ {0, 1}. Then for b ∈ {0, 1} consider the circuit C ′
b(x) defined as

C ′
b(x) := C(x ◦ b) + b,

(here addition is the usual addition over GF2).

Eb∈uniform[CORuniform(C ′
b, f)]

= Eb∈uniform[|Ex∈uniforme[C ′
b(x) + f(x)]|]

≥ |Eb,x∈uniforme[C ′
b(x) + f(x)]|

= |Eb,x∈uniforme[C(x ◦ b) + b + f(x)]|

=

∣∣∣∣12Ex∈uniforme[C(x ◦ f(x)) + f(x) + f(x)] +
1

2
Ex∈uniforme[C(x ◦ f(x)) + f(x) + f(x)]

∣∣∣∣
=

∣∣∣∣12Ex∈uniforme[C(x ◦ f(x))]− 1

2
Ex∈uniforme[C(x ◦ f(x))]

∣∣∣∣ .

But note that

Ex,u∈uniforme[C(x ◦ u)] =
1

2
Ex∈uniforme[C(x ◦ f(x))] +

1

2
Ex∈uniforme[C(x ◦ f(x))]

and hence we can rewrite the above as

=

∣∣∣∣12Ex∈uniforme[C(x ◦ f(x))] +
1

2
Ex∈uniforme[C(x ◦ f(x))]− Ex,u∈uniforme[C(x ◦ u)]

∣∣∣∣
= |Ex∈uniforme[C(x ◦ f(x))]− Ex,u∈uniforme[C(x ◦ u)]|
> ε by our initial assumption that C is a circuit that “breaks” G.
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Hence we have shown that

Eb∈uniform[CORuniform(C ′
b, f)] > ε

This implies that there exists b ∈ {0, 1} such that CORuniform(C ′
b, f)] > ε. Let us denote

by C ′ the circuit C ′
b corresponding to this b. Observe that size(C ′) = size(C) + O(1). Thus

the existence of a circuit C of size w−O(1) that “breaks” generator G implies the existence
of a circuit C ′ of size at most w that has high correlation with f , which is a contradiction.
Hence, the theorem is proved.

The above theorem gives us a way to stretch seeds from length l to l + 1 given a hard
function, i.e. one that has low-correlation with any circuit of the given size. But ideally, we
would like to get a generator that stretches seeds of length s to n >> s, e.g. n = 2Ω(s).

A naive attempt would be to divide the input into blocks of length l and stretch each
block from length l to l + 1, i.e. G(x1, x2, . . . , xk) = x1 ◦ f(x1) ◦ x2 ◦ f(x2) . . . xk ◦ f(xk),
where xi ∈ {0, 1}l, 1 ≤ i ≤ k. However, as is easily seen, the stretch ratio n/s obtained by
this scheme continues to be unchanged at (l + 1)/l, even though this blockwise extender is
a valid pseudorandom generator (prove as exercise).

2 The Nisan-Wigderson Construction

The idea of the Nisan-Wigderson construction is to output a concatenation of bits obtained
by evaluating the hard function on nearly disjoint subsets of the bits of the seed. We give
details below.

Definition 2 (Design). (S1, S2, . . . Sn) is a design from a universe of size s, with set size l
and intersection size α if

• Si ⊆ [s], 1 ≤ i ≤ n

• |Si| = l, 1 ≤ i ≤ n

• |Si ∩ Sj| ≤ α, 1 ≤ i, j ≤ n

A typical choice of parameters is s ≈ l, n � l, α ≈ log n.
Now we state the construction as well as the theorem of Nisan and Wigderson. The

statement of the construction requires the following notation: let x ∈ {0, 1}s, S ⊆ [s], then
we use x|S to denote the bits of x indexed by S.

Theorem 3 (Nisan-Wigderson). Let f : {0, 1}l → {0, 1} satisfy

CORuniform(f, circuits of size w) ≤ 1/w.

Let n = w
1
3 . Let (S1, S2, . . . , Sn) be a design over a universe of size s with set size l and

intersection size α = log n = 1
3
log w. Then the Nisan-Wigderson generator G : {0, 1}s →

{0, 1}n defined as
G(x) = f(x|S1) ◦ f(x|S2) . . . ◦ f(x|Sn)

fools circuits of size n with error 1/n.
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Note how the output length n of the generator is essentially w, i.e., the hardness we start
from. Note we parameterized the circuit size and the correlation by the same w.

The proof of the theorem requires a lemma which we state and prove below.

Lemma 4 (Yao’s next bit predictor). Let D = D1D2 . . . Dn be a distribution on {0, 1}n. Let
U = U1U2 . . . Un be the uniform distribution on {0, 1}n. Suppose C : {0, 1}n → {0, 1} is a
circuit such that

|Ee[C(U)]− Ee[C(D)]| > ε

Then there exists an index i, 1 ≤ i ≤ n and a circuit C ′, size(C ′) ≤ size(C)+O(1) such that

|Ee[C ′(D1D2 . . . Di−1) + Di]| >
ε

n

Proof. The proof is in two phases. In the first phase, we use the “hybrid method” to
obtain a circuit C that distinguishes between two adjacent hybrids, namely D1D2 . . . Di and
D1D2 . . . Di−1Ui. In the second phase we use the same trick as in our construction of a
generator that stretches l bits to l + 1 bits.

First phase. Let
Hi := D1D2 . . . DiUi+1 . . . Un,

, for 0 ≤ i ≤ n. By the assumption of the lemma we have that

|Ee[C(H0)]− Ee[C(Hn)]| > ε.

But

|Ee[C(H0)]− Ee[C(Hn)]|
≤ |Ee[C(H0)]− Ee[C(H1)] + Ee[C(H1)]− Ee[C(H2)] + Ee[C(H2)] . . .

. . . + Ee[C(Hn−1)]− Ee[C(Hn)]|
≤ Σn−1

i=0 |Ee[C(Hi)]− Ee[C(Hi+1)|.

Therefore ∃i, 0 ≤ i ≤ n− 1 such that |Ee[C(Hi)]− Ee[C(Hi+1)| > ε/n. But

Ee[C(Hi)]− Ee[C(Hi+1)]

= EUi+1...Un

[
ED1...Di−1,Ui

e[C(D1 . . . Di−1UiUi+1 . . . Un)]− ED1...Di
e[C(D1 . . . DiUi+1 . . . Un)]

]
.

Hence there exists a choice of Ui+1 . . . Un such that

|Ee[C(Hi)]− Ee[C(Hi+1)]| ≥ ε/n.

Let C be the circuit obtained by fixing this choice in the circuit C. Then we have that

|Ee[C(D1 . . . Di−1Ui)]− Ee[C(D1 . . . Di)]| >
ε

n

Second phase. As before for b ∈ {0, 1} define the circuit C ′
b(x) as
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C ′
b(x) := C(x ◦ b) + b,

(here addition is the usual addition over GF2). Now consider

Eb∈uniform|EDe[C ′
b(D1 . . . Di−1) + Di]|

≥ |Eb∈uniform,De[C ′
b(D1 . . . Di−1) + Di]|

= |Eb∈uniform,De[C(D1 . . . Di−1 ◦ b) + b + Di]|

=

∣∣∣∣12EDe[C(D1 . . . Di−1Di) + Di + Di] +
1

2
EDe[C(D1 . . . Di−1Di) + Di + Di]

∣∣∣∣
=

∣∣∣∣12EDe[C(D1 . . . Di−1Di)]−
1

2
EDe[C(D1 . . . Di−1Di)]

∣∣∣∣
But note that

EUi∈uniform,De[C(D1 . . . Di−1Ui)] =
1

2
Ee[C(D1 . . . Di)] +

1

2
Ee[C(D1 . . . Di−1Di)]

and hence we can rewrite the above as

=

∣∣∣∣12EDe[C(D1 . . . Di−1Di)] +
1

2
EDe[C(D1 . . . Di−1Di)]− EUi∈uniform,De[C(D1 . . . Di−1Ui)]

∣∣∣∣
=

∣∣EDe[C(D1 . . . Di−1Di)]− EUi∈uniform,De[C(D1 . . . Di−1Ui)]
∣∣

>
ε

n
by the inequality from the first phase.

To summarize, putting the two phases together, we have shown that

Eb∈uniform|EDe[C ′
b(D1 . . . Di−1) + Di]| >

ε

n
.

This implies that there exists b ∈ {0, 1} such that |EDe[C ′
b(D1 . . . Di−1) + Di]| > ε/n. Let us

denote by C ′ the circuit C ′
b corresponding to this b. Observe that size(C ′) ≤ size(C)+O(1) ≤

size(C)+O(1). Thus we have demonstrated the existence of a circuit C ′ (of the appropriate
size) and an index i such that the circuit predicts the value of the i bit (given the first i− 1
bits) with the required probability. Hence, the lemma is proved.

We will complete the proof of the Nisan Wigderson theorem in the next class.
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