Stretching by 1 bit and Yao's next bit predictor

1 A first non-trivial generator

We restate and prove the theorem begun at the end of last class. The theorem exhibits a simple non-trivial generator that extends the seed by one bit.

Theorem 1. Let $f:\{0,1\}^{l} \rightarrow\{0,1\}$ satisfy $\operatorname{COR}_{\text {uniform }}(f$, circuits of size $w) \leq \epsilon$. Then, $G(x)=x \circ f(x), G:\{0,1\}^{l} \rightarrow\{0,1\}^{l+1}$ fools circuits of size $w-O(1)$ with error ϵ.

Proof. Suppose for contradiction that circuit C distinguishes G from the uniformly random distribution, i.e.

$$
\left|E_{x \in \text { uniform }} e[C(x \circ f(x))]-E_{x, u \in \text { uniform }} e[C(x \circ u)]\right|>\epsilon
$$

where $x \in\{0,1\}^{l}$ and $u \in\{0,1\}$. Then for $b \in\{0,1\}$ consider the circuit $C_{b}^{\prime}(x)$ defined as

$$
C_{b}^{\prime}(x):=C(x \circ b)+b,
$$

(here addition is the usual addition over $G F_{2}$).

$$
\begin{aligned}
& E_{b \in \text { uniform }}\left[C O R_{\text {uniform }}\left(C_{b}^{\prime}, f\right)\right] \\
= & E_{b \in \text { uniform }}\left[\left|E_{x \in \text { uniform }} e\left[C_{b}^{\prime}(x)+f(x)\right]\right|\right] \\
\geq & \left|E_{b, x \in \text { uniform }} e\left[C_{b}^{\prime}(x)+f(x)\right]\right| \\
= & \left|E_{b, x \in \text { uniform }} e[C(x \circ b)+b+f(x)]\right| \\
= & \left|\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ f(x))+f(x)+f(x)]+\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ \overline{f(x)})+\overline{f(x)}+f(x)]\right| \\
= & \left|\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ f(x))]-\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ \overline{f(x)})]\right| .
\end{aligned}
$$

But note that

$$
E_{x, u \in \text { uniform }} e[C(x \circ u)]=\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ f(x))]+\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ \overline{f(x)})]
$$

and hence we can rewrite the above as

$$
\begin{aligned}
& =\left|\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ f(x))]+\frac{1}{2} E_{x \in \text { uniform }} e[C(x \circ f(x))]-E_{x, u \in \text { uniform }} e[C(x \circ u)]\right| \\
& =\left|E_{x \in \text { uniform }} e[C(x \circ f(x))]-E_{x, u \in \text { uniform }} e[C(x \circ u)]\right| \\
& >\epsilon \text { by our initial assumption that } C \text { is a circuit that "breaks" } G .
\end{aligned}
$$

Hence we have shown that

$$
E_{b \in u n i f o r m}\left[C O R_{\text {uniform }}\left(C_{b}^{\prime}, f\right)\right]>\epsilon
$$

This implies that there exists $b \in\{0,1\}$ such that $\left.\operatorname{COR}_{\text {uniform }}\left(C_{b}^{\prime}, f\right)\right]>\epsilon$. Let us denote by C^{\prime} the circuit C_{b}^{\prime} corresponding to this b. Observe that size $\left(C^{\prime}\right)=\operatorname{size}(C)+O(1)$. Thus the existence of a circuit C of size $w-O(1)$ that "breaks" generator G implies the existence of a circuit C^{\prime} of size at most w that has high correlation with f, which is a contradiction. Hence, the theorem is proved.

The above theorem gives us a way to stretch seeds from length l to $l+1$ given a hard function, i.e. one that has low-correlation with any circuit of the given size. But ideally, we would like to get a generator that stretches seeds of length s to $n \gg s$, e.g. $n=2^{\Omega(s)}$.

A naive attempt would be to divide the input into blocks of length l and stretch each block from length l to $l+1$, i.e. $G\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{1} \circ f\left(x_{1}\right) \circ x_{2} \circ f\left(x_{2}\right) \ldots x_{k} \circ f\left(x_{k}\right)$, where $x_{i} \in\{0,1\}^{l}, 1 \leq i \leq k$. However, as is easily seen, the stretch ratio n / s obtained by this scheme continues to be unchanged at $(l+1) / l$, even though this blockwise extender is a valid pseudorandom generator (prove as exercise).

2 The Nisan-Wigderson Construction

The idea of the Nisan-Wigderson construction is to output a concatenation of bits obtained by evaluating the hard function on nearly disjoint subsets of the bits of the seed. We give details below.

Definition 2 (Design). $\left(S_{1}, S_{2}, \ldots S_{n}\right)$ is a design from a universe of size s, with set size l and intersection size α if

- $S_{i} \subseteq[s], 1 \leq i \leq n$
- $\left|S_{i}\right|=l, 1 \leq i \leq n$
- $\left|S_{i} \cap S_{j}\right| \leq \alpha, 1 \leq i, j \leq n$

A typical choice of parameters is $s \approx l, n \gg l, \alpha \approx \log n$.
Now we state the construction as well as the theorem of Nisan and Wigderson. The statement of the construction requires the following notation: let $x \in\{0,1\}^{s}, S \subseteq[s]$, then we use $x \mid S$ to denote the bits of x indexed by S.
Theorem 3 (Nisan-Wigderson). Let $f:\{0,1\}^{l} \rightarrow\{0,1\}$ satisfy

$$
C O R_{\text {uniform }}(f, \text { circuits of size } w) \leq 1 / w
$$

Let $n=w^{\frac{1}{3}}$. Let $\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ be a design over a universe of size s with set size l and intersection size $\alpha=\log n=\frac{1}{3} \log w$. Then the Nisan-Wigderson generator $G:\{0,1\}^{s} \rightarrow$ $\{0,1\}^{n}$ defined as

$$
G(x)=f\left(x \mid S_{1}\right) \circ f\left(x \mid S_{2}\right) \ldots \circ f\left(x \mid S_{n}\right)
$$

fools circuits of size n with error $1 / n$.

Note how the output length n of the generator is essentially w, i.e., the hardness we start from. Note we parameterized the circuit size and the correlation by the same w.

The proof of the theorem requires a lemma which we state and prove below.
Lemma 4 (Yao's next bit predictor). Let $D=D_{1} D_{2} \ldots D_{n}$ be a distribution on $\{0,1\}^{n}$. Let $U=U_{1} U_{2} \ldots U_{n}$ be the uniform distribution on $\{0,1\}^{n}$. Suppose $C:\{0,1\}^{n} \rightarrow\{0,1\}$ is a circuit such that

$$
|E e[C(U)]-E e[C(D)]|>\epsilon
$$

Then there exists an index $i, 1 \leq i \leq n$ and a circuit C^{\prime}, size $\left(C^{\prime}\right) \leq \operatorname{size}(C)+O(1)$ such that

$$
\left|E e\left[C^{\prime}\left(D_{1} D_{2} \ldots D_{i-1}\right)+D_{i}\right]\right|>\frac{\epsilon}{n}
$$

Proof. The proof is in two phases. In the first phase, we use the "hybrid method" to obtain a circuit \bar{C} that distinguishes between two adjacent hybrids, namely $D_{1} D_{2} \ldots D_{i}$ and $D_{1} D_{2} \ldots D_{i-1} U_{i}$. In the second phase we use the same trick as in our construction of a generator that stretches l bits to $l+1$ bits.

First phase. Let

$$
H_{i}:=D_{1} D_{2} \ldots D_{i} U_{i+1} \ldots U_{n}
$$

, for $0 \leq i \leq n$. By the assumption of the lemma we have that

$$
\left|E e\left[C\left(H_{0}\right)\right]-E e\left[C\left(H_{n}\right)\right]\right|>\epsilon
$$

But

$$
\begin{aligned}
& \left|E e\left[C\left(H_{0}\right)\right]-E e\left[C\left(H_{n}\right)\right]\right| \\
\leq & \mid E e\left[C\left(H_{0}\right)\right]-E e\left[C\left(H_{1}\right)\right]+E e\left[C\left(H_{1}\right)\right]-E e\left[C\left(H_{2}\right)\right]+E e\left[C\left(H_{2}\right)\right] \ldots \\
& \ldots+E e\left[C\left(H_{n-1}\right)\right]-E e\left[C\left(H_{n}\right)\right] \mid \\
\leq & \sum_{i=0}^{n-1} \mid E e\left[C\left(H_{i}\right)\right]-E e\left[C\left(H_{i+1}\right) \mid .\right.
\end{aligned}
$$

Therefore $\exists i, 0 \leq i \leq n-1$ such that $\mid E e\left[C\left(H_{i}\right)\right]-E e\left[C\left(H_{i+1}\right) \mid>\epsilon / n\right.$. But

$$
\begin{aligned}
& E e\left[C\left(H_{i}\right)\right]-E e\left[C\left(H_{i+1}\right)\right] \\
= & E_{U_{i+1} \ldots U_{n}}\left[E_{D_{1} \ldots D_{i-1}, U_{i}} e\left[C\left(D_{1} \ldots D_{i-1} U_{i} U_{i+1} \ldots U_{n}\right)\right]-E_{D_{1} \ldots D_{i}} e\left[C\left(D_{1} \ldots D_{i} U_{i+1} \ldots U_{n}\right)\right]\right] .
\end{aligned}
$$

Hence there exists a choice of $U_{i+1} \ldots U_{n}$ such that

$$
\left|E e\left[C\left(H_{i}\right)\right]-E e\left[C\left(H_{i+1}\right)\right]\right| \geq \epsilon / n
$$

Let \bar{C} be the circuit obtained by fixing this choice in the circuit C. Then we have that

$$
\left|E e\left[\bar{C}\left(D_{1} \ldots D_{i-1} U_{i}\right)\right]-E e\left[\bar{C}\left(D_{1} \ldots D_{i}\right)\right]\right|>\frac{\epsilon}{n}
$$

Second phase. As before for $b \in\{0,1\}$ define the circuit $C_{b}^{\prime}(x)$ as

$$
C_{b}^{\prime}(x):=\bar{C}(x \circ b)+b
$$

(here addition is the usual addition over $G F_{2}$). Now consider

$$
\begin{aligned}
& E_{b \in \text { uniform }}\left|E_{D} e\left[C_{b}^{\prime}\left(D_{1} \ldots D_{i-1}\right)+D_{i}\right]\right| \\
\geq & \left|E_{b \in \text { uniform }, D} e\left[C_{b}^{\prime}\left(D_{1} \ldots D_{i-1}\right)+D_{i}\right]\right| \\
= & \left|E_{b \in \text { uniform }, D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} \circ b\right)+b+D_{i}\right]\right| \\
= & \left|\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} D_{i}\right)+D_{i}+D_{i}\right]+\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} \overline{D_{i}}\right)+\overline{D_{i}}+D_{i}\right]\right| \\
= & \left|\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} D_{i}\right)\right]-\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} \overline{D_{i}}\right)\right]\right|
\end{aligned}
$$

But note that

$$
E_{U_{i} \in \text { uniform }, D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} U_{i}\right)\right]=\frac{1}{2} E e\left[\bar{C}\left(D_{1} \ldots D_{i}\right)\right]+\frac{1}{2} E e\left[\bar{C}\left(D_{1} \ldots D_{i-1} \overline{D_{i}}\right)\right]
$$

and hence we can rewrite the above as

$$
\begin{aligned}
& =\left|\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} D_{i}\right)\right]+\frac{1}{2} E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} D_{i}\right)\right]-E_{U_{i} \in \text { uniform }, D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} U_{i}\right)\right]\right| \\
& =\left|E_{D} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} D_{i}\right)\right]-E_{U_{i} \in \text { uniform,D }} e\left[\bar{C}\left(D_{1} \ldots D_{i-1} U_{i}\right)\right]\right| \\
& >\frac{\epsilon}{n} \text { by the inequality from the first phase. }
\end{aligned}
$$

To summarize, putting the two phases together, we have shown that

$$
E_{b \in u n i f o r m}\left|E_{D} e\left[C_{b}^{\prime}\left(D_{1} \ldots D_{i-1}\right)+D_{i}\right]\right|>\frac{\epsilon}{n}
$$

This implies that there exists $b \in\{0,1\}$ such that $\left|E_{D} e\left[C_{b}^{\prime}\left(D_{1} \ldots D_{i-1}\right)+D_{i}\right]\right|>\epsilon / n$. Let us denote by C^{\prime} the circuit C_{b}^{\prime} corresponding to this b. Observe that size $\left(C^{\prime}\right) \leq \operatorname{size}(\bar{C})+O(1) \leq$ size $(C)+O(1)$. Thus we have demonstrated the existence of a circuit C^{\prime} (of the appropriate size) and an index i such that the circuit predicts the value of the i bit (given the first $i-1$ bits) with the required probability. Hence, the lemma is proved.

We will complete the proof of the Nisan Wigderson theorem in the next class.

