CSG399: Gems of Theoretical Computer Science. Instructor: Emanuele Viola Lecture 10. Feb. 13, 2009. Scribe: Fangfei Zhou

Barrington's Theorem

In this lecture we present Barrington's Theorem. We start with some motivation.

1 Branching programs

A branching program on the variable set $X = \{x_1, \ldots, x_n\}$ is a finite directed acyclic graph with one source node and sink nodes partitioned into two sets, Accept and Reject. Each nonsink node is labeled by a variable x_i and has two outgoing edges labeled 0 and 1 respectively. An input $x \in \{0, 1\}^n$ is accepted if and only if it induces a chain of transitions that lead the start node to a node in Accept. The *length* of the program is the maximum length of any such path. We are only going to consider *layered* branching programs of length ℓ . Here the nodes are partitioned into ℓ sets and edges only go from one layer to the next. The *width* of a layered branching program is the maximum number of vertices in any layer. The start node is in layer 1 and the sink nodes in layer ℓ .

A branching program can be thought of as a space-bounded model of computation where space=log(width); from each state, we just look at 1 bit of the input. This is a clean model of space-bounded computation which abstracts from model-dependent Turing-machine issues such as keeping track of the position of the head on the input tape.

It is easy to see that AND : $\{0, 1\}^n \to \{0, 1\}$ can be computed by a branching program of width 2 and length n + 1. One can have similar branching programs for the parity function. However, it is not clear if, for example, the *majority* function can be computed by such branching programs. It can be shown that every function on n bits can be computed by a branching program of width 3 and *exponential* length. It was conjectured that *majority* requires constant-width branching program of super-polynomial length $\ell \ge n^{w(1)}$.

In this lecture we present a surprising result by Barrington that in particular disproves this conjecture.

2 Barrington's Theorem

Theorem 1 (Small depth \Rightarrow short branching program). If $f : \{0, 1\}^n \to \{0, 1\}$ is computable by a circuit of depth d, then f is computable by a branching program of width 5 and length $\ell = 4^d$. In particular, if $d = O(\log n)$ then $\ell = \operatorname{poly}(n)$; in particular, majority is computable by a branching program of width 5 and polynomial length $\ell = n^{O(1)}$.

For the proof, we will construct a group program and then "convert" it into a branching program. Recall a *group* is a set of elements with an operation and inverses. We will be working with S_5 , the group of permutations of 5 elements.

Definition 2. A group program of length ℓ is $(g_1^0, ..., g_\ell^0), (g_1^1, ..., g_\ell^1), (k_1, ..., k_\ell)$ where for any $i, j: g_i^j \in S_5$ and $k_i \in \{1, ..., n\}$. We say that this program α -computes $f: \{0, 1\}^n \to \{0, 1\}$ if $\forall x$,

$$f(x) = 1 \Rightarrow \prod_{i=1}^{\ell} g_i^{x_{k_i}} = \alpha$$
$$f(x) = 0 \Rightarrow \prod_{i=1}^{\ell} g_i^{x_{k_i}} = 1_G;$$

which we can write compactly as $\forall x : \prod_{i=1}^{\ell} g_i^{x_{k_i}} = \alpha^{f(x)}$.

Abusing notation we say that a permutation $g \in S_5$ is a *cycle* if its graph consists of exactly one cycle of length 5. For example, $1 \to 5 \to 2 \to 3 \to 4 \to 1$ is a cycle. We write it compactly as (15234).

Theorem 3 (Small depth \Rightarrow short group program). Any function computable by circuit of depth d is α -computed by a group program of length 4^d for every cycle α .

Proof of Theorem 1 assuming Theorem 3. Let $\alpha = (1\ 2\ 3\ 4\ 5)$, consider the following branching program: nodes at layer *i* are labeled with x_{k_i} , edges from layer *i* to layer i+1 labeled 0/1 are g_i^0/g_i^1 . The start node is 1 and the accept node is 2. Then

$$f(x) = 1 \Rightarrow \prod_{i=1}^{l} g_i^{x_{k_i}} = (12345) \Rightarrow start \rightsquigarrow 2 \Rightarrow \text{accept}$$
$$f(x) = 0 \Rightarrow \prod_{i=1}^{l} g_i^{x_{k+i}} = 1_G \Rightarrow start \rightsquigarrow 1 \Rightarrow \text{not accept.}$$

3 Proof of the Group Program Theorem 3

Lemma 4 (Does not matter what cycle you compute with.). Let $\alpha, \beta \in S_5$ be two cycles, let $f : \{0,1\}^n \to \{0,1\}$. Then f is α -computable with length $\ell \Leftrightarrow f$ is β -computable with length ℓ .

Proof. First observe that $\exists \rho \in S_5$ such that $\alpha = \rho^{-1}\beta\rho$. To see this let

$$\alpha = (\alpha_1, \alpha_2, ..., \alpha_5),$$
$$\beta = (\beta_1, \beta_2, ..., \beta_5),$$
$$\rho := (\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, ..., \alpha_5 \to \beta_5)$$

Suppose that $(g_1^0, ..., g_\ell^0)(g_1^1, ..., g_l^1)(k_1, ..., k_\ell)$ β -computes f; we claim that $(\rho g_1^0, ..., g_\ell^0 \rho^{-1})(\rho g_1^1, ..., g_\ell^1 \rho^{-1})$ (with the same indices k_i) α -computes f. To see this, note that

$$\prod_{i=1}^{\ell} g_i^{x_{k_i}} = 1_G \Rightarrow \rho^{-1} \prod_{i=1}^{l} g_i^{x_{k_i}} \rho = \rho^{-1} \cdot \rho = 1,$$
$$\prod_{i=1}^{\ell} g_i^{x_{k_i}} = \beta \Rightarrow \rho^{-1} \prod_{i=1}^{l} g_i^{x_{k_i}} \rho = \rho^{-1} \beta \rho = \alpha.$$

Lemma 5 $(f \Rightarrow 1-f)$. If $f : \{0,1\}^n \to \{0,1\}$ is α -computable by a group program of length ℓ , so is 1-f.

Proof. First apply the previous lemma to α^{-1} -compute f. Then multiply last group elements g_{ℓ}^{0} and g_{ℓ}^{1} in the group program by α .

Lemma 6 $(f, g \Rightarrow f \land g)$. If f is α -computable with length ℓ and g is β computable with length ℓ then $(f \land g)$ is $(\alpha\beta\alpha^{-1}\beta^{-1})$ -computable with length 4ℓ .

Proof. Concatenate 4 programs: (α -computes f, β -computes g, α^{-1} -computes f, β^{-1} -computes g). $(f(\mathbf{x})=1) \wedge (g(\mathbf{x})=1) \Rightarrow$ concatenated program evaluates to $(\alpha\beta\alpha^{-1}\beta^{-1})$; but if either f(x) = 0 or g(x) = 0 then the concatenated program evaluates to 0. For example, if f(x) = 0 and g(x) = 1 then the concatenated program gives $1 \cdot \beta \cdot 1 \cdot \beta^{-1} = 1$.

It only remains to see that we can apply the previous lemma while still computing with respect to a cycle.

Lemma 7. $\exists \alpha, \beta$ cycles such that $\alpha \beta \alpha^{-1} \beta^{-1}$ is a cycle.

Proof. Let $\alpha := (12345), \beta := (13542)$, we can check $\alpha \beta \alpha^{-1} \beta^{-1}$ is a cycle.

Proof of Theorem 3. By induction on d using previous lemmas.