
CSG399: Gems of Theoretical Computer Science. Lecture 10. Feb. 13, 2009.
Instructor: Emanuele Viola Scribe: Fangfei Zhou

Barrington’s Theorem

In this lecture we present Barrington’s Theorem. We start with some motivation.

1 Branching programs

A branching program on the variable set X = {x1, . . . , xn} is a finite directed acyclic graph
with one source node and sink nodes partitioned into two sets, Accept and Reject. Each non-
sink node is labeled by a variable xi and has two outgoing edges labeled 0 and 1 respectively.
An input x ∈ {0, 1}n is accepted if and only if it induces a chain of transitions that lead the
start node to a node in Accept. The length of the program is the maximum length of any
such path. We are only going to consider layered branching programs of length `. Here the
nodes are partitioned into ` sets and edges only go from one layer to the next. The width
of a layered branching program is the maximum number of vertices in any layer. The start
node is in layer 1 and the sink nodes in layer `.

A branching program can be thought of as a space-bounded model of computation where
space=log(width); from each state, we just look at 1 bit of the input. This is a clean model of
space-bounded computation which abstracts from model-dependent Turing-machine issues
such as keeping track of the position of the head on the input tape.

It is easy to see that AND : {0, 1}n → {0, 1} can be computed by a branching program of
width 2 and length n+ 1. One can have similar branching programs for the parity function.
However, it is not clear if, for example, the majority function can be computed by such
branching programs. It can be shown that every function on n bits can be computed by
a branching program of width 3 and exponential length. It was conjectured that majority
requires constant-width branching program of super-polynomial length ` ≥ nw(1).

In this lecture we present a surprising result by Barrington that in particular disproves
this conjecture.

2 Barrington’s Theorem

Theorem 1 (Small depth⇒ short branching program ). If f : {0, 1}n → {0, 1} is computable
by a circuit of depth d, then f is computable by a branching program of width 5 and length
` = 4d. In particular, if d = O(log n) then ` = poly(n); in particular, majority is computable
by a branching program of width 5 and polynomial length ` = nO(1).

For the proof, we will construct a group program and then “convert” it into a branching
program. Recall a group is a set of elements with an operation and inverses. We will be
working with S5, the group of permutations of 5 elements.

1



Definition 2. A group program of length ` is (g0
1, ..., g

0
` ), (g1

1, ..., g
1
` ), (k1, ..., k`) where for any

i, j: gj
i ∈ S5 and ki ∈ {1, . . . , n}. We say that this program α-computes f : {0, 1}n → {0, 1}

if ∀x,

f(x) = 1⇒
∏̀
i=1

g
xki
i = α

f(x) = 0⇒
∏̀
i=1

g
xki
i = 1G;

which we can write compactly as ∀x :
∏`

i=1 g
xki
i = αf(x).

Abusing notation we say that a permutation g ∈ S5 is a cycle if its graph consists of
exactly one cycle of length 5. For example, 1→ 5→ 2→ 3→ 4→ 1 is a cycle. We write it
compactly as (15234).

Theorem 3 (Small depth ⇒ short group program). Any function computable by circuit of
depth d is α-computed by a group program of length 4d for every cycle α.

Proof of Theorem 1 assuming Theorem 3. Let α = (1 2 3 4 5), consider the following branch-
ing program: nodes at layer i are labeled with xki

, edges from layer i to layer i+1 labeled
0/1 are g0

i /g
1
i . The start node is 1 and the accept node is 2. Then

f(x) = 1⇒
l∏

i=1

g
xki
i = (12345)⇒ start 2⇒ accept

f(x) = 0⇒
l∏

i=1

g
xk+i

i = 1G ⇒ start 1⇒ not accept.

3 Proof of the Group Program Theorem 3

Lemma 4 (Does not matter what cycle you compute with.). Let α, β ∈ S5 be two cycles, let
f : {0, 1}n → {0, 1}. Then f is α-computable with length ` ⇔ f is β-computable with length
`.

Proof. First observe that ∃ρ ∈ S5 such that α = ρ−1βρ. To see this let

α = (α1, α2, ..., α5),

β = (β1, β2, ..., β5),

ρ := (α1 → β1, α2 → β2, ..., α5 → β5).

2



Suppose that (g0
1, ..., g

0
` )(g1

1, ..., g
1
l )(k1, ...k`) β-computes f ; we claim that (ρg0

1, ..., g
0
`ρ
−1)(ρg1

1, ..., g
1
`ρ
−1)

(with the same indices ki) α-computes f . To see this, note that

∏̀
i=1

g
xki
i = 1G ⇒ ρ−1

l∏
i=1

g
xki
i ρ = ρ−1 · ρ = 1,

∏̀
i=1

g
xki
i = β ⇒ ρ−1

l∏
i=1

gxki
i ρ = ρ−1βρ = α.

Lemma 5 (f ⇒ 1−f). If f : {0, 1}n → {0, 1} is α-computable by a group program of length
`, so is 1− f .

Proof. First apply the previous lemma to α−1-compute f . Then multiply last group elements
g0

` and g1
` in the group program by α.

Lemma 6 (f, g ⇒ f ∧ g). If f is α-computable with length ` and g is β computable with
length ` then (f ∧ g) is (αβα−1β−1)-computable with length 4`.

Proof. Concatenate 4 programs: (α-computes f , β-computes g, α−1-computes f , β−1-computes
g). (f(x)=1)∧ (g(x)=1)⇒ concatenated program evaluates to (αβα−1β−1); but if either
f(x) = 0 or g(x) = 0 then the concatenated program evaluates to 0. For example, if
f(x) = 0 and g(x) = 1 then the concatenated program gives 1 · β · 1 · β−1 = 1.

It only remains to see that we can apply the previous lemma while still computing with
respect to a cycle.

Lemma 7. ∃α, β cycles such that αβα−1β−1 is a cycle.

Proof. Let α := (12345), β := (13542), we can check αβα−1β−1 is a cycle.

Proof of Theorem 3. By induction on d using previous lemmas.

3


