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ABSTRACT
In this paper we extend the work of Alfaro, Henzinger et al.
on interface theories for component-based design. Existing
interface theories often fail to capture functional relations
between the inputs and outputs of an interface. For ex-
ample, a simple synchronous interface that takes as input
a number n ≥ 0 and returns, at the same time, as output
n + 1, cannot be expressed in existing theories. In this pa-
per we provide a theory of relational interfaces, where such
input-output relations can be captured. Our theory sup-
ports synchronous interfaces, both stateless and stateful. It
includes explicit notions of environments and pluggability,
and satisfies fundamental properties such as preservation of
refinement by composition, and characterization of plugga-
bility by refinement. We achieve these properties by making
reasonable restrictions on feedback loops in interface com-
positions.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
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neering]: Interoperability—Interface definition languages
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1. INTRODUCTION
Component-based design has emerged as a significant chal-

lenge in building complex systems, such as embedded, cyber-
physical systems, in an efficient and reliable manner. The
size and complexity of such systems prohibit designing an
entire system from scratch, or building it as a single unit. In-
stead, the system must be designed as a set of components,
some built from scratch, some taken off the shelf, some in-
herited by legacy. Interfaces play a key role in component-
based design, as they provide the means to reason about
components. An interface can be seen as an abstraction of
a component: on one hand, such an abstraction captures in-
formation that is essential in order to use the component in
a given context; on the other hand, the abstraction hides un-
necessary information, making reasoning simpler and more
efficient.

Significant progress has been made in the past several
years toward the development of a comprehensive theory
of interfaces for component-based design. Such a theory has
been pioneered and developed in a series of papers by Alfaro,
Henzinger et al. (see [6, 5, 4, 7] for a sample). What has
been elusive, however, is a theory of relational interfaces,
that is, interfaces that specify relations between inputs and
outputs. Consider, for example, a synchronous component
that is supposed to take as input a number n ≥ 0 and re-
turn as output n + 1, in the same synchronous round. The
interface for such a component can be described as a binary
relation between the input and the output: the relation con-
taining all pairs (n, n+ 1), such that n ≥ 0. Such a relation
can be seen as a contract between the component and its
environment: the contract specifies the legal inputs that the
environment is allowed to provide to the component (in this
case n ≥ 0); and for every legal input, what are the legal
outputs that the component may produce when fed with
that input.

Existing interface theories, in particular those proposed in
the aforementioned works, only partially capture relational
interfaces. [5] defines interface automata, which can be used
to capture input-output relations in an asynchronous con-
currency model, and in a mostly operational manner. In a
more denotational setting, [6] defines relational nets, which
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are networks of processes that non-deterministically relate
input values to output values. [6] does not provide an inter-
face theory for the complete class of relational nets. Instead
it provides interface theories for subclasses, in particular:
rectangular nets which have no input-output dependencies;
total nets which can have input-output dependencies but
make no restrictions on the inputs (in this paper we call
such interfaces input-complete); and total and rectangular
nets which combine both restrictions above.

The interfaces provided in [6] for rectangular nets are
called assume/guarantee (A/G) interfaces. [6] studies state-
less A/G interfaces, while [7] studies also stateful A/G inter-
faces, in a synchronous setting similar to the one considered
in this paper. A/G interfaces separate the assumptions on
the inputs from the guarantees on the outputs, and as such
cannot capture input-output relations. [7] also discusses ex-
tended interfaces which are essentially the same as the re-
lational interfaces that we study in this paper. However,
difficulties with synchronous feedback loops (see discussion
below) lead [7] to conclude that extended interfaces are not
appropriate.

[4] considers synchronous Moore interfaces, defined by a
formula φi that specifies the legal values of the input vari-
ables at the next state, given the current state, and a formula
φo that specifies the legal values of the output variables at
the next state, given the current state. This formulation does
not allow to describe relations between inputs and outputs
at the same state, as our relational theory allows.

Both [6] and [7] can handle very general compositions of
interfaces, that can be obtained via two operators, namely,
parallel composition and connection (this is similar to the
denotational framework of [8]). This allows, in particu-
lar, arbitrary feedback loops to be created.1 Synchronous
feedback loops are a major source of problems when study-
ing relational interfaces. To illustrate some of the prob-
lems that arise, consider the following example, borrowed
from [7]. Suppose Itrue is an interface on input x and output
y, with trivial contract true, making no assumptions on the
inputs and no guarantees on the outputs. Suppose Iy 6=x is
another interface on x and y, with contract y 6= x, meaning
that it guarantees the value of the output will be different
from the value of the input. According to standard defini-
tions of refinement, Iy 6=x refines Itrue: this is because Iy 6=x

is “more deterministic” than Itrue (the output guarantees of
Iy 6=x are stronger). Now, consider the feedback connection
x = y. This could be considered an allowed connection for
Itrue, since it does not contradict its contract. But the same
connection contradicts the contract of Iy 6=x. As a result,
even though Iy 6=x refines Itrue, the feedback composition of
Iy 6=x does not refine the feedback composition of Itrue. This
means that one of the fundamental properties that an inter-
face theory should provide, namely, that composition pre-
serves refinement, would not hold in this case.

In this paper we propose a theory of relational interfaces.
Our theory relies on a notion of refinement which is input-
contravariant like the relations proposed in [2, 6, 7], but
not strictly output-covariant. We avoid problems created
by feedback loops by restricting the cases in which feedback
loops are allowed. In particular, we allow an output of an
interface I to be connected to one of its inputs x only if I

1 A feedback loop arises when the dependencies induced by a
set of connected interfaces contain a cycle, as in the example
shown in Figure 2.

is Moore with respect to x, meaning that the contract of I
does not depend on x.

Arguably, this is a reasonable restriction in practice. After
all, arbitrary feedback loops in synchronous models generally
create causality cycles that result in ambiguous semantics.
In many languages and tools these problems are avoided by
making restrictions similar to (in fact, stricter than) ours.
For example, tools such as Simulink from The MathWorks 2

or SCADE from Esterel Technologies 3 often require a unit-
delay block to be placed in every feedback loop.4 This re-
striction does not appear to result in a significant loss of
expressiveness in practice. Similar restrictions are used in
synchronous formalisms such as Lustre [3] or reactive mod-
ules [1].

Using the above restriction, we are able to derive a com-
prehensive theory of relational interfaces that supports sub-
stitutability (if I ′ refines I then I ′ can replace I in any con-
text), and preservation of refinement by composition (if com-
ponents I ′i refine components Ii then the composition of I ′i
refines the composition of Ii). Other properties of our theory
and contributions of this paper include the following:

We explicitly introduce the notions of environments and
pluggability of interfaces to environments. We also intro-
duce two notions of equivalence between interfaces: equiv-
alence of their contracts, and equivalence with respect to
environments (two interfaces are equivalent iff they can be
plugged to the same set of environments). We show that
these two equivalences coincide. We also prove that our no-
tion of refinement characterizes pluggability in the following
fundamental way: interface I ′ refines I iff I ′ can replace I
in every context (i.e., environment). (Note that this is a
stronger property than stepwise refinement: it is an iff in-
stead of an only if.) We show by example that alternative
definitions of refinement do not have this property.

We seamlessly handle stateless and stateful interfaces.
Stateful interfaces associate a potentially different contract
at every state. We model a state very simply and generally,
as a history of input/output values. This allows us to handle
finite as well as infinite-state interfaces. Stateless interfaces
can be viewed as a special case of stateful interfaces where
the contract is the same at all states.

In the stateful case, we distinguish between well-formed
and well-formable interfaces (the two notions coincide for
stateless interfaces). Well-formed interfaces are such that
their contract can always be satisfied at every reachable
state. Well-formable interfaces are not necessarily well-
formed, but can be made well-formed by appropriately re-
stricting their inputs. Refinement preserves well-formability
always, but it only preserves well-formedness under certain
conditions. As in [6], controller-synthesis type of procedures
can be used to transform finite-state well-formable interfaces
into well-formed ones. We should note that well-formability
has been implicitly used in previous works [6, 5, 7] as a
condition for interface compatibility, in the sense that these
works require the composition to be well-formable, in order
for it to be defined. Here, we take a different approach,
and define composition irrespectively of its well-formability.

2 See http://www.mathworks.com/products/simulink/.
3 See http://www.esterel-technologies.com/products/
scade-suite/.
4 Simulink provides the user with the option to ignore so-
called algebraic loops but this results in ambiguous (non-
deterministic) semantics.
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This allows us to state more general results. In particu-
lar, preservation of refinement by connection (Theorem 12)
holds independently of whether the connection yields a well-
formable interface or not.

We propose a hiding operator that allows removal of a
subset of the output variables in a contract by projecting
them out. This is useful when composing interfaces, where
often many variables end up being equal. Hiding is always
possible for stateless interfaces, and corresponds to existen-
tially quantifying outputs in the contract. The situation is
more subtle in the stateful case, where we need to ensure
that the “hidden” variables do not influence the evolution of
the contract.

Our theory supports shared refinement of two interfaces I
and I ′, which is important for component reuse, as argued
in [7]. A shared refinement operator I u I ′ is proposed in
the discussion section of [7] for extended (i.e., relational)
interfaces, and it is conjectured that this operator represents
the greatest lower bound with respect to refinement. We
show that this holds only if a shared refinability condition is
imposed. This condition states that for every inputs that is
legal in both I and I ′, the corresponding sets of outputs of
I and I ′ must have a non-empty intersection.

2. PRELIMINARIES, NOTATION
In this paper we use first-order logic (FOL) as a language

to describe contracts.5 For an introduction to FOL, see, for
instance, [10]. We use true and false for logical constants
true and false, ¬,∧,∨,→,≡ for logical negation, conjunc-
tion, disjunction, implication, and equivalence, and ∃ and
∀ for existential and universal quantification, respectively.
We will use := when defining concepts or introducing new
notation, for instance, x0 := max{1, 2, 3} defines x0 to be
the maximum of the set {1, 2, 3}.

Let V be a finite set of variables. A property over V
is a FOL formula φ such that any free variable of φ is in
V . The set of all properties over V is denoted F(V ). Let
φ be a property over V and V ′ be a finite subset of V ,
V ′ = {v1, v2, ..., vn}. Then, ∃V ′ : φ is shorthand for ∃v1 :
∃v2 : ... : ∃vn : φ. Similarly, ∀V ′ : φ is shorthand for
∀v1 : ∀v2 : ... : ∀vn : φ.

We will implicitly assume that all variables are typed,
meaning that every variable is associated with a certain do-
main. An assignment over a set of variables V is a (total)
function mapping every variable in V to a certain value in
the domain of that variable. The set of all assignments over
V is denoted A(V ). If a is an assignment over V1 and b is
an assignment over V2, and V1, V2 are disjoint, we use (a, b)
to denote the combined assignment over V1 ∪V2. A formula
φ is satisfiable iff there exists an assignment a over the free
variables of φ such that a satisfies φ, denoted a |= φ. A
formula φ is valid iff it is satisfied by every assignment.

If S is a set, S∗ denotes the set of all finite sequences
made up of elements in S. S∗ includes the empty sequence,
denoted ε. If s, s′ ∈ S∗, then s · s′ is the concatenation of
s and s′. |s| denotes the length of s ∈ S∗, with |ε| = 0 and
|s · a| = |s| + 1, for a ∈ S. If s = a1a2 · · · an, then the i-th
element of the sequence, ai, is denoted si, for i = 1, ..., n.

5 As mentioned in the introduction, contracts are essentially
relations between inputs and outputs. Our theory holds
for such relations, independently from how the relations are
specified. FOL formulae is one possible language, but other
languages could be used as well.

3. RELATIONAL INTERFACES
Definition 1 (Relational interface). A relational

interface (or simply interface) is a tuple I = (X,Y, ξ) where
X and Y are two finite and disjoint sets of input and output
variables, respectively, and ξ is a total function

ξ : A(X ∪ Y )∗ → F(X ∪ Y )

Recall that A(V ) is the set of all assignments over set of
variables V . Therefore, A(X ∪ Y )∗ is the set of all finite
sequences of assignments over X ∪Y . Note that we allow X
or Y to be empty: if X is empty then I is a source interface;
if Y is empty then I is a sink. An element of A(X ∪ Y )∗

is called a state. The initial state is the empty sequence
ε. Recall that F(X ∪ Y ) is the set of all properties over
X ∪ Y . Therefore, ξ associates with every state s a formula
ξ(s) over X ∪ Y . This formula acts as the contract between
I and its environment at that state. The contract changes
dynamically, as the state of I changes.

Definition 2 (Assumptions, guarantees). Given a
contract φ ∈ F(X ∪ Y ), the input assumption of φ is the
formula in(φ) := ∃Y : φ. The output guarantee of φ is the
formula out(φ) := ∃X : φ. Note that in(φ) is a property over
X and out(φ) is a property over Y . Also note that φ→ in(φ)
and φ→ out(φ) are valid formulae for any φ.

Intuitively, an interface operates in a synchronous man-
ner, in an infinite sequence of synchronous rounds. Suppose
that at the beginning of a given round the state of I is s.
The environment presents I with an assignment aX over the
input variables X, such that aX satisfies the input assump-
tions in(ξ(s)). I then chooses an assignment aY over the
output variables Y , such that together the two assignments
satisfy ξ(s). The combined assignments yield an assignment
over X ∪ Y , a := (aX , aY ). At the end of the round, the
new state of I is s · a. See also Definition 8 that follows.

Definition 3 (Stateless interface). An interface
I = (X,Y, ξ) is stateless if for all s, s′ ∈ A(X ∪ Y )∗, ξ(s) =
ξ(s′).

That is, a stateless interface is one where the contract is
independent of the state. For a stateless interface, we can
treat ξ as a property, instead of as a function that maps
states to properties. For clarify, we will write I = (X,Y, φ)
for a stateless interface, where φ is a property over X ∪ Y .
We also write in(I), out(I) instead of in(φ), out(φ).

Example 1. Consider a component which is supposed to
take as input a positive number n and return n or n+ 1 as
output. We can capture such a component in different ways.
One way is by the following stateless interface:

I1 := ({x}, {y}, x > 0 ∧ (y = x ∨ y = x+ 1)}).

Here, x is the input variable and y is the output variable.
The contract of I1 explicitly forbids zero or negative values
for x. Indeed, we have in(I1) ≡ x > 0.

Another possible stateless interface for this component is:

I2 := ({x}, {y}, x > 0 → (y = x ∨ y = x+ 1)}).

The contract of I2 is different from that of I1: it allows
x ≤ 0, but makes no guarantees about the output y in that
case. I2 is an input-complete interface, in the sense that
it accepts all inputs. Indeed, we have in(I2) ≡ true. Input-
complete interfaces are discussed in detail in Section 9.



In general, the state space of an interface is infinite. In
some cases, however, only a finite set of states is needed
to specify ξ. For example ξ may be specified by a finite-
state automaton, as in [7]. Every state of the automaton is
labeled with a contract. Every transition of the automaton
is labeled with a guard, i.e., a condition on the input and
output variables. Outgoing transitions from a state must
have disjoint guards (for determinism) and the union of such
guards must be true (for absence of deadlocks). An interface
that can be specified as a finite-state automaton is called a
finite-state interface.

The A/G interfaces considered in [5, 7] are a special case
of the relational interfaces that we consider in this paper. A
stateless A/G interface is a tuple (X,Y, φX , φY ), where φX

is a property on X representing the input assumptions and
φY is a property on Y representing the output guarantees.
This interface can simply be represented as the relational
interface (X,Y, φX ∧ φY ).

Definition 1 allows for the contract ξ(s) at a certain state
s to be an unsatisfiable property. On the other hand, not
all such states may generally be reachable, because not all
inputs or outputs are legal. We only care about states with
unsatisfiable contracts when these states are reachable. Let
us define reachable states formally.

A run of I is a state s = a1 · · · ak, with k ≥ 0 (if k = 0
then s = ε), such that ∀i ∈ {1, ..., k} : ai |= ξ(a1 · · · ai−1). A
state is reachable iff it is a run. The set of reachable states
of I is denoted R(I). By definition, ε ∈ R(I), for any I.

Definition 4 (Well-formed interface). An inter-
face I = (X,Y, ξ) is well-formed iff for all s ∈ R(I), ξ(s) is
satisfiable.

Example 2. Let I := ({x}, {y}, ξ) where x, y are implic-
itly considered to be Booleans, and ξ(ε) := true, ξ((x, )·s) :=
false, ξ((¬x, ) · s) := true, for all s. (x, ) denotes any as-
signment where x is true and (¬x, ) denotes any assignment
where x is false. I is not well-formed, because it has reach-
able states with contract false (all states starting with x being
true). I can be transformed into a well-formed interface by
restricting ξ(ε) so that all reachable states with unsatisfi-
able contracts are avoided. In particular, setting ξ(ε) := ¬x,
achieves this goal.

Example 2 shows that some interfaces, even though they
are not well-formed, can be turned into well-formed inter-
faces by appropriately restricting their inputs. This moti-
vates the following definition:

Definition 5 (Well-formable interface). An inter-
face I = (X,Y, ξ) is well-formable if there exists a well-
formed interface I ′ = (X,Y, ξ′) such that: for all s ∈ R(I ′),
ξ′(s) ≡ ξ(s) ∧ φs, where φs is some property over X.

Clearly, every well-formed interface is well-formable, but
the opposite is not true as Example 2 shows. For stateless
interfaces, the two notions coincide, however.

Theorem 1. A stateless interface I is well-formed iff it
is well-formable.

Due to lack of space, proofs are omitted. We do include,
however, the lemmata that are used in the proofs. The
proofs can be found in the technical report version of this

paper [11]. (Note that, unfortunately, the technical report
version contains a typo in the statement of Theorem 11.)

For a finite-state interface, there exists a procedure to
check whether it is well-formable, and if this is the case,
transform it into a well-formed interface. Such a procedure
essentially attempts to find a winning strategy in a game, as
pointed out in [5]. Roughly speaking, the procedure consists
in recursively marking states as illegal, until no more states
can be marked. Initially, all states s such that ξ(s) is unsat-
isfiable are marked as illegal. Then, repeatedly, a state s is
marked illegal if there exists no legal input assignment at s.
A legal input assignment at s is an assignment a to input
variables, such that for any assignment b to output variables,
if (a, b) |= ξ(s) then the successor state s · (a, b) is legal. If at
the end of this operation the initial state is marked illegal,
then the interface is not well-formable, otherwise it is. Dur-
ing the procedure, the contract ξ(s) of a legal state s can be
restricted to allow only legal input assignments.

Definition 6 (Equivalence). Interfaces I = (X,Y, ξ)
and I ′ = (X ′, Y ′, ξ′) are equivalent, denoted I ≡ I ′, if
X = X ′, Y = Y ′, and for all s ∈ R(I) ∩ R(I ′), the for-
mula ξ(s) ≡ ξ′(s) is valid.

Lemma 1. If I ≡ I ′ then R(I) = R(I ′).

4. ENVIRONMENTS, PLUGGABILITY

Definition 7 (Environment). An environment is a
tuple E = (X,Y, hX , hY ), where X and Y are as in Defi-
nition 1, and hX , hY are total functions

hX : A(X ∪ Y )∗ → F(X), hY : A(X ∪ Y )∗ → F(Y )

hX represents the guarantees on the inputs X that the
environment provides at a given state. hY represents the
guarantees that the environment expects on the outputs Y .
See Definition 8 that follows.

States are defined for environments in the same way as
for interfaces. A stateless environment is one where hX(s)
and hY (s) are constant for all states s. We define the set of
reachable states of an environment E, denoted R(E), in a
similar way as for interfaces: ε ∈ R(E), and s · a ∈ R(E)
iff s ∈ R(E) and a = (aX , aY ) is an assignment such that
aX |= hX(s) and aY |= hY (s). An environment E is said
to be live if for all s ∈ R(E), both hX(s) and hY (s) are
satisfiable.

Definition 8 (Pluggability). Interface I = (X ′, Y ′, ξ)
is pluggable to environment E = (X,Y, hX , hY ), denoted
I |= E, iff X ′ = X, Y ′ = Y , and for all s ∈ R(IE), the
following formula is valid:

hX(s) →
`
in(ξ(s)) ∧ (ξ(s) → hY (s))

´
(1)

where IE is the interface defined as follows:

IE := (X,Y, ξE) (2)

ξE(s) := ξ(s) ∧ hX(s), for any s ∈ A(X ∪ Y )∗ (3)

Pluggability can be intuitively seen as a game between the
interface and the environment [6]. Suppose s is the current
state of I and E (initially, s = ε). If hX(s) is unsatisfiable,
then E decides to stop the game. Otherwise, E chooses
some input assignment aX satisfying hX(s). If aX violates



in(ξ(s)), then Condition (1) is violated, and I is not plug-
gable to E: the “blame” here is on E, which provides too
weak guarantees on the inputs. Otherwise, I chooses an out-
put assignment aY such that the input-output assignment
a := (aX , aY ) satisfies ξ(s). If aY violates hY (s)), then Con-
dition (1) is violated, which again means I is not pluggable
to E: in this case the “blame” is on I, which provides too
weak guarantees on the outputs. Otherwise, a round is com-
plete, and the new state (for both I and E) is s·a. The game
continues in the same manner.

Example 3. Consider stateless interfaces I1 and I2 from
Example 1 and stateless environment E1 := ({x}, {y}, x >
0, y > 0). It can be seen that both I1 and I2 are pluggable
to E1. On the other hand, none of I1, I2 are pluggable to
E2 := ({x}, {y}, x ≥ 0, y > 0): the constraint x ≥ 0 is not
strong enough to meet the input assumption x > 0. No-
tice that I2 does not explicitly impose this input assumption,
however, it implicitly does, because it makes no guarantees
on the outputs when x > 0 is violated. Finally, consider
E3 := ({x}, {y}, true, true). I2 is pluggable to E3: E3 pro-
vides no guarantees on the inputs, but expects no guaran-
tees on the outputs either. I1 is not pluggable to E3 because
true 6→ x > 0.

The interface IE defined by (2) and (3) is intended to cap-
ture the reachable states of the “closed-loop” composition of
E and I. These reachable states are a subset of the reach-
able states of I, because the environment E may in general
provide only a restricted set of inputs, among all possible
legal inputs for I. The contract function ξE of IE captures
exactly that. The following lemma states that the reachable
states of IE are indeed a subset of those of I.

Lemma 2. Let I be an interface, E be an environment,
and IE be defined as in Definition 8. Then, R(IE) ⊆ R(I).

Lemma 3. Let I, I ′ be interfaces, E be an environment,
and IE , I

′
E be defined as in Definition 8. If I ≡ I ′ then

R(IE) = R(I ′E).

Theorem 2. If an interface I is well-formable then there
exists a live environment E such that I |= E.

Since well-formed implies well-formable, a corollary of The-
orem 2 is that every well-formed interface can be plugged
to some live environment. Note that there exist non-well-
formed interfaces that can nevertheless be plugged to live
environments: these environments restrict the inputs, so
states with unsatisfiable contracts are never reached. There
exist also non-well-formable interfaces that can be plugged
to non-live environments: these environments “stop” after
some point, i.e., are such that hX(s) ≡ false for some state
s. Finally, there exist non-well-formed stateless interfaces
which can be plugged into the trivial non-live environment
that stops immediately (i.e., is such that hX(ε) ≡ false).

Definition 9 (Equivalence w.r.t. environments).
Two interfaces I and I ′ are equivalent w.r.t. environments,
denoted I ≡e I

′, if for any environment E, I is pluggable to
E iff I ′ is pluggable to E.

Theorem 3. For any interfaces I, I ′, I ≡ I ′ iff I ≡e I
′.

5. COMPOSITION
We define two types of composition. First, we can com-

pose two interfaces I1 and I2 by connecting some of the out-
put variables of I1 to some of the input variables of I2. One
output can be connected to many inputs, but an input can
be connected to at most one output. The connections define
a new stateless interface. Thus, the composition process can
be repeated to yield arbitrary (acyclic) interface diagrams.
Composition by connection is associative (Theorem 5), so
the order in which interfaces are composed does not matter.

Two interfaces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) are
called disjoint if they have disjoint sets of input and out-
put variables: (X ∪ Y ) ∩ (X ′ ∪ Y ′) = ∅.

Definition 10 (Composition by connection). Let
Ii = (Xi, Yi, ξi), for i = 1, 2, be two disjoint interfaces. A
connection θ between I1, I2, is a finite set of pairs of vari-
ables, θ = {(yi, xi) | i = 1, ...,m}, such that: (1) ∀(y, x) ∈
θ : y ∈ Y1 ∧ x ∈ X2, and (2) ∀(y, x), (y′, x′) ∈ θ : x = x′ →
y = y′. The external input and output variables are the sets
of variables Xθ(I1,I2) and Yθ(I1,I2), respectively, defined as
follows (where Xθ := {x | ∃(y, x) ∈ θ}):

Xθ(I1,I2) := (X1 ∪X2) \Xθ

Yθ(I1,I2) := Y1 ∪ Y2 ∪Xθ

The connection θ defines the composite interface θ(I1, I2) :=
(Xθ(I1,I2), Yθ(I1,I2), ξ), where, for every s ∈ A(Xθ(I1,I2) ∪
Yθ(I1,I2))

∗:

ξ(s) := ξ1(s1) ∧ ξ2(s2) ∧ ρθ ∧ ∀Yθ(I1,I2) : Φ

Φ := (ξ1(s1) ∧ ρθ) → in(ξ2(s2)) (4)

ρθ :=
^

(y,x)∈θ

y = x

and, for i = 1, 2, si is defined to be the projection of s to
variables in Xi ∪ Yi.

Definition 10 may seem unnecessarily complex at first
sight. In particular, the reader may doubt the necessity of
the term ∀Yθ(I1,I2) : Φ, in the definition of ξ(s). Informally
speaking, this term states that, no matter which outputs
I1 chooses to produce for a given input, all such outputs
are legal inputs for I2 (when connected). This condition is
essential for the validity of our interface theory. Omitting
this condition would result in a fundamental property of the
theory, namely, preservation of refinement by composition
(Theorem 12) not being true, as will be explained in Exam-
ple 12.

Notice that, by definition of θ, Xθ ⊆ X2. This implies
that X1 ⊆ Xθ(I1,I2), that is, every input variable of I1 is
also an input variable of θ(I1, I2).

A connection θ is allowed to be empty. In that case,
ρθ ≡ true, and the composition can be viewed as the parallel
composition of two interfaces. If θ is empty, we write I1‖I2
instead of θ(I1, I2). As may be expected, the contract of
the parallel composition at a given global state is the con-
junction of the original contracts at the corresponding local
states, which implies that parallel composition is commuta-
tive:

Lemma 4. Consider two disjoint interfaces, Ii =
(Xi, Yi, ξi), i = 1, 2. Then I1‖I2 = (X1 ∪ X2, Y1 ∪ Y2, ξ),
where ξ is such that for all s ∈ A(X1 ∪ X2 ∪ Y1 ∪ Y2)

∗,



ξ(s) ≡ ξ1(s1) ∧ ξ2(s2), where, for i = 1, 2, si is the projec-
tion of s to Xi ∪ Yi.

Theorem 4 (Parallel composition is commutative).
For two disjoint interfaces I1 and I2, I1‖I2 ≡ I2‖I1.

Theorem 5 (Connection is associative). Let
I1, I2, I3 be interfaces. Let θ12 be a connection between I1, I2,
θ13 a connection between I1, I3, and θ23 a connection between
I2, I3. Then:

(θ12 ∪ θ13) (I1, θ23(I2, I3)) ≡ (θ13 ∪ θ23) (θ12(I1, I2), I3)

Example 4. Consider the diagram of stateless interfaces
shown in Figure 1, where:

Iid := ({x1}, {y1}, y1 = x1)

I+1 := ({x2}, {y2}, y2 = x2 + 1)

Ieq := ({z1, z2}, {}, z1 = z2)

This diagram can be viewed as the equivalent compositions

θ2
`
I+1, θ1(Iid, Ieq)

´
≡ (θ1 ∪ θ2)

`
(Iid‖I+1), Ieq

´
where θ1 := {(y1, z1)} and θ2 := {(y2, z2)}. We proceed to
compute the contract of the interface defined by the diagram.
It is easier to consider the composition (θ1∪θ2)((Iid‖I+1), Ieq).
Define θ3 := θ1 ∪ θ2. From Lemma 4 we get:

Iid‖I+1 = ({x1, x2}, {y1, y2}, y1 = x1 ∧ y2 = x2 + 1)

Then, for θ3((Iid‖I+1), Ieq), Formula (4) gives:

Φ := (y1 = x1 ∧ y2 = x2 + 1 ∧ y1 = z1 ∧ y2 = z2) → z1 = z2

By quantifier elimination, we get

∀y1, y2, z1, z2 : Φ ≡ x1 = x2 + 1

therefore

θ3((Iid‖I+1), Ieq) = ({x1, x2}, {y1, y2, z1, z2},
y1 = x1 ∧ y2 = x2 + 1 ∧ z1 = z2

∧ y1 = z1 ∧ y2 = z2 ∧ x1 = x2 + 1)

Notice that in(θ3((Iid‖I+1), Ieq)) ≡ x1 = x2 + 1. That is,
because of the connection θ, new assumptions have been gen-
erated for the external inputs x1, x2.

A composite interface is not guaranteed to be well-formed,
even if its components are well-formed:

Example 5. Consider the composition θ3((Iid‖I+1), Ieq)
introduced in Example 4, and let Iy be the stateless interface
defined as follows:

Iy := ({}, {y}, true)

Let θ4 := {(y, x1), (y, x2)}. That is, the output y of Iy is con-
nected to both external inputs x1 and x2 of θ3((Iid‖I+1), Ieq).
The composite interface I4 := θ4(Iy, θ3((Iid‖I+1), Ieq) is not
well-formed, even though both Iy and θ3((Iid‖I+1), Ieq) are
well-formed. This is because, for I4, Formula (4) gives

Φ := (true ∧ y = x1 ∧ y = x2) → x1 = x2 + 1

therefore,

∀x1, x2, y1, y2, z1, z2 : Φ ≡ y = y + 1

Since the above formula is unsatisfiable, I4 is not well-formed.

Iid
- -x1 y1

I+1
- -x2 y2

Ieq

-
-

z1

z2

Figure 1: The interface diagram of Example 4.

Notice that all interfaces involved in Example 5 are state-
less. Since well-formedness and well-formability coincide for
stateless interfaces, Example 5 shows that connection does
not preserve well-formability either: I4 is not well-formable,
even though both Iy and θ3((Iid‖I+1), Ieq) are well-formed.
Also note that, contrary to other works [6, 5, 7], we do not
impose a compatibility condition on connections. We could
easily impose well-formedness or well-formability as a com-
patibility condition. But we prefer not to do so, because
this allows us to state more general results. In particular,
Theorem 12 holds independently of whether the connection
yields a well-formed interface or not. And together with
Theorems 9 and 10, it guarantees that if the refined compos-
ite interface is well-formed/formable, then so is the refining
one.

Connections can capture cascade composition, but not
feedback. To capture feedback, we define a second type of
composition, called feedback composition, where an output
variable of an interface I is connected to one of its input
variables x. For feedback, I is required to be Moore with re-
spect to x. The term“Moore interfaces”has been introduced
in [4]. Our definition is similar in spirit, but less restrictive
than the one in [4]. Both definitions are inspired by Moore
machines, where the outputs are determined by the current
state alone and do not depend directly on the input. In
our version, an interface is Moore with respect to a given
input variable x, meaning that the contract may depend on
the current state as well as on input variables other than x.
This allows to connect an output to x to form a feedback
loop without creating causality cycles.

Definition 11 (Moore interfaces). An interface
I = (X,Y, ξ) is Moore with respect to x ∈ X iff for all
s ∈ R(I), ξ(s) is a property over (X ∪ Y ) \ {x}. I is Moore
when it is Moore with respect to every x ∈ X.

Example 6. A unit delay is a basic building block in
many modeling languages (including Simulink and SCADE).
Its specification is roughly: “output at time k the value of
the input at time k − 1; at time k = 0 (initial time), output
some initial value v0”. We can capture this specification as
a Moore interface (with respect to its unique input variable)
Iud := ({x}, {y}, ξud), where ξud is defined as follows:

ξud(ε) := (y = v0)

ξud(s · a) := (y = a(x))

That is, initially the contract guarantees y = v0. Then,
when the state is some sequence s ·a, the contract guarantees
y = a(x), where a(x) is the last value assigned to input x.

Definition 12 (Composition by feedback). Let
I = (X,Y, ξ) be a Moore interface with respect to some input
port x ∈ X. A feedback connection κ on I is a pair (y, x)
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Figure 2: An interface diagram with feedback.

such that y ∈ Y . Define ρκ := (x = y). The feedback
connection κ defines the interface:

κ(I) := (X \ {x}, Y ∪ {x}, ξκ) (5)

ξκ(s) := ξ(s) ∧ ρκ, for all s ∈ A(X ∪ Y )∗ (6)

Theorem 6 (Feedback is commutative). Let I =
(X,Y, ξ) be Moore with respect to both x1, x2 ∈ X, where
x1 6= x2. Let κ1 = (y1, x1) and κ2 = (y2, x2) be feedback
connections. Then κ1(κ2(I)) ≡ κ2(κ1(I)).

Example 7. Consider the diagram of interfaces shown in
Figure 2. Suppose that IM is a Moore interface with respect
to u. This diagram can be expressed as the composition

κ
“
θ

`
I1, (I2‖IM )

´”
where θ := {(y1, z1), (y2, x2)} and κ := (w, u).

Lemma 5. Let I be a Moore interface with respect to some
of its input variables, and let κ be a feedback connection on
I. Then R(κ(I)) ⊆ R(I).

Lemma 6. Let I = (X,Y, ξ) be a Moore interface with
respect to x ∈ X, and let κ = (y, x) be a feedback connection
on I. Let κ(I) = (X \ {x}, Y ∪ {y}, ξκ). Then for any
s ∈ R(κ(I)), the formula in(ξκ(s)) ≡ in(ξ(s)) is valid.

Theorem 7 (Feedback preserves well-formedness).
Let I be a Moore interface with respect to some of its input
variables, and let κ be a feedback connection on I. If I is
well-formed then κ(I) is well-formed.

Feedback does not preserve well-formability:

Example 8. Consider a finite-state interface If with two
states, s0 (the initial state) and s1, one input variable x and
one output variable y. If remains at state s0 when x 6= 0
and moves from s0 to s1 when x = 0. Let φ0 := y = 0 be
the contract at state s0 and let φ1 := false be the contract
at state s1. If is not well-formed because φ1 is unsatisfiable
while state s1 is reachable. If is well-formable, however:
it suffices to restrict φ0 to φ′0 := y = 0 ∧ x 6= 0. Denote
the resulting (well-formed) interface by I ′f . Note that If is
Moore with respect to x, whereas I ′f is not. Let κ be the
feedback connection (y, x). Because If is Moore, κ(If ) is
defined, and is such that its contract at state s0 is y = 0∧x =
y, and its contract at state s1 is false ∧ x = y ≡ false. κ(If )
is not well-formable: indeed, y = 0 ∧ x = y implies x = 0,
therefore, state s1 cannot be avoided.

6. HIDING
As can be seen in Example 4, composition often creates

redundant output variables, in the sense that some of these
variables are equal to each other. This happens because
input variables that get connected become output variables.

To remove redundant (or other) output variables, we pro-
pose a hiding operator. For a stateless interface I = (X,Y, φ),
the (stateless) interface resulting from hiding a subset of out-
put variables Y ′ ⊆ Y can simply be defined as:

hide(Y ′, I) := (X,Y \ Y ′, ∃Y ′ : φ)

This definition does not directly extend to the general case of
stateful interfaces, however. The reason is that the contract
of a stateful interface I may depend on the history of an
output y. Then, hiding y is problematic because it is unclear
how the contracts of different histories should be combined.
To avoid this problem, we allow hiding only those outputs
which do not influence the evolution of the contract.

Given s, s′ ∈ A(X∪Y )∗ such that |s| = |s′| (i.e., s, s′ have
same length), and given Z ⊆ X ∪ Y , we say that s and s′

agree on Z, denoted s =Z s′, when for all i ∈ {1, ..., |s|},
and all z ∈ Z, si(z) = s′i(z). Given interface I = (X,Y, ξ),
we say that ξ is independent from Z if for every s, s′ ∈
A(X ∪Y )∗, s =(X∪Y )\Z s′ implies ξ(s) = ξ(s′). That is, the
evolution of the variables in Z does not affect the evolution
of the contract of I.

Notice that ξ being independent from Z does not imply
that the contracts of I cannot refer to variables in Z. Indeed,
all stateless interfaces trivially satisfy the independence con-
dition: their contracts are invariant in time, i.e., they do not
depend on the evolution of variables. Clearly, the contract
of a stateless interface can refer to any of its variables.

When ξ is independent from Z, variables in Z can be
hidden. In particular, ξ can be viewed as a function from
A((X ∪ Y ) \ Z)∗ to F(X ∪ Y ) instead of a function from
A(X ∪ Y )∗ to F(X ∪ Y ). We use this when we write ξ(s)
for s ∈ A((X ∪ Y ) \ Z)∗ in the definition the follows:

Definition 13 (Hiding). Let I = (X,Y, ξ) be an in-
terface and let Y ′ ⊆ Y , such that ξ is independent from Y ′.
Then, hide(Y ′, I) is defined to be the interface

hide(Y ′, I) := (X,Y \ Y ′, ξ′) (7)

such that for any s ∈ A(X ∪ Y \ Y ′)∗, ξ′(s) := ∃Y ′ : ξ(s).

7. REFINEMENT

Definition 14 (Refinement). Consider two inter-
faces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′). We say that I ′

refines I, written I ′ v I, iff X = X ′, Y = Y ′, and for any
s ∈ R(I) ∩R(I ′), the following formulae are valid:

in(ξ(s)) → in(ξ′(s)) (8)`
in(ξ(s)) ∧ ξ′(s)

´
→ ξ(s) (9)

This definition is similar in spirit to other input-
contravariant refinement relations, such as alternating re-
finement [2] or refinement of A/G interfaces [6, 7], which,
roughly speaking, state that I ′ refines I iff I ′ accepts more
inputs and produces less outputs than I. In the case of A/G
interfaces, where input assumptions are separated from out-
put guarantees, this can be simply stated as in → in′ and
out′ → out. Our refinement is not strictly output-covariant,



however: it requires ξ′(s) → ξ(s) only for those inputs that
are legal in I.

The reader may wonder why Condition (9) could not be
replaced with a simpler condition, namely:

ξ′(s) → ξ(s) (10)

Indeed, for input-complete interfaces, Conditions (8) and (9)
are equivalent to Condition (10), (see Theorem 21). In gen-
eral, however, the two definitions are different in a profound
way. Our definition characterizes pluggability in the sense of
Theorem 11: I ′ refines I iff I ′ can replace I in any context.
If we used Condition (10) instead of (9), then this character-
ization would not hold. We demonstrate this by an example.

Example 9. Consider interface I1 from Example 1 and
interface Iid := ({x}, {y}, x = y). It can be checked that
Iid v I1. If we used Condition (10) instead of Condition (9),
however, then Iid would not refine I1: this is because x =
y 6→ x > 0. Yet there is no environment E such that I1 |= E
but Iid 6|= E: this follows from Theorem 11.

Perhaps surprisingly, among all interfaces with same sets of
input and output variables, the interface with contract false
is the “top” element with respect to the v order, that is,
it is refined by every other interface. This is in accordance
with Theorem 11. The false interface is pluggable only in
the trivial environment that stops immediately. Clearly, any
other interface can be plugged into this environment as well.

We proceed to state our main results about refinement.

Lemma 7. Let I, I ′, I ′′ be interfaces and suppose I ′′ v I ′

and I ′ v I. Then R(I) ∩R(I ′′) ⊆ R(I ′).

Theorem 8 (Reflexivity, transitivity). v is a re-
flexive and transitive relation on interfaces.

Refinement preserves well-formedness for stateless inter-
faces:

Theorem 9. Let I, I ′ be stateless interfaces such that I ′ v
I. If I is well-formed then I ′ is well-formed.

Theorem 9 does not generally hold for stateful interfaces:
the reason is that, because I ′ may accept more inputs than
I, there may be states that are reachable in I ′ but not in I,
and the contract of I ′ in these states may be unsatisfiable.
When this situation does not occur, refinement preserves
well-formedness also in the stateful case. Moreover, refine-
ment always preserves well-formability:

Theorem 10. Let I, I ′ be interfaces such that I ′ v I. If
I is well-formed and R(I ′) ⊆ R(I) then I ′ is well-formed.
Moreover, if I is well-formable then I ′ is well-formable.

The following two lemmata, together with Lemma 2, are
used in the proof of Theorem 11.

Lemma 8. Consider properties φ, φ′ over X∪Y such that“
in(φ) → in(φ′)

”
∧

“`
in(φ) ∧ φ′

´
→ φ

”
is valid. Then for any property ψ over Y , the following
formula is also valid:`

in(φ) ∧ (φ→ ψ)
´
→

`
in(φ′) ∧ (φ′ → ψ)

´

Lemma 9. Let I, I ′ be interfaces and E be a environment.
If I is pluggable to E and I ′ v I then R(I ′E) ⊆ R(IE).

Theorem 11 is one of the main properties of our theory.
It states that refinement characterizes pluggability.

Theorem 11 (Refinement and pluggability).
I ′ v I iff for all environments E, I |= E implies I ′ |= E.

The following lemma is used in the proof of Theorem 12.

Lemma 10. Consider two disjoint interfaces I1 and I2,
and a connection θ between I1, I2. Let R1 and R2 be the
projections of R(θ(I1, I2)) to states over the variables of I1
and I2, respectively. Then R1 ⊆ R(I1) and R2 ⊆ R(I2).

Theorems 12 and 13 state another main property of our
theory, namely, that refinement is preserved by composition.

Theorem 12 (Connection preserves refinement).
Consider two disjoint interfaces I1 and I2, and a connection
θ between I1, I2. Let I ′1, I

′
2 be interfaces such that I ′1 v I1

and I ′2 v I2. Then, θ(I ′1, I
′
2) v θ(I1, I2).

Theorem 13 (Feedback preserves refinement).
Let I, I ′ be interfaces such that I ′ v I. Suppose both I and
I ′ are Moore interfaces with respect to one of their input
variables, x. Let κ = (y, x) be a feedback connection. Then
κ(I ′) v κ(I).

Note that the assumption that I ′ be Moore w.r.t. x in
Theorem 13 is essential. Indeed, Mooreness is not generally
preserved by refinement, as Example 10 shows.

Example 10. Consider the stateless interfaces Ieven :=
({x}, {y}, y mod 2 = 0), where mod denotes the modulo
operator, and I×2 := ({x}, {y}, y = 2x). Ieven is Moore.
I×2 is not Moore. Yet I×2 v Ieven.

Thanks to Theorems 9 and 10, a corollary of Theorem 12
is that composition by connection preserves well-formability
for general interfaces, and well-formedness for stateless inter-
faces. Similarly, a corollary of Theorem 13 is that feedback
composition preserves well-formability for general Moore in-
terfaces, and well-formedness for stateless Moore interfaces.

8. SHARED REFINEMENT
Shared refinement is introduced in [7] as a mechanism to

combine two interfaces I and I ′ into a single interface I u I ′
that refines both I and I ′: IuI ′ is able to accept inputs that
are legal in either I or I ′, and provide outputs that are legal
in both I and I ′. Because of this, I u I ′ can replace both I
and I ′, which, as argued in [7], is important for component
reuse.

A shared refinement operator for extended (i.e., relational)
interfaces is proposed in the discussion section of [7], and it is
conjectured that this operator represents the greatest lower
bound with respect to refinement. We show that this holds
only if a shared refinability condition is imposed. This con-
dition states that for every inputs that is legal in both I
and I ′, the corresponding sets of outputs of I and I ′ must
have a non-empty intersection. Otherwise, it is impossible
to provide an output that is legal in both I and I ′.



Definition 15 (Shared refinement). Two interfaces
I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) are shared-refinable if
X = X ′, Y = Y ′ and the following formula is true for all
s ∈ R(I) ∩R(I ′):

∀X :
`
in(ξ(s)) ∧ in(ξ′(s))

´
→ ∃Y : (ξ(s) ∧ ξ′(s)) (11)

In that case, the shared refinement of I and I ′, denoted IuI ′,
is the interface:

I u I ′ := (X,Y, ξu)

ξu(s) :=

8>><>>:
`
in(ξ(s)) ∨ in(ξ′(s))

´
∧

`
in(ξ(s)) → ξ(s)

´
∧`

in(ξ′(s)) → ξ′(s)
´
, if s ∈ R(I) ∩R(I ′)

ξ(s), if s ∈ R(I) \ R(I ′)
ξ′(s), if s ∈ R(I ′) \ R(I)

Example 11. Consider interfaces I00 := ({x}, {y}, x =
0 → y = 0) and I01 := ({x}, {y}, x = 0 → y = 1). I00 and
I01 are not shared-refinable because there is no way to satisfy
y = 0 ∧ y = 1 when x = 0.

Lemma 11. If I and I ′ are shared-refinable interfaces then

R(I) ∩R(I ′) ⊆ R(I u I ′) ⊆ R(I) ∪R(I ′)

Lemma 12. Let I and I ′ be shared-refinable interfaces
such that I = (X,Y, ξ), I ′ = (X,Y, ξ′) and IuI ′ = (X,Y, ξu).
Then, for all s ∈ R(I) ∩R(I ′)

in(ξu(s)) ≡ in(ξ(s)) ∨ in(ξ′(s))

Theorem 14 (Greatest lower bound). If I and I ′

are shared-refinable interfaces then (IuI ′) v I, (IuI ′) v I ′,
and for any interface I ′′ such that I ′′ v I and I ′′ v I ′, we
have I ′′ v (I u I ′).

Theorem 15. If I and I ′ are shared-refinable interfaces
and both are well-formed, then I u I ′ is well-formed.

9. THE INPUT-COMPLETE CASE
Input-complete interfaces do not restrict the set of in-

put values, although they may provide no guarantees when
the input values are illegal. Although input-complete inter-
faces are a special case of general interfaces, it is instruc-
tive to study them separately for two reasons: first, input-
completeness makes things much simpler, thus easier to un-
derstand and implement; second, some interesting properties
hold for input-complete interfaces but not in general.

Definition 16 (Input-complete interface). An in-
terface I = (X,Y, ξ) is input-complete if for all s ∈ A(X ∪
Y )∗, in(ξ(s)) is valid.

Theorem 16. Every input-complete interface is well-
formed.

Definition 17 and Theorem 17 that follow show that every
interface I can be turned into an input-complete interface
IC(I) that refines I.

Definition 17 (Input-completion). Consider an in-
terface I = (X,Y, ξ). The input-complete version of I,
denoted IC(I), is the interface IC(I) := (X,Y, ξic), where
ξic(s) := ξ(s) ∨ ¬in(ξ(s)), for all s ∈ A(X ∪ Y )∗.

Theorem 17 (Input-complete refines original).
If I is an interface then: (1) IC(I) is an input-complete in-
terface, and (2) IC(I) v I.

Theorems 17 and 11 imply that for any environment E,
if I |= E then IC(I) |= E. The converse does not hold in
general (see Examples 1 and 3, and observe that I2 is the
input-complete version of I1).

Composition by connection reduces to conjunction of con-
tracts for input-complete interfaces, and preserves input-
completeness:

Theorem 18. Let Ii = (Xi, Yi, ξi), i = 1, 2, be disjoint
input-complete interfaces, and let θ be a connection between
I1, I2. Then the contract function ξ of the composite inter-
face θ(I1, I2) is such that for all s ∈ A(Xθ(I1,I2) ∪Yθ(I1,I2))

∗

ξ(s) ≡ ξ1(s) ∧ ξ2(s) ∧ ρθ

Moreover, θ(I1, I2) is input-complete.

It is important to note that taking ξ1(s)∧ξ2(s)∧ρθ as the
contract of a composite interface does not work for general
interfaces, even though it works for input-complete inter-
faces. This is illustrated in the following example.

Example 12. Let

I10 :=
`
{x}, {y}, x = 0 ∧ (y = 0 ∨ y = 1)

´
I12 := ({z}, {w}, z = 0 ∧ w = 0)

Let θ := {(y, z)}. The conjunction of the contracts of I10
and I12, together with the equality y = z imposed by the
connection θ, gives the contract x = 0∧(y = 0∨y = 1)∧z =
0∧w = 0∧y = z, which is equivalent to x = y = z = w = 0,
which is clearly satisfiable. Therefore, we could interpret the
composite interface θ(I10, I12) as the interface

({x}, {y, z, w}, x = y = z = w = 0)

Now, consider the interface:

I11 := ({x}, {y}, x = 0 ∧ y = 1)

It can be checked that I11 v I10. But if we connect I11 to
I12, we find that the conjunction of their contracts (with the
connection y = z) is unsatisfiable. Therefore, if we used con-
junction for composition by connection, then the composite
interface θ(I11, I12) would not refine θ(I10, I12), even though
I11 refines I10, i.e., Theorem 12 would not hold.

Input-complete interfaces alone do not help in avoiding
problems with arbitrary feedback compositions: indeed, in
the example given in the introduction both interfaces Itrue

and Iy 6=x are input-complete.6 This means that in order to
add a feedback connection (y, x) in an input-complete in-
terface, we must still ensure that this interface is Moore
w.r.t. input x. In that case, feedback preserves input-
completeness.

Theorem 19. Let I = (X,Y, ξ) be an input-complete in-
terface which is also Moore with respect to some x ∈ X.
Let κ = (y, x) be a feedback connection on I. Then κ(I) is
input-complete.

Theorem 20. Let I = (X,Y, ξ) be an input-complete in-
terface and let Y ′ ⊆ Y , such that ξ is independent from Y ′.
Then, hide(Y ′, I) is input-complete.

6 It is not surprising that input-complete interfaces alone
cannot solve the problems with arbitrary feedback compo-
sitions, since these are general problems of causality, not
particular to interfaces.



Theorem 21. Let I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) be
input-complete interfaces. Then I ′ v I iff for all s ∈ A(X ∪
Y )∗, ξ′(s) → ξ(s) is valid.

For input-complete interfaces, the shared-refinability con-
dition, i.e., Condition (11), simplifies to

∀X : ∃Y : ξ(s) ∧ ξ′(s)

Clearly, this condition does not always hold. Indeed, the
interfaces of Example 11 are not shared-refinable, even
though they are input-complete. For shared-refinable input-
complete interfaces, shared refinement reduces to conjunc-
tion of contracts for states that are reachable in both inter-
faces.

Theorem 22. Let I = (X,Y, ξ) and I ′ = (X,Y, ξ′) be
input-complete shared-refinable interfaces. Then I ′ u I =
(X,Y, ξu), where for all s ∈ R(I) ∩ R(I ′), ξu(s) ≡ ξ(s) ∧
ξ′(s).

As the above presentation shows, input-complete inter-
faces are much simpler than general interfaces: refinement is
implication of contracts, composition is conjunction, and so
on. Then, a legitimate question is, why consider non-input-
complete interfaces at all? There are mainly two reasons.

First, non-input-complete interfaces can be used to model
situations that cannot be modeled by input-complete inter-
faces. For example, consider modeling a component imple-
menting some procedure that requires certain conditions on
its inputs to be satisfied, otherwise it may not terminate.
We can capture the specification of this component as an
interface, by imposing these conditions in the contract of the
interface. But we cannot capture the same specification as
an input-complete interface: for what would the output be
when the input conditions are violated? We cannot simply
add an extra output taking values in {T,NT}, for “termi-
nates” and “does not terminate”, since non-termination is
not an observable property.

Second, even in the case where we could use input-
complete interfaces to capture a specification, we may de-
cide not to do so, in order to allow for local compatibility
checks. In particular, when connecting two interfaces I and
I ′, we may want to check that their composition is well-
formed before proceeding to form an entire interface dia-
gram. Input-complete interfaces are always well-formed and
so are their compositions (Theorems 16, 18 and 19), there-
fore, local compatibility checks provide useful information
only in the non-input-complete case.

10. CONCLUSIONS
Synchronous interface theories have been proposed be-

fore [6, 4, 7] but fail to capture input-output relations in
a general way. The main message of this paper is that a
theory of synchronous relational interfaces can be developed,
provided feedback compositions are restricted appropriately.

In the future, we plan to further extend this theory. One
useful extension would be to refine the definition of Moore
interfaces to speak about dependencies between specific pairs
of input and output variables. This would allow to express,
for example, the fact that in the parallel composition of
({x1}, {y1}, x1 = y1) and ({x2}, {y2}, x2 = y2), y1 does not
depend on x2 and y2 does not depend on x1 (and there-
fore one of the feedbacks (y1, x2) or (y2, x1) can be allowed).

Such an extension could perhaps be achieved by combining
our relational interfaces with the causality interfaces of [12],
input-output dependency information such as that used in
reactive modules [1], or the coarser profiles of [9]. We expect
this extended theory to have a single composition operator,
which generalizes and captures both composition by connec-
tion and composition by feedback.
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