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Abstract. Safety LTL properties are ubiquitous in the verification of
safety critical systems. There is already evidence that translating safety
properties into DFA rather than Büchi automata results in faster verifi-
cation times. Conventional translation strategies can in some cases use
unnecessarily large amounts of resources. We develop a symbolic adap-
tation of the L∗ active learning algorithm tailored to efficiently trans-
late safety LTL properties into symbolic DFA. We demonstrate how an
inductive inference procedure can be used to provide additional input
to the algorithm that greatly improves performance for certain impor-
tant families of properties. For completeness, we also provide an outline
and examples of how such a procedure can be implemented. Finally, we
compare with state of the art LTL translators and provide experimen-
tal evidence where our approach significantly outperforms conventional
translation strategies.
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1 Introduction & Motivation

Safety properties are pervasive in model based design. Informally, they capture
the notion that ‘nothing bad should ever happen’, which, in turn, can be used to
express a great variety of requirements of safety critical systems. A widespread
formalism that can be used to describe safety properties is Safety LTL (Linear
Temporal Logic) [28]. Safety LTL specifications can be used in a variety of ways
in the model based design process: They can be used for formal verification of
the system, for runtime monitoring during testing, for generating test-cases and,
even before any system model is created, satisfiability tests can be performed on
them to reveal potential inconsistencies in the original requirements.

? This work was partially supported by the Irish Development Agency (IDA) for UTRC
Ireland related to Network of Excellence in Aerospace Cyber Physical Systems.
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An important step in the procedures mentioned above is translation of LTL
formulas into automata. In particular, it is possible to translate safety LTL for-
mulas to Deterministic Finite Automata (DFA), which is generally desirable,
as it has been shown to reduce verification times [26]. In an agile, continuous
integration workflow where during prototyping every small change in the re-
quirements triggers a cascade of testing and verification actions that must be
performed as fast as possible to keep iteration times low, efficient translation of
safety LTL properties into DFA is of paramount importance.

The problems of translating LTL to automata and specifically safety LTL to
DFA have received a lot of attention over the years, and while the worst case the-
oretical complexity w.r.t number of states is exponential on the formula length
for non-deterministic automata and doubly exponential on the formula length
for deterministic automata, approaches that perform quite well in practice have
been developed [21, 3, 19, 15, 8]. Such approaches are generally based on syntac-
tic manipulation of the LTL formula and typically construct an automaton the
states of which correspond to subformulas of the original formula, which can sub-
sequently be determinized/minimized. One major drawback of these approaches
is that this intermediate automaton can be considerably larger than the final
result, which can lead to unnecessarily excessive resource consumption during
translation. Another limitation is that, to the best of our knowledge, existing
implementations of such approaches cannot take into account a priori knowledge
about the target automaton that might be available.

In this work, we present a novel approach for safety LTL to symbolic DFA
(SDFA) translation that overcomes both these limitations. Specifically:

– We develop a novel algorithm for syntactically safe LTL to SDFA translation.

– Our algorithm returns a minimal (w.r.t. number of states) SDFA and all in-
termediately constructed SDFA contain strictly fewer states than the result.

– Our algorithm can be extended to take into account a priori information
about the target automaton, which results in significant performance boost.

– We provide an outline and examples of how an inductive inference procedure
that provides said a priori information can be implemented.

– We provide a prototype implementation and experimental evidence that the
proposed approach (i) behaves comparably with state of the art tools on
randomly generated formulas and literature benchmarks and (ii) significantly
outperforms the state of the art in certain important property families (even
without a priori information about the target automaton).

In section 2 we summarize related work on (safety) LTL to DFA transla-
tion and (symbolic) automata learning. In section 3 we introduce the necessary
preliminary concepts and algorithms. In section 4 we describe the proposed al-
gorithm and its properties. In section 5 we present our experimental evaluation
results. Finally, in section 6 we conclude with some ideas for future work.
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2 Related Work

The more general problem of translating LTL to Omega (e.g. Büchi, Rabin etc.)
automata has been studied extensively before [3, 19, 15, 8]. The state of the art
here is Spot [3] and, more recently, Rabinizer [19]. The problem of translating
safety LTL to DFA has also received a great amount of attention [21, 16, 20].
This is justified by the fact that using deterministic automata can improve ver-
ification times [26]. To the best of our knowledge [21] is the state of the art on
translators specialized to turn safety LTL to DFA, hence we compare against
it in our experimental evaluation. Spot and Rabinizer are also able to generate
deterministic automata if requested, therefore we compare against them as well.

Automata learning and in general grammatical inference is a field that has
received a lot of attention over the years [12]. Algorithms here generally fall
into two categories, passive learning (learning from examples) and active learn-
ing (learning with queries). Symbolic automata learning is an area that recently
received some attention [13, 22]. Variations of this problem have been studied
earlier as well [17]. Note that, while we do not claim to improve the state of the
art in symbolic automata learning, our extension of L∗ makes specific assump-
tions about the system to be learned, which enable a more efficient approach
than using a generic learning algorithm.

3 Preliminaries

3.1 Linear Temporal Logic

Linear Temporal Logic (LTL) [24] is a widespread formalism used in model check-
ing based formal verification. The typical automata theoretic model checking
approach requires the negation of the LTL expressed property to first be trans-
formed into an automaton on infinite words, for example a Büchi automaton.
Then, this automaton is composed with an automaton representing the system,
and the resulting product is checked for emptiness.

LTL properties can be classified into two broad categories: safety properties
and liveness properties [4]. Informally, safety properties state that ‘something
bad never happens’, while liveness properties state that ‘something good even-
tually happens’.

Syntactic Safety Subset of LTL Safety LTL properties can also be charac-
terized syntactically. Any property built out of operators in the syntactic safety
subset of LTL is guaranteed to be a safety property. Specifically, every propo-
sitional formula (i.e. a formula built of atomic propositions, ¬, ∧ and ∨) is a
syntactically safe formula, and if formulas f and g are syntactically safe, so are
formulas f ∧ g, f ∨ g, Gf , Xf , fWg, where G, X, and W are, respectively, the
globally, next and weak until LTL operators. We omit the formal definition of
the semantics of these operators and refer the reader to [28] which we follow in
this work. Note that it is possible to express any safety LTL property by only
using the syntactic safety subset of LTL.
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Bad Prefixes Every safety LTL formula φ can be translated into a DFA which
accepts all bad prefixes of φ. A bad prefix of φ is a finite trace σ such that all
infinite continuations of σ violate φ. Kupferman and Vardi [20] further classify
safety LTL formulas as intentionally safe, accidentally safe and pathologically
safe based on the informativeness of their bad prefixes. Intuitively, accidentally
safe and pathologically safe formulas contain some redundancy; for example,
G(p ∨ X(q ∧ ¬q)) is accidentally safe, G(p ∨ F (q ∧ ¬q)) is pathologically safe,
and both are equivalent to Gp, which is intentionally safe. Since it is possible to
write any safety LTL formula as an intentionally safe formula, we will only con-
sider intentionally safe formulas here (however, note that our algorithm handles
accidentally safe formulas as well, but not pathologically safe ones, since these
do not belong in the syntactic safety subset of LTL).

3.2 Symbolic DFA and Symbolic Traces

In this work, we use the definition of symbolic automata from [11]. Symbolic
DFA are able to encode the state machine described by a DFA in a more succinct
way, by means of allowing predicates drawn from a boolean algebra to compactly
represent transitions between states.

Figure 1 shows two monitors for the safety property G(p → Xq) expressed
as both an SDFA and a DFA (> as a transition label stands for ‘true’). Notice
that while the number of states is the same in the two versions, the number
of transitions can generally differ drastically. This is very important for the
performance of the learning algorithm we employ, as reducing the number of
transitions also reduces the amount of book-keeping needed.
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p ∧ q
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>

(a) SDFA
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(b) DFA

Fig. 1: Monitors for G(p→ Xq)

Given a set of atomic propositions {p1, p2, . . . , pm} we define a finite sym-
bolic trace to be a finite sequence a1 · a2, · · · , an, where each ai is either > or
a conjunction of literals (a literal being an atomic proposition, pi, potentially
negated).

3.3 Active Automata Learning

Our approach is based on Angluin’s L∗ algorithm for active automata learning
[6]. In this setting, a learner tries to identify an automaton by submitting queries
to a teacher. These can be membership queries, where the learner submits a
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word and gets back an ‘accept’ or ‘reject’ answer, or equivalence queries, where
a hypothesis automaton is submitted and either the process ends with success
or a counterexample is generated which drives more queries.

There are four important data structures involved in a run of the L∗ al-
gorithm: A RED set of words that represent state candidates for the learned
automaton, a BLUE set of words that correspond to 1-step successors of states
in RED, a set of suffixes, SFX that are used to distinguish states in RED∪BLUE
and the observation table, OBS, which stores information about words in RED
and BLUE w.r.t. their behavior on the suffixes in SFX. The set RED∪BLUE is
prefix closed and the set SFX is suffix closed. The rows of OBS are labeled by
states in RED∪BLUE and its columns by elements of SFX. The entry of OBS at
row w ∈ RED∪BLUE and column s ∈ SFX represents the result of the member-
ship query for the word w ·s, where dot denotes concatenation. In other words, if
the target automaton accepts the word w ·s, then OBS(w, s) is set to 1, otherwise
it is set to 0. We say that p, q ∈ RED∪BLUE are SFX-equivalent if ∀s ∈ SFX :
OBS(p, s) = OBS(q, s). Otherwise, we say that p and q are SFX-distinct. We say
that OBS is (i) complete if ∀w ∈ RED ∪ BLUE, s ∈ SFX : OBS(w, s) is set to
either 1 or 0, (ii) closed if ∀b ∈ BLUE ∃r ∈ RED : r, b are SFX-equivalent, and
(iii) consistent when ∀p, q ∈ RED : if p, q are SFX-equivalent then their 1-step
successors p · α, q · α are also SFX-equivalent, for each letter α in the alphabet.

A brief description of the algorithm follows:

1. Initially, RED and SFX only contain the empty word, and BLUE contains
the 1-letter successors of the empty word.

2. Membership queries are used to make OBS complete, closed and consistent,
promoting states from BLUE to RED as needed (to enforce closedness),
updating BLUE to include the 1-step successors of any new RED states, as
well as potentially adding elements in SFX (to enforce consistency).

3. Once OBS is complete, closed and consistent, a hypothesis DFA is con-
structed.

4. An equivalence query is performed to check whether the hypothesis is correct.
5. (a) If the hypothesis is incorrect, we obtain a counterexample in the form

of a word on which the hypothesis and the target behave differently. We
add the counterexample and all its prefixes in RED and go to step 2.

(b) Otherwise, we have found the target automaton and we are done.

The L∗ algorithm is guaranteed to terminate and yield a minimal automaton
after at most n equivalence queries and a number of membership queries bounded
by a polynomial quadratic on n and linear on m, where n is the number of states
of the learned machine and m the maximum length of any counterexample word
returned by the teacher.

Several variants of the algorithm have been proposed over the years that
improve on the original algorithm and extend it to other formalisms. In our
implementation we use a variant where the counterexample and all of its suffixes
are added in SFX instead of having RED updated as mentioned in step 5a
above, as done in [27]. We chose to do so because this introduces a new important
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invariant: throughout the algorithm, all states in RED are pairwise SFX-distinct.
In turn, this makes constructing the hypothesis DFA easier: we can simply collect
all states in RED without worrying that one of them may be equivalent to
another. Another nice property of this variant is that OBS is guaranteed to be
consistent throughout the algorithm, which allows us to skip consistency checking
and enforcement in step 2 above.

4 Proposed Approach

Problem Definition & Approach Overview The problem we are solving can
be formulated as follows: ‘Given a syntactically safe LTL formula Φ, construct a
minimal (w.r.t number of states) symbolic DFA that accepts all bad prefixes of Φ
and nothing else’. Note that the returned DFA must accept the bad prefixes of Φ,
i.e. all finite traces satisfying ¬Φ. The proposed algorithm is a symbolic extension
of Angluin’s L∗ tailored for LTL to SDFA translation. Membership queries are
performed by recursive traversal of the LTL formula itself, as explained in Section
4.2 that follows. As for equivalence queries, we employ a symbolic model checker
as explained in Section 4.3. Our method is symbolic in the sense that we use
a symbolic alphabet (set of predicates) for the learned DFA and employ a lazy
alphabet refinement strategy in which we begin with a single, all-encompassing
predicate, >, and gradually refine it as needed.

4.1 Safety LTL on Finite Symbolic Traces

In order to be able to perform membership queries, it is imperative that we define
a semantics for syntactically safe LTL on finite symbolic traces that will allow us
to identify bad prefixes. We introduce a four-value semantics where evaluating
a formula on a symbolic trace can yield a value of True, False, Unknown or Re-
fine(proposition, index), the last one being parametrized by the proposition that
needs refinement and the position in the symbolic trace this needs to happen.

Let σ := a1 · a2 · · · an be a finite symbolic trace of length n and Φ a syntacti-
cally safe LTL formula. The function eval(Φ, σ, i), which returns the evaluation
of Φ on the suffix of σ that begins with ai is defined as follows:

eval(p, σ, i) :=
if ¬p is a conjunct in ai: return False eval(>, σ, i) := return True
if p is a conjunct in ai: return True eval(⊥, σ, i) := return False
return Refine(p, i)

eval(φ ∨ ψ, σ, i) :=
let eφ = eval(φ, σ, i), eψ = eval(ψ, σ, i)
if either eφ or eψ is True: return True
if eφ (resp. eψ) is False: return eψ (resp. eφ)
if eφ (resp. eψ) is Unknown: return eψ (resp. eφ)
# now , both eφ and eψ are refinement requests
if eφ.index > eψ.index: return eφ
return eψ

eval(φ ∧ ψ, σ, i) :=
let eφ = eval(φ, σ, i), eψ = eval(ψ, σ, i)
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if either eφ or eψ is False: return False
if eφ (resp. eψ) is True: return eψ (resp. eφ)
if eφ (resp. eψ) is Unknown: return eψ (resp. eφ)
# now , both eφ and eψ are refinement requests
if eφ.index > eψ.index: return eφ
return eψ

eval(¬φ, σ, i) :=
let eφ = eval(φ, σ, i) eval(Xφ, σ, i) :=
if eφ is True: return False if i ≥ n: return Unknown
if eφ is False: return True return eval(φ, σ, i+ 1)
return eφ

eval(φWψ, σ, i) := eval(Gφ, σ, i) :=
return eval(ψ ∨ (φ ∧X(φWψ)), σ, i) return eval(φ ∧XGφ, σ, i)

where p is an atomic proposition and φ, ψ are syntactically safe LTL formulas.

4.2 Membership Queries & Lazy Alphabet Refinement

Given the semantics defined in 4.1, we are now able to explain how membership
queries work. Recall that when the L∗ algorithm submits a membership query it
receives an ‘accept’ or ‘reject’ answer. In our case, we want a membership query
mem q(Φ, σ) to return ‘accept’ iff the symbolic trace σ is a bad prefix for the
formula Φ. Therefore, if the result of eval(Φ, σ, 1) is False, mem q(Φ, σ) returns
1 (accept). If the result of eval(Φ, σ, 1) is True or Unknown, mem q(Φ, σ) returns
0 (reject). In the case eval(Φ, σ, 1) returns a refinement request, the symbolic
trace will be duplicated with one copy now containing the positive literal and
the other copy the negative literal of the proposition for which refinement was
requested, and two separate membership queries will be issued subsequently.

During a run of the L∗ algorithm, whenever a word is added to RED, its
successors with all letters of the alphabet are added to BLUE (this also happens
during initialization). This means that if we have a formula containing 10 atomic
propositions, every time a word is added to RED, 210 = 1024 words will be added
to BLUE. However, there is a high chance (depending on the formula, of course)
that many of these entries actually represent the same state, which implies that
a lot of time can potentially be wasted on membership queries that provide
essentially the same information. What we do to address this issue is add, instead,
a single entry to BLUE that symbolically represents all 1-step successors of the
state added to RED. For example, if the word added to red is p ·p∧ q, we add to
BLUE the word p · p∧ q ·>. Whether the latter actually corresponds to different
states will be revealed later, as membership queries are submitted. Suppose, for
example, that the algorithm issues the query mem q(G(p → Xq), p · p ∧ q · >)
or, equivalently, mem q(G(¬p ∨ Xq), p · p ∧ q · >). Since p holds at step 2, but
we do not know what happens to q at step 3, a refinement request for q at
position 3 is issued. Then, the word will be split accordingly and the following
two membership queries will be performed: mem q(G(¬p ∨ Xq), p · p ∧ q · q),
mem q(G(¬p∨Xq), p · p∧ q · ¬q), the former of which returns Unknown and the
latter False. And since we now know that p · p ∧ q · ¬q is a bad prefix for the
formula, the corresponding cell in OBS will be set to 1. Accordingly, the cell
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corresponding to p · p ∧ q · q will be set to 0, which would also be the case for a
result of value True.

The astute reader may wonder here why we need both values True and
Unknown if the purpose of a membership query is to detect whether a word is a
bad prefix or not. The answer has to do with the behavior of True and Unknown
w.r.t. refinement requests: True and False have ‘priority’ over Refine, which
in turn has ‘priority’ over Unknown, as can be seen in the definitions of eval

for φ∨ψ and φ∧ψ above. This ensures that on one hand we perform refinement
when necessary, but on the other hand do not refine without a real need to do
so. For the same reason, we heuristically perform first the refinement request
that refers to the latest position in the trace.

4.3 Equivalence Queries

Equivalence queries are implemented by employing NuSMV [9], a symbolic model
checker. Whenever an equivalence query needs to be issued, a hypothesis automa-
ton is constructed, encoded in the language of NuSMV and then model checked
against the following properties:

LTLSPEC Φ↔ G state 6= accept LTLSPEC ¬Φ↔ F G state = accept

where Φ is the LTL formula we want to translate, state is a variable holding
the current state of the encoded hypothesis automaton and accept is a value
denoting its (unique) accepting state. Note that in order to perform the above
checks, NuSMV does not internally translate the LTL formula into an automaton
(which would defeat the purpose of the proposed algorithm). Rather, it translates
the LTL formula into a CTL one with added fairness constraints and then applies
a symbolic model checking algorithm [25, 10, 14].

Counterexample handling is a bit involved, since what NuSMV returns is
a description of an infinite trace. What we do is we lazily enumerate all finite
prefixes of this infinite counterexample in order of increasing length and pick the
first one that reveals a problem in the hypothesis. We opted for choosing the
shortest possible counterexample because small counterexample length means
less subsequent membership queries, and while longer counterexamples might
reveal more new states, this is not guaranteed.

Another interesting direction to explore here would be, instead of model
checking against the formulas mentioned above, to simply obtain the symbolic
tableau NuSMV internally builds for Φ and compare this with the hypothesis
automaton to examine whether behavior appearing in the former is missing from
the latter and vice versa. It is not immediately obvious how this comparison
would be performed, as the two representations are quite different in nature;
nevertheless, this is something worth exploring, as it could potentially increase
the efficiency of equivalence queries.

4.4 Properties & Complexity

Minimality The proposed algorithm (i) returns a minimal (w.r.t. number of
states) SDFA and (ii) guarantees that all intermediate SDFA hypotheses contain
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strictly fewer states than the returned result. Both (i) and (ii) follow directly from
the properties of the L∗ algorithm: The initial hypothesis contains a single state,
and the number of states of subsequent hypotheses is monotonically increasing
until it reaches the value corresponding to the minimal automaton.

Membership Query Complexity Based on the definitions for eval in 4.1, in
order to compute eval on a node in the formula tree of the form φ ∧ ψ, φ ∨ ψ,
¬φ, Xφ, each of its children needs to be considered at most once. Similarly, in
order to compute eval on a node of the form Gφ or φWψ, each of its children
needs to be considered at most n times, where n is the trace length. It is easy
to see that with arbitrary nesting of operators in the safety subset of LTL, each
node in the tree of the formula will need to be examined at most nm+1 times,
where m is the total number of G and W operators in the formula. Therefore,
the complexity of a single membership query is polynomial on the trace length
and exponential on the formula length.

Equivalence Query Complexity A bound for performing an equivalence
query can be given by a bound on translating the safety LTL formula into CTL
with fairness constraints and a bound on symbolic model checking of the hy-
pothesis automaton. As the hypothesis automaton can reach a number of states
doubly exponential on the length of the safety LTL formula, and the model
checking step is linear on the size of the automaton, the worst-case complexity
of equivalence queries is at least doubly exponential on the length of the formula
to be translated. This result motivated the search for a modified approach that
eliminates equivalence queries altogether, which we present in the following.

4.5 A Priori Information & Inductive Inference

The observation that equivalence queries are needed in order to discover states of
the target automaton raises an interesting question: What if we have some sort
of state information beforehand? This could be the actual states represented
as words or something else like distinguishing suffixes collectively allowing to
differentiate all states of the target automaton. The former would not be enough;
if we simply put these words in RED we would violate an important invariant of
the algorithm: Since SFX would only contain the empty word, potentially many
of the words in RED would be SFX-equivalent. Therefore, distinguishing suffixes
would need to also be put in SFX. As it turns out, the latter alone is enough,
since, as long as the required distinguishing suffixes are present, all states of the
target automaton will be discovered and put in RED in the process of filling the
observation table, updating BLUE and promoting states from BLUE to RED as
needed, without the need for any equivalence queries.

In the rest of this section we discuss how we could obtain such information
for two counter property families (parametrized properties that express some
sort of counting by means of repetition / nesting of X operators) taken from
aerospace domain use-cases, shown in Table 1.
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Table 1: Counter family formulas
N Counter family A Counter family B

1 G(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)) G(¬p ∨X(¬q ∨ r))
2 G(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr))) G(¬p ∨X(¬q ∨ (r ∧Xr)))
3 G(¬p ∨X(¬p ∨X(¬p ∨X(¬p ∨ ¬q ∨ r ∨Xr)))) G(¬p ∨X(¬q ∨ (r ∧X(r ∧Xr))))

Suppose that we need to translate a formula of one of the families above for
N = 50. What we could do is first translate formulas corresponding to small
values of N, which would be fast since the formula size is small, then obtain
the corresponding distinguishing suffixes (this can be easily done with breadth-
first search), and finally employ an inductive inference procedure to identify a
relation between N and the set of distinguishing suffixes, which, in turn, can be
used to derive the required information for N = 50. Providing such an inductive
inference procedure and formally analyzing its properties is outside the scope
of this paper. However, for completeness, we outline a simple approach, generic
enough to work on the property families listed above:

1. Identify base cases to be excluded from the following steps.
2. Identify how many suffixes are introduced from SDFA(N - 1) to SDFA(N)
3. For each newly introduced suffix in SDFA(N), identify a function to construct

it from suffixes in SDFA(N - 1).

We first show example runs of the procedure outlined above on the two prop-
erty families and then will explain how each individual step can be implemented
in a general way. The relation between N and sets of distinguishing suffixes is
shown in Table 2.

Table 2: Counter family formula suffixes
N Suffixes for counter family A Suffixes for counter family B

1 {a, ba} {a}
2 {a, ba, cba} {a, b, ca}
3 {a, ba, cba, ccba} {a, b, ca, da, cca}
4 {a, ba, cba, ccba, cccba} {a, b, ca, da, cca, dca, ccca}
5 {a, ba, cba, ccba, cccba, ccccba} {a, b, ca, da, cca, dca, ccca, dcca, cccca}

where, for family A, we have a := ¬p∧ q ∧¬r, b := p∧ q ∧¬r and c := p∧ q ∧ r.
We treat N = 1 as the base case, observe that when moving from N - 1 to N one
new suffix is added, and notice that this suffix can be constructed by prepending
c to the longest suffix from step N - 1. For family B, we have a := p ∧ q ∧ ¬r,
b := p ∧ ¬q ∧ ¬r, c := ¬p ∧ q ∧ r and d := ¬p ∧ ¬q ∧ r. In this case, we treat
N = 1 and N = 2 as base cases, and observe that two new suffixes are added
when moving from N - 1 to N, which can be generated by taking the longest
suffix from step N - 1 and (i) replacing the front letter with d for one, and (ii)
prepending the letter c for the other.

Generalizing the above approach, step 1 (identifying base cases) can be per-
formed by always treating N = 1 as a base case and then adding those cases
the suffixes of which contain less distinct letters than the following cases, while
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steps 2 and 3 can easily be formulated as Syntax Guided Synthesis [5] problems
and solved as such.

5 Experimental Evaluation

We implemented a prototype version of the proposed algorithm (we refer to this
as ‘Proposed’ throughout this Section) in the programming language D [1] and
compared against scheck v1.2 [21], Spot v2.6.1 [3] and Rabinizer v4 [19] 4 on (i)
500 randomly generated syntactically safe LTL formulas, (ii) 54 formulas from
the Spot benchmarks [2], as well as (iii) the 2 counter formula families from
Section 4.5 and their conjunction. The 500 random formulas were generated
using the Spot command line tools, and specifically the command:

randltl -n -1 4 --tree-size=10..30 -r | \

ltlfilt --lbt --syntactic-safety --size=10..25 -u -n 500

In short, the above means that we want 500 unique syntactic safety formulas
with up to 4 atomic propositions, of length between 10 and 25. The 54 Spot
benchmark formulas were taken from [2] and were the result of filtering the
184 formulas in that page for syntactic safety. The 2 counter formula families
come from industrial (United Technologies Research Centre) requirements for
aerospace domain digital hardware verification5. All experiments were run on
an Ubuntu 14.04 laptop with a 1.6 GHz Intel Celeron processor and 4 GB of
RAM. The results are summarized in Table 3 and Figures 2 and 3 (memory
consumption generally closely follows running time in all cases).

Table 3: Execution times (in seconds) for 500 random and 54 Spot formulas

Algorithm
500 random formulas 54 Spot formulas
Average Median Average Median

Proposed 0.0693 0.0457 0.1262 0.0545
Spot 0.0397 0.0373 0.0406 0.0401

scheck 0.0082 0.0065 0.0161 0.0072
Rabinizer 1.4821 1.3668 1.8128 1.6885

As can be seen in Table 3, the proposed approach behaves comparably to
others on small formulas. We argue that there is potential for improvement here
by addressing some implementation details: In our prototype implementation,
communication with NuSMV involves a lot of process and file I/O, which can
cause considerable overhead (this is especially true for the latter, since hard disk

4 To be fair to Rabinizer, since it is implemented in Java, we deducted 0.4 seconds
(the measured JVM startup time) from the elapsed time in all experiments with it.

5 Note that formulas of this kind with many (typically > 50) nested next operators,
expressing timing requirements for FPGAs, appear very frequently in this domain.
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access is orders of magnitude slower than RAM access). In addition to that, the
current implementation of equivalence queries does not take advantage of the fact
that parts of past SDFA hypotheses exist in future ones – an incremental model
checking approach would be of great benefit here. This last issue, in particular, is
responsible for some spikes in running time that drive the average away from the
median in our case. Regarding the size of the corresponding minimal automata,
the average and median number of states are 5.4 and 5 in the random formulas
case, and 4.1 and 4 for the Spot formulas. Note that, in all cases, all tools except
Rabinizer return a minimal automaton.

(a) Counter family A (b) Counter family B

(c) Counter family conjunction

Fig. 2: Results on counter formulas

Where our learning approach shines is in translating the longer counter for-
mulas (Figure 2). It performs better asymptotically, as the number of next op-
erators increases. Even if the automata grow linearly in size with the number of
X operators (N + 3 states for counter family A and 2N + 1 states for counter
family B and their conjunction), scheck, Spot and Rabinizer require exponential
time in at least one of the property families and in their conjunction, while our
approach requires only linear time in all cases. This is a direct manifestation
of the main drawback of conventional translation approaches; we remind here
that our approach provides theoretical guarantees that this intermediate result
explosion does not happen. Also note that for counter family B as well as for
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(a) Counter family A (b) Counter family B

(c) Counter family conjunction

Fig. 3: Effect of suffix information on counter formulas

the conjunction of counter family formulas Rabinizer does not return minimal
automata (it returns automata that grow exponentially in size with N).

Taking into account a priori information about the target automaton gives
a significant additional boost to the proposed approach, as shown in Figure 3.
Note that, while not very clear in the figures, the proposed approach using suffix
information performs better than all other tools on both counter formulas (and
their conjunction) for all values of N. These graphs also provide an idea of the
overhead introduced by the current implementation of equivalence queries due
to the non-incremental model checking approach in NuSMV as well as commu-
nication delays (process and file I/O).

6 Conclusion & Future Work

In this work we presented a learning-based approach for translating safety LTL to
DFA. We studied its theoretical properties and demonstrated its perfomance in
practice. The proposed approach is comparable with existing ones in formulas of
small size. Moreover, by guaranteeing that intermediate results do not explode in
size, it outperforms existing approaches in long instances of important property
families, by orders of magnitude. In addition, unlike existing approaches, it can
take into account a priori information about the target automaton, which leads
to even better performance.
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We believe that the proposed approach nicely complements existing LTL
translators in the sense that, performance-wise, a hybrid approach where (i)
existing translators are used for small formulas and for inductive inference of the
suffix information, and (ii) the proposed approach with the previously derived
suffix information is used for longer formulas, would behave best.

In the future, we plan to improve our learning-based approach by employing
more L∗ optimizations (e.g. parallel membership queries, TTT algorithm [18]),
and by using an incremental model checking approach for equivalence queries.
We also plan to extend this work to translate general (not just safety) LTL
properties to Büchi automata as well [7, 23].
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