
CS 4830/7485
System Specification, 
Verification and Synthesis
Fall 2019

Stavros Tripakis

Program Synthesis



2Tripakis, CS 4830/7485

PROGRAM SYNTHESIS



3Tripakis, CS 4830/7485

The “modern” approach to program synthesis

• Interactive:
• computer-aided programming

• programmer solves key problems (e.g., provides 
program skeleton), synthesizer fills in (boring or tedious) 
details (e.g., missing guards/assignments)

• Search-for-patterns based:
• synthesis = search among set of user-defined patterns

• Solver based:
• heavily uses verifiers like SAT and SMT solvers

• often in a counter-example guided loop



4Tripakis, CS 4830/7485

Example: programming by sketching 
[Solar-Lezama, Bodik, et al.]



5Tripakis, CS 4830/7485

Using SAT and SMT solvers for synthesis

Recall: what is synthesis?

Usually re-written as:

i.e., if input satisfies precondition, then output will satisfy 
postcondition.



6Tripakis, CS 4830/7485

Using SAT and SMT solvers for synthesis

Example of pre(), post():

i.e., the spec for max(x1,x2).

)



7Tripakis, CS 4830/7485

First: using SAT and SMT solvers for verification

Suppose we already have a program P.

Then instead of checking whether P is correct

we can check whether P is wrong

i.e., we can check satisfiability of the formula



8Tripakis, CS 4830/7485

Hold on: are programs formulas?

Consider a simple loop-free program:

Formula:

function P(int x) returns (real y)
{

int tmp := 0;
if (x >= 0) then {

tmp++;
y := tmp*x;

}
else

y := -x;
return y;

}



9Tripakis, CS 4830/7485

Hold on: are programs formulas?

What about real programs?

Loops, data structures, libraries, pointers, threads, …

Translation to formulas much harder, but verification tools 
are available that do this, constantly making progress.

We will assume we have a formula P(x,y) representing 
the program P: “y is the output of P for input x”.



10Tripakis, CS 4830/7485

Back to using SAT and SMT solvers for verification

We can check satisfiability of the formula

or, writing P as predicate on both input and output 
variables:

Satisfiable => P is wrong: we get a counter-example (x,y)

Unsatisfiable => P is correct (for all x)



11Tripakis, CS 4830/7485

Using SAT and SMT solvers for synthesis

What can be done when we don’t have the program P ?

Hint: what if we have a finite/small number of candidate 
programs?

Iterate and search!



12Tripakis, CS 4830/7485

Programs with “holes”

Almost-complete programs:



13Tripakis, CS 4830/7485

Programs with “holes”

What should we replace “??” with?

Patterns:

integer constants

linear expressions of the form where 
are variables in the program

…

Even with these restrictions, infinite set of candidates …

Search may take a long time or never terminate.

Can we do better?



14Tripakis, CS 4830/7485

Asking the solver to find the program

Suppose our program has 1 hole, to be filled with an 
integer variable.

Then, the formula characterizing the program becomes

Can we use the solver to find the right ?

Check satisfiability of Free variable: solver 
must find right value



15Tripakis, CS 4830/7485

Problem: universal quantification …

Today’s solvers check satisfiability of quantifier-free 
formulas (mostly).

What can we do about that?

Hint: what if we have a finite number of positive
examples? i.e., I/O pairs satisfying 

.



16Tripakis, CS 4830/7485

Example-guided synthesis

Suppose we have a finite number of positive examples, 
say 2: 

That is: we know that these hold:

So it suffices to check satisfiability of



17Tripakis, CS 4830/7485

Example-guided synthesis

In general, for n positive examples and k hole variables:

We turned universal quantification into finite conjunction! 

 



18Tripakis, CS 4830/7485

Example-guided synthesis

What if solver finds this formula unsatisfiable ?

Unsatisfiable => no program exists!

This is sound: if no program exists that works even in this 
finite set of examples, we cannot hope to find a program 
that works for all examples.

 



19Tripakis, CS 4830/7485

Example-guided synthesis

What if solver finds this formula satisfiable ?

Satisfiable => ) is only a candidate. 

It still needs to be verified for all I/O pairs.

We can again use the solver for that!

 



20Tripakis, CS 4830/7485

Example-guided synthesis

Satisfiable => ) is only a candidate.

Verify it by checking satisfiability of

If formula is unsatisfiable then we are done!

What if formula is satisfiable?

Our candidate is wrong. We get a counter-example:

What then?

 

These are now fixed



21Tripakis, CS 4830/7485

Adding negative examples to the synthesizer’s 
inputs

In general, for n positive examples, m negative 
examples, and k hole variables:

Alternative: the user could provide the correct output for 
the counter-example input, or we could use a 
reference (correct and deterministic) program.

  



22Tripakis, CS 4830/7485

Counter-example guided synthesis

Synthesizer
(may also use solver internally)

Verifier
(e.g., SMT solver)

candidate program, 
e.g., formula ) 

spec, 
e.g., pre, post

OK

found correct 
program!

Not OK
counter-example

) 

fail succeed

no program 
exists!

program skeleton,
initial set of 

examples



23Tripakis, CS 4830/7485

References

1. Solar-Lezama. Program sketching. STTT Vol 15, Issue 5-6, Oct 2013.

2. Alur, Bodik, et al. Syntax-Guided Synthesis. FMCAD 2013.

3. International Journal on Software Tools for Technology Transfer, Special 
Issue on Synthesis, Volume 15, Issue 5-6, October 2013.

4. Course by Ras Bodik and Emina Torlak. CS294 – Program Synthesis for 
Everyone. https://homes.cs.washington.edu/~bodik/ucb/cs294fa12.html


