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The "modern” approach to program synthesis

Interactive:
computer-aided programming

programmer solves key problems (e.g., provides
program skeleton), synthesizer fills in (boring or tedious)
details (e.g., missing guards/assignments)

Search-for-patterns based:
synthesis = search among set of user-defined patterns

Solver based:
heavily uses verifiers like SAT and SMT solvers
often in a counter-example guided loop
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Example: programming by sketching
[Solar-Lezama, Bodik, et al.]

Parallel Parking by Sketching

Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err = 0.0;
for(t = O; t<T; T+ dTX
If(STG

‘ragez INTURN; } Backup straight

if(stage==INTURN)
car.ang = car.ang
if(t > 2?) stage= OUTTURN: Turn

}
if(stage==OUTTURN) w {] W Al =
car.ang = car.ang + ??; Straighten
if(t > ??) break:;

}
simulate_car(car), | e [ ]

Err += check_collision(car); E
) H I

Err += check_destination(car);

When to start turning?

—_ How much to turn?

Enables programmers to focus on high-level solution strategy 38



Using SAT and SMT solvers for synthesis

Recall: what is synthesis?

AP:Vx: p(x, P(x))

Usually re-written as:

AP:Vx:pre(x) — post(x, P(x))

l.e., if input satisfies precondition, then output will satisfy
postcondition.
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Using SAT and SMT solvers for synthesis

AP:Vx:pre(x) — post(x, P(x))
Example of pre(), post():
pre(x1,x2): number(x1) Anumber(x2)

post(x1,x2,y): x1 K yAx2<yA(xl=yVx2=y)

l.e., the spec for max(x1,x2).
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First: using SAT and SMT solvers for verification

Suppose we already have a program P.
Then instead of checking whether P is correct
Vx:pre(x) — post(x, P(x))
we can check whether P is wrong
Ax: pre(x) A apost(x, P(x))
I.e., we can check satisfiability of the formula

pre(x) A =post(x, P(x))
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Hold on: are programs formulas?

Consider a simple loop-free program:

function P(int x) returns (real y)

{
int tmp := 0;
if (x >= 0) then {
tmp++;
y = tmp*x;
by

else
Y = X,
return vy,

}
Formula:

Px,y) =(x=20Ay=x)V(x<O0Ay=—Xx)
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Hold on: are programs formulas?

What about real programs?
Loops, data structures, libraries, pointers, threads, ...

Translation to formulas much harder, but verification tools
are available that do this, constantly making progress.

We will assume we have a formula P(x,y) representing
the program P: “y is the output of P for input x”.
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Back to using SAT and SMT solvers for verification

We can check satisfiability of the formula

pre(x) A =post(x, P(x))

or, writing P as predicate on both input and output
variables:

pre(x) AN P(x,y) A =post(x,y)

Satisfiable => P is wrong: we get a counter-example (x,y)
Unsatisfiable => P is correct (for all x)
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Using SAT and SMT solvers for synthesis

What can be done when we don't have the program P ?

pre(x) A P(x,y) A =post(x,y)

Hint: what if we have a finite/small number of candidate
programs?

Ilterate and search!
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Programs with “holes”

Almost-complete programs:

Err = 0.0;

for'(T 0: +<T: 1.+ dT){ When to start Tur'ning?

5 } Backup straight

}

if(stage==INTURN) — ow much to turn?
car.ang = car'.an Hw s '
if(t > ??) stage= OUTTURN: Turn

}

if(stage==OUTTURNY o {] W Al =
car.ang = car.ang + ??; Straighten
if(t > ??) break;

simulate_car(car);
Err += check_collision(car);

}

Err += check_destination(car);




Programs with “holes”

What should we replace “??” with?

Patterns:

integer constants

linear expressions of the form ax + by + ¢ where x,y
are variables in the program

Even with these restrictions, infinite set of candidates ...
Search may take a long time or never terminate.
Can we do better?
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Asking the solver to find the program

Suppose our program has 1 hole, to be filled with an
iInteger variable.

Then, the formula characterizing the program becomes

P(h,x,y)

Can we use the solver to find the right h ?

Check satisfiability of Free variable: solver
" must find right value

Vx,y:pre(x) A P(h,x,y) = post(x,y)
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Problem: universal quantification ...

Vx,y:pre(x) AP(h,x,y) = post(x,y)

Today’s solvers check satisfiability of quantifier-free
formulas (mostly).

What can we do about that?

Hint: what if we have a finite number of positive
examples? i.e., |/O pairs (x, y) satisfying pre(x) A
post(x,y).
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Example-guided synthesis

Suppose we have a finite number of positive examples,
Say 2: (xl) Y1); (xz, yZ)

That is: we know that these hold:
pre(x1), pre(xz), post(xy, y1), post(xz, y2)
So it suffices to check satisfiablility of

P(h’ X1, yl) A P(h' X2, yZ)
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Example-guided synthesis

In general, for n positive examples and k hole variables:
n
/\ P(hl, hZ: e ) hk: Xi, yl)
=1

We turned universal quantification into finite conjunction!
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Example-guided synthesis

What if solver finds this formula unsatisfiable ?

n
/\P(hl, hz, e hk,xl-,yl-)
=1

Unsatisfiable => no program exists!

This is sound: if no program exists that works even in this
finite set of examples, we cannot hope to find a program
that works for all examples.
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Example-guided synthesis

What if solver finds this formula satisfiable ?

n
/\P(hl, hz, e hk,xl-,yl-)
=1

Satisfiable => P(h4, h,, ..., h) is only a candidate.

It still needs to be verified for all /O pairs.
We can again use the solver for that!
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Example-guided synthesis

n
/\P(hl, hyy oo by X5 )
i=1

Satisfiable => P(hq, h,, ..., h) is only a candidate.
Verify it by checking satisfiability of

pre(x) AN P(hq, hy, ..., hy, x,y) A =post(x,y)

These are now fixed

If formula is unsatisfiable then we are done!
What if formula is satisfiable?
Our candidate is wrong. We get a counter-example:

What then? (x*y%)
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Adding negative examples to the synthesizer’s
iInputs

In general, for n positive examples, m negative
examples, and k hole variables:

n m
/\P(hl,hz, o X ) /\/\ﬂp(hl,hz, o b x5 Y
i=1 =1

Alternative: the user could provide the correct output for
the counter-example input, or we could use a
reference (correct and deterministic) program.
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Counter-example guided synthesis

spec,
no program

exists! candidate program, e.g., pre, post

e.g., formula P(hq, h,, ..., hy)

fail I SUCCV\
v

Synthesizer Verifier
(may also use solver internally) (e.g., SMT solver)

T \/NO’tOK OK

counter-example v
x;, i) found correct
program!

program skeleton,
initial set of
examples
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