CS 4830/7485

System Specification,
Verification and Synthesis
® Fall 2019

Program Synthesis

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

PROGRAM SYNTHESIS

Tripakis, CS 4830/7485

The "modern” approach to program synthesis

Interactive:
computer-aided programming

programmer solves key problems (e.g., provides
program skeleton), synthesizer fills in (boring or tedious)
details (e.g., missing guards/assignments)

Search-for-patterns based:
synthesis = search among set of user-defined patterns

Solver based:
heavily uses verifiers like SAT and SMT solvers
often in a counter-example guided loop

Tripakis, CS 4830/7485

Example: programming by sketching
[Solar-Lezama, Bodik, et al.]

Parallel Parking by Sketching

Ref: Chaudhuri, Solar-Lezama (PLDI 2010)

Err = 0.0;
for(t = O; t<T; T+ dTX
If(STG

‘ragez INTURN; } Backup straight

if(stage==INTURN)
car.ang = car.ang
if(t > 2?) stage= OUTTURN: Turn

}
if(stage==OUTTURN) w {] W Al =
car.ang = car.ang + ??; Straighten
if(t > ??) break:;

}
simulate_car(car), | e []

Err += check_collision(car); E
) H I

Err += check_destination(car);

When to start turning?

—_ How much to turn?

Enables programmers to focus on high-level solution strategy 38

Using SAT and SMT solvers for synthesis

Recall: what is synthesis?

AP:Vx: p(x, P(x))

Usually re-written as:

AP:Vx:pre(x) — post(x, P(x))

l.e., if input satisfies precondition, then output will satisfy
postcondition.

Tripakis, CS 4830/7485

Using SAT and SMT solvers for synthesis

AP:Vx:pre(x) — post(x, P(x))
Example of pre(), post():
pre(x1,x2): number(x1) Anumber(x2)

post(x1,x2,y): x1 K yAx2<yA(xl=yVx2=y)

l.e., the spec for max(x1,x2).

Tripakis, CS 4830/7485

First: using SAT and SMT solvers for verification

Suppose we already have a program P.
Then instead of checking whether P is correct
Vx:pre(x) — post(x, P(x))
we can check whether P is wrong
Ax: pre(x) A apost(x, P(x))
I.e., we can check satisfiability of the formula

pre(x) A =post(x, P(x))

Tripakis, CS 4830/7485

Hold on: are programs formulas?

Consider a simple loop-free program:

function P(int x) returns (real y)

{
int tmp := 0;
if (x >= 0) then {
tmp++;
y = tmp*x;
by

else
Y = X,
return vy,

}
Formula:

Px,y) =(x=20Ay=x)V(x<O0Ay=—Xx)

Tripakis, CS 4830/7485

Hold on: are programs formulas?

What about real programs?
Loops, data structures, libraries, pointers, threads, ...

Translation to formulas much harder, but verification tools
are available that do this, constantly making progress.

We will assume we have a formula P(x,y) representing
the program P: “y is the output of P for input x”.

Tripakis, CS 4830/7485

Back to using SAT and SMT solvers for verification

We can check satisfiability of the formula

pre(x) A =post(x, P(x))

or, writing P as predicate on both input and output
variables:

pre(x) AN P(x,y) A =post(x,y)

Satisfiable => P is wrong: we get a counter-example (x,y)
Unsatisfiable => P is correct (for all x)

Tripakis, CS 4830/7485

10

Using SAT and SMT solvers for synthesis

What can be done when we don't have the program P ?

pre(x) A P(x,y) A =post(x,y)

Hint: what if we have a finite/small number of candidate
programs?

Ilterate and search!

Tripakis, CS 4830/7485 11

Programs with “holes”

Almost-complete programs:

Err = 0.0;

for'(T 0: +<T: 1.+ dT){ When to start Tur'ning?

5 } Backup straight

}

if(stage==INTURN) — ow much to turn?
car.ang = car'.an Hw s '
if(t > ??) stage= OUTTURN: Turn

}

if(stage==OUTTURNY o {] W Al =
car.ang = car.ang + ??; Straighten
if(t > ??) break;

simulate_car(car);
Err += check_collision(car);

}

Err += check_destination(car);

Programs with “holes”

What should we replace “??” with?

Patterns:

integer constants

linear expressions of the form ax + by + ¢ where x,y
are variables in the program

Even with these restrictions, infinite set of candidates ...
Search may take a long time or never terminate.
Can we do better?

Tripakis, CS 4830/7485

13

Asking the solver to find the program

Suppose our program has 1 hole, to be filled with an
iInteger variable.

Then, the formula characterizing the program becomes

P(h,x,y)

Can we use the solver to find the right h ?

Check satisfiability of Free variable: solver
" must find right value

Vx,y:pre(x) A P(h,x,y) = post(x,y)

Tripakis, CS 4830/7485

14

Problem: universal quantification ...

Vx,y:pre(x) AP(h,x,y) = post(x,y)

Today’s solvers check satisfiability of quantifier-free
formulas (mostly).

What can we do about that?

Hint: what if we have a finite number of positive
examples? i.e., |/O pairs (x, y) satisfying pre(x) A
post(x,y).

Tripakis, CS 4830/7485

15

Example-guided synthesis

Suppose we have a finite number of positive examples,
Say 2: (xl) Y1); (xz, yZ)

That is: we know that these hold:
pre(x1), pre(xz), post(xy, y1), post(xz, y2)
So it suffices to check satisfiablility of

P(h’ X1, yl) A P(h' X2, yZ)

Tripakis, CS 4830/7485

16

Example-guided synthesis

In general, for n positive examples and k hole variables:
n
/\ P(hl, hZ: e) hk: Xi, yl)
=1

We turned universal quantification into finite conjunction!

Tripakis, CS 4830/7485

17

Example-guided synthesis

What if solver finds this formula unsatisfiable ?

n
/\P(hl, hz, e hk,xl-,yl-)
=1

Unsatisfiable => no program exists!

This is sound: if no program exists that works even in this
finite set of examples, we cannot hope to find a program
that works for all examples.

Tripakis, CS 4830/7485 18

Example-guided synthesis

What if solver finds this formula satisfiable ?

n
/\P(hl, hz, e hk,xl-,yl-)
=1

Satisfiable => P(h4, h,, ..., h) is only a candidate.

It still needs to be verified for all /O pairs.
We can again use the solver for that!

Tripakis, CS 4830/7485

19

Example-guided synthesis

n
/\P(hl, hyy oo by X5)
i=1

Satisfiable => P(hq, h,, ..., h) is only a candidate.
Verify it by checking satisfiability of

pre(x) AN P(hq, hy, ..., hy, x,y) A =post(x,y)

These are now fixed

If formula is unsatisfiable then we are done!
What if formula is satisfiable?
Our candidate is wrong. We get a counter-example:

What then? (x*y%)

Tripakis, CS 4830/7485 20

Adding negative examples to the synthesizer’s
iInputs

In general, for n positive examples, m negative
examples, and k hole variables:

n m
/\P(hl,hz, o X) /\/\ﬂp(hl,hz, o b x5 Y
i=1 =1

Alternative: the user could provide the correct output for
the counter-example input, or we could use a
reference (correct and deterministic) program.

Tripakis, CS 4830/7485

Counter-example guided synthesis

spec,
no program

exists! candidate program, e.g., pre, post

e.g., formula P(hq, h,, ..., hy)

fail I SUCCV\
v

Synthesizer Verifier
(may also use solver internally) (e.g., SMT solver)

T \/NO’tOK OK

counter-example v
x;, i) found correct
program!

program skeleton,
initial set of
examples

Tripakis, CS 4830/7485

References

1. Solar-Lezama. Program sketching. STTT Vol 15, Issue 5-6, Oct 2013.
2. Alur, Bodik, et al. Syntax-Guided Synthesis. FMCAD 2013.

3. International Journal on Software Tools for Technology Transfer, Special
Issue on Synthesis, Volume 15, Issue 5-6, October 2013.

4. Course by Ras Bodik and Emina Torlak. CS294 — Program Synthesis for
Everyone. https://homes.cs.washington.edu/~bodik/ucb/cs294fa12.html

Tripakis, CS 4830/7485 23

