
CS 4830/7485
System Specification,
Verification and Synthesis
Fall 2019

Stavros Tripakis

Controller and Program Synthesis

2Tripakis, CS 4830/7485

From verification to synthesis

Verification:

first write program (or model of a system), then specify
formal properties, then check correctness.

Synthesis:

first specify formal properties, then let synthesizer
automatically generate a correct program.

Put another way:

from imperative (how) to declarative (what) design;

“raising the level of abstraction”.

3Tripakis, CS 4830/7485

What is synthesis?

Roughly:

Many different variants, depending on what is P, φ, and
how search is done.

Very old topic (Church, 1960s) recently rejuvenated.

4Tripakis, CS 4830/7485

Program synthesis and proofs

From 2nd order formula

to 1st order formula

Synthesizing program P can be done by proving
constructively that the above formula is valid.

Deductive program synthesis.

5Tripakis, CS 4830/7485

Concept Language
 Programs

• Straight-line programs

 Automata

 Queries

 Sequences

User Intent
 Logic, Natural Language

 Examples, Demonstrations/Traces

Search Technique
 SAT/SMT solvers (Formal Methods)

 A*-style goal-directed search (AI)

 Version space algebras (Machine Learning)

Dimensions in Synthesis (Gulwani)
PPDP 2010: “Dimensions in Program Synthesis”, Gulwani.

(Application)

(Ambiguity)

(Algorithm)

Also: logic synthesis

6Tripakis, CS 4830/7485

Compilers vs. Synthesizers (Gulwani)

Dimension Compilers Synthesizers

Concept
Language

Executable Program Variety of concepts: Program,
Automata, Query, Sequence

User Intent Structured language Variety/mixed form of
constraints: logic, examples,
traces

Search
Technique

Syntax-directed
translation (No new
algorithmic insights)

Uses some kind of search
(Discovers new algorithmic
insights)

7Tripakis, CS 4830/7485

MOTIVATING EXAMPLE

8Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: Electrical Power Generation and Distribution

System (EPS) of a modern aircraft

Thanks to:
Pierluigi Nuzzo
Antonio Iannopollo

9Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: EPS requirements (in English)

Assumptions:

Guarantees:

10Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: EPS requirements (in English) – zooming in

11Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller

12Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller – zooming in

13Tripakis, CS 4830/7485

Designing controllers can be tricky and time
consuming
Example: EPS “hand-written” controller

Design time ~ 1 week [Nuzzo] (but have to verify also)

For a real controller, it could be months [e.g., robotic
controllers, Willow Garage]

Can design

time be

improved?

14Tripakis, CS 4830/7485

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

15Tripakis, CS 4830/7485

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

Example: EPS controller

16Tripakis, CS 4830/7485

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

17Tripakis, CS 4830/7485

Declarative specification of controllers

Example: LTL specification for EPS

~40 lines

#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy))
[](!gr_healthy -> X(!gr_healthy))
[](!al_healthy -> X(!al_healthy))
[](!ar_healthy -> X(!ar_healthy))

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 &
!c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))

[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy)) -> X(!c2) & X(!c3) & X(!c9) &
X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy)) -> X(c9) & X(c10))

[](X(!gl_healthy)-> X(!c1))
[](X(!gr_healthy)-> X(!c4))
[](X(!al_healthy)-> X(!c2))
[](X(!ar_healthy)-> X(!c3))

[](X(gl_healthy) -> X(c1))
[](X(gr_healthy) -> X(c4))

…

#Guarantees
…

[](!gl_healthy -> X(c5))
[](!gr_healthy -> X(c6))

[]((X(gl_healthy) & X(gr_healthy)) -> (X(!c5) & X(!c6)))

[]((X(!gl_healthy) & X(al_healthy) & X(gr_healthy)) -> (
X(c2) & X(c3)))

[]((X(!gl_healthy) & X(!gr_healthy) & X(al_healthy) & !c3
& !c2) -> X(c2))

[]((X(al_healthy) & c2) -> X(c2))
[]((X(ar_healthy) & c3) -> X(c3))

[]((X(!gl_healthy) & X(!al_healthy) & X(ar_healthy) & !c2) -
> X(c3))

[]((X(!gr_healthy) & X(!ar_healthy) & X(al_healthy) & !c3) -
> X(c2))

[]((!gl_healthy & !al_healthy & !ar_healthy) -> X(c6))

[]((!gr_healthy & !ar_healthy & !al_healthy) -> X(c5))

18Tripakis, CS 4830/7485

Declarative specification of controllers

Example: LTL specification for EPS

Close mapping from English to LTL:

[](gl_healthy | gr_healthy | al_healthy | ar_healthy)

19Tripakis, CS 4830/7485

The controller synthesis problem

Given formula specification (e.g., in LTL) synthesize
controller (e.g., FSM) which implements the
specification (or state that such a controller does not
exist).

20Tripakis, CS 4830/7485

Automatic controller synthesis from declarative
specifications
Example: controller for EPS synthesized from previous

LTL spec using Tulip (Caltech) ~3k lines of Matlab

21Tripakis, CS 4830/7485

Automatic controller synthesis from declarative
specifications
Example: controller for EPS synthesized using Tulip

(Caltech), ~40 states – zooming in

22Tripakis, CS 4830/7485

Synthesis in these two lectures

Part 1: Controller synthesis and game solving.

Part 2: Example-guided and syntax-guided synthesis.

23Tripakis, CS 4830/7485

CONTROLLER SYNTHESIS

24Tripakis, CS 4830/7485

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

25Tripakis, CS 4830/7485

Controller synthesis (reactive synthesis)
[Pnueli-Rosner, POPL 1989]

Given interface of controller:

and given temporal logic formula φ over set of
input/output variables,

synthesize a controller (= state machine) M, such that all
behaviors of M (for any sequence of inputs) satisfy φ.

Note: other notions of controller synthesis exist in the literature. For details,
see “Bridging the gap” paper [3], also available from instructor’s web site.

26Tripakis, CS 4830/7485

Examples

Consider controller interface:

and specifications

27Tripakis, CS 4830/7485

Examples

Consider controller interface:

and specifications

No solution: controller cannot
foresee the future!

28Tripakis, CS 4830/7485

Satisfiability vs. realizability

Satisfiability: exists some behavior that satisfies the
specification. (In this behavior, we may choose both
inputs and outputs as we wish.)

Realizability: exists controller that implements the
specification. Must work for all input sequences, since
inputs are uncontrollable.

Inherently different problems, also w.r.t. complexity:

LTL satisfiability: PSPACE

LTL realizability: 2EXPTIME

29Tripakis, CS 4830/7485

Controller synthesis algorithms: computing
strategies in games

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

30Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

31Tripakis, CS 4830/7485

Safety automata

In some fortunate cases, the LTL specification can be
translated to a safety automaton.

Example:

Automaton:

“bad” state

32Tripakis, CS 4830/7485

“Spreading” a safety automaton to a game
[Ehlers PhD thesis, 2013]

We need to separate the input moves from the output
moves:

Automaton:

Game: •

•

33Tripakis, CS 4830/7485

Safety games

Input (environment) states:

Output (controller) states:

Bad state:

Goal: find winning strategy = avoiding bad state

•

•

•

“them”

“us”

if we reach this
state we lose

34Tripakis, CS 4830/7485

Solving safety games

1. Compute set of losing states, starting with Losing := { };

2. If initial state in Losing, no strategy exists.

3. Otherwise, all remaining states are winning. Extract
strategy from them by choosing outputs that avoid the
losing states.

•

•

35Tripakis, CS 4830/7485

Solving safety games

1. Compute set of losing states, starting with Losing := { };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

•

•

36Tripakis, CS 4830/7485

Solving safety games

1. Compute set of losing states, starting with Losing := { };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

Losing•
•

UncontrollablyLosing

ControllablyLosing •

in1

in2

out1
out2

out3

37Tripakis, CS 4830/7485

Solving safety games

• Extracting the strategy: “cut” controllable transitions in
order to avoid losing states.

• Strategy is state-based (also called “positional”, or
“memoryless”).

Losing•ControllablyWinning
out2

out1

38Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

39Tripakis, CS 4830/7485

Reachability games: dual of safety games

Reachability game: trying to reach a target state.

Observation: what is Losing for the safety player is
Winning for the reachability player (and vice versa).

•

•

40Tripakis, CS 4830/7485

Solving reachability games: direct algorithm

1. Compute set of Winning states;
 Winning := { };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

• ForceNext(S) := { s | all uncontrollable succs of s are in S }
U { s | s has controllable succ in S }

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

41Tripakis, CS 4830/7485

How to extract strategies in reachability games?

Similarly as for safety games:

Is strategy state-based?

Yes!

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

42Tripakis, CS 4830/7485

How to extract strategies in reachability games?

Similarly as for safety games: BUT, a subtlety:

Need to fix successor the first time state is added in
Winning.

•

•

43Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Beyond safety and reachability games

Remarks on the general LTL synthesis problem

44Tripakis, CS 4830/7485

What about other types of properties?

Bounded response specifications can be translated to
safety automata/games:

Automaton:

45Tripakis, CS 4830/7485

What about liveness properties?

What about unbounded response?

More interesting example:

46Tripakis, CS 4830/7485

Synthesis for general LTL specifications

Given LTL specification φ:

If φ can be translated to a deterministic Büchi automaton,
then can extend the previous ideas to solving Büchi
games.

Otherwise, solution involves more advanced topics, such
as tree automata. Will not be covered in this course.

Note: LTL cannot always be translated to deterministic
Büchi automata.

47Tripakis, CS 4830/7485

Büchi automata

Syntactically same as finite state automata:

But Büchi automata accept infinite words.

A run must visit an accepting state infinitely often.

accepting
states:

alphabet

states
initial
state

transition
function

48Tripakis, CS 4830/7485

From LTL to Büchi automata

Consider unbounded response property:

Büchi automaton:

accepting state

49Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

50Tripakis, CS 4830/7485

Spreading Büchi automata to Büchi games

Büchi automaton:

Büchi game:

•

•

•

51Tripakis, CS 4830/7485

Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

2. Solve reachability game with target = RecurrentAccepting.

•

•

•

52Tripakis, CS 4830/7485

Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

53Tripakis, CS 4830/7485

Recall

ForceNext(S) := { s | all uncontrollable succs of s are in S }
U { s | s has controllable succ in S }

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

54Tripakis, CS 4830/7485

Solving deterministic Büchi games –
Example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

•

•1

2

3
4

5

55Tripakis, CS 4830/7485

Computing recurrent accepting states: a subtle
relation with reachability games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

(almost) a
reachability
game iteration

56Tripakis, CS 4830/7485

Solving reachability games vs. computing Revisit

1. Compute set of Winning states:
 Winning := { };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

2. Compute Revisit:
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

What is the difference?
Does it matter?

57Tripakis, CS 4830/7485

Solving deterministic Büchi games –
modified example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

•

•1

2

3
4

56

58Tripakis, CS 4830/7485

How to extract strategies in deterministic Büchi
games?

Similarly as for reachability games:

Careful to choose the transition the first time state is
added to S.

Is strategy state-based?

Yes!

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2

59Tripakis, CS 4830/7485

What about non-deterministic Büchi games?
Does same algorithm work?

Not quite:

algorithm sound

but incomplete.

[Ruediger Ehlers,
PhD thesis, 2013]

Non-deterministic
Büchi game

Non-deterministic automaton for

𝑟 : input
𝑔 : output

60Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem

61Tripakis, CS 4830/7485

Controller synthesis: EE vs. CS ?

CS: synthesize outputs to implement :

EE: synthesize inputs to stabilize a physical
process/plant:

Not different: plant inputs = controller outputs (and vice
versa).

???
in out

62Tripakis, CS 4830/7485

Can we capture plants in the CS synthesis
problem?

CS: given plant P (say, a FSM), synthesize controller C,

so that closed-loop system satisfies :

Can we reduce this problem to the standard LTL
synthesis problem?

C
???

in out

P

63Tripakis, CS 4830/7485

Remarks, assessment

Despite some (mostly isolated) success stories, controller
synthesis hasn’t really caught on yet in practice.

Why is that?
• Normal: things like that take time (c.f. model-checking)

• 2EXPTIME is a horrible (worst-case) complexity (remember: even
linear is too expensive because of state explosion!)

• Tools still impractical

• Synthesis of real, complex systems from complete specs impractical
(imagine full synthesis of complete Intel microchip from LTL specs …)

• Lack of good debugging (e.g., counter-examples)

• Need: better tools, better methods (incremental, interactive, …)

• Great opportunities for research!

Automatic synthesis of
distributed protocols

Joint work with Rajeev Alur, Christos Stergiou et al (UPenn)
Sponsors: NSF Expeditions ExCAPE

64

Motivation: distributed protocols

• Notoriously hard to get right

65

(to model and verify
distributed protocols)

Can we synthesize
such protocols
automatically?

Verification and synthesis in a nutshell

• Verification:
1. Design system “by hand”:
2. State system requirements:
3. Check: does satisfy

• Synthesis (ideally):
1. State system requirements:
2. Generate automatically system that satisfies

by construction.

Tripakis 66

State of the art synthesis
• From formal specs to discrete controllers:

• Limitations:
– Scalability (writing full specs & synthesizing from them)
– Not applicable to distributed protocols (undecidable)

Tripakis 67

Controller (state machine)

#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy))
[](!gr_healthy -> X(!gr_healthy))
[](!al_healthy -> X(!al_healthy))
[](!ar_healthy -> X(!ar_healthy))

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 &
!c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))
[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy)) -> X(!c2) & X(!c3) &
X(!c9) & X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy)) -> X(c9) & X(c10))
…

Specification (temporal logic formulas)

Synthesis of Distributed Protocols from
Scenarios and Requirements

• Idea: combine requirements + example scenarios

68

example scenarios formal requirements
(safety, liveness,

deadlock-freedom, …)

synthesized
protocol

(state machines)

Synthesis tool

These are typically
not complete specs!

Scenarios: message sequence charts
• Describe what the protocol must do in some cases
• Intuitive language good for the designer
• Only a few scenarios required (1-10)

69
Scenario 1
(nominal)

Scenario 2
(msg loss)

Scenario 3
(ack loss)

Scenario 4
(delay)

Incomplete automata learned from first scenario:

Automatically completed automata:

ABP
Sender

ABP
Receiver

Synthesis becomes a completion problem

ABP
Sender

ABP
Receiver

Results

• Able to synthesize the distributed Alternating Bit Protocol (ABP)
and other simple finite-state protocols (cache coherence,
consensus, …) fully automatically [HVC’14, ACM SIGACT’17].

• Towards industrial-level protocols described as extended state
machines [CAV’15].

71

Algorithmic technique: counter-example guided
completion of (extended) state machines

• Completion of incomplete machines: find missing transitions,
guards, assignments, etc.

Tripakis 72

Other recent work: learning Moore
machines from input-output traces
[Giantamidis, Tripakis, 2016]

• Model learning

Tripakis 73

Fundamental question: what is
the right way to generalize?

Combining synthesis with learning

• Synthesis: given specification , find system ,
such that

• Learning: given set of examples , find system ,
such that is consistent with and “generalizes
well” …

• Synthesis from spec + examples: given set of
examples and specification , find system ,
such that is consistent with and
– Key advantage: guides the generalization!

74

75Tripakis, CS 4830/7485

References

1. Pnueli, A., Rosner R., On the Synthesis of a Reactive Module, POPL 1989.

2. Ehlers, R., Symmetric and Efficient Synthesis, PhD thesis, 2013.

3. Jobstmann, B., Reachability and Buchi Games, slides available online, 2010.

4. Ehlers, Lafortune, Tripakis, Vardi, Supervisory Control and Reactive
Synthesis: a Comparative Introduction, DEDS 2017.

5. Bloem, Chatterjee, Jobsmann, Graph Games and Reactive Synthesis, in
Handbook of Model Checking, 2019

6. Alur, Tripakis, Automatic Synthesis of Distributed Protocols, ACM SIGACT
News on Distributed Computing, 2017

7. Kang, Lafortune, Tripakis, Automated Synthesis of Secure Platform Mappings,
CAV 2019

