CS 4830/7485

System Specification,
Verification and Synthesis
® Fall 2019

Controller and Program Synthesis

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

From verification to synthesis

Verification:

first write program (or model of a system), then specify
formal properties, then check correctness.

Synthesis:

first specify formal properties, then let synthesizer
automatically generate a correct program.

Put another way:
from imperative (how) to declarative (what) design;
“raising the level of abstraction”.

Tripakis, CS 4830/7485

What is synthesis?
Roughly:
AP:Vx: @ (x, P(x))

Many different variants, depending on what is P, ¢, and
how search is done.

Very old topic (Church, 1960s) recently rejuvenated.

Tripakis, CS 4830/7485

Program synthesis and proofs

From 2" order formula
AP:Vx: p(x,P(x))
to 1st order formula

Vx:3dy:p(x,y)

Synthesizing program P can be done by proving
constructively that the above formula is valid.

Deductive program synthesis.

Tripakis, CS 4830/7485

PPDP 2010: “Dimensions in Program Synthesis”, Gulwani.
Dimensions in Synthesis (Gulwani)

Programs
Straight-line programs
Automata Also: logic synthesis
Queries
Sequences

Logic, Natural Language
Examples, Demonstrations/Traces

SAT/SMT solvers (Formal Methods)
A*-style goal-directed search (Al)
Version space algebras (Machine Learning)

Tripakis, CS 4830/7485

Compilers vs. Synthesizers (Gulwani)

Concept Executable Program Variety of concepts: Program,
Language Automata, Query, Sequence

User Intent Structured language Variety/mixed form of
constraints: logic, examples,
traces

Search Syntax-directed Uses some kind of search
Technique translation (No new (Discovers new algorithmic
algorithmic insights) insights)

Tripakis, CS 4830/7485

MOTIVATING EXAMPLE

Tripakis, CS 4830/7485

Designing controllers can be tricky and time

consuming

Example: Electrical Power Generation and Distribution
System (EPS) of a modern aircraft

Alrcraft Emctrical Pow er Generation & Distribution $y stem

nkmooe!
oy Me Model Properies Gaibacks

Sownn

113

S
it
‘E—‘ ‘
T

i | :]
Cloagt ACLoaa2 .
- Ld
11
e, |
N

E

Thanks to: =
Pierluigi Nuzzo 1
Antonio lannopollo

Fo—

mvos

2
=
oC)
Lamp1

Designing controllers can be tricky and time

consuming
Example: EPS requirements (in English)

A2) At least one power source is always “healthy” (i.e. it is operational and can be inserted into the
_ network to deliver power);

Assumptions: A3) Failures can only affect the power sources; once a power source becomes “unhealthy” (i.e. it is
not operational and cannot be inserted into the network to deliver power), it will never return to
be “healthy” (e.g., turned back on) during the cruising phase of the mission;

A4) An AC bus is correctly powered if the root-mean-square (RMS) voltage at its loads is between
110 V and 120 V and the frequency is 400 Hz.

Under the above assumptions, the BPCU offers the following guarantees:
G1) At start-up all the power source contactors are “open”;
G2) In normal conditions (i.e. no faults or failures in the system) Gy and Gy are “on” and provide
Guarantees: power for the left side and the right side of the system, respectively; auxiliary power units are

“off’; Coand C,qare open (“off”);

G3) No AC bus is powered by more than one power source at the same time, i.e. AC power sources
can never be paralleled;

G4) It never happens that both the APUs are inserted into the network at the same time;

G5) AC buses cannot be unpowered for more than a well-defined length of time;

G6) DC buses must always stay powered, at least in a “reduced performance” mode, which occurs
when only one HVRU is used;

G7) The left AC bus B; must always be powered from the first available source from the ordered
list (G, AL, Ar GR);

G8) The right AC bus B, must always be powered from the first available source from the ordered
list (Gg, Agr, AL, Gp).

Designing controllers can be tricky and time

consuming
Example: EPS requirements (in English) — zooming in

A2) At least one power source is always “healthy” (i.e. it is operational and can be inserted into the
network to deliver power);

G1) At start-up all the power source contactors are “open’;

G3) No AC bus is p(A)Wered‘by more than one power source at the same time, i.e. AC power sources
can never be paralleled;

Tripakis, CS 4830/7485 10

Designing controllers can be tricky and time
consuming

Example: EPS "hand-written” controller

e e
rS -1, B5=1. E=1]
£ B1=1 B}=) Bi=1 B8=1 E= X P =

T - i
- -
27 V_EAS V_AYBi=1, BN, B3=1, =1, E= :

| £ 1

v 1,83=1, Bt=0, B6=1 E=1} r~ |
/o B1=T-B4=1, B5=0, B=1, Eag r

0, B3~1, BS=t, BE =1, Emty

B{356)

2
i

Designing controllers can be tricky and time

consuming
Example: EPS “hand-written” controller — zooming in

R

J/Bi2 4 5] 3\

R_off{B2=0, B4=1, B5=1, B6=1, E=1} ¥}

[V_ENBI=T-B2=0_B4=1, B6=1 E=1} it 21

L_off{B1=0,B4=1, B5=1, B6=1, E=

14=1, BB=1, E=1}

E_on{B2=1, B3=0,B4=1, B5=

36=1, E=1}

IV_A}B2=1
4 \/
=0, B4=1,B5=1, B6=1 = Rigth_APU/

E=0;

. Bj#=0, B5=1, B6=1, E=1} = IB[2 3 5]
L on{B1=1, B3=1, B5=0, B6=1, E=] \{B2=1, B3=1, B5=1, B6=0, E=1}
‘ ‘ ’ ' 2 1

=1} i

L, off{(B1=0, B3=1, B5=1, B6=1, E=1}

off{B2=0, B3=1, B5=1, B6=1, E=

B3=1, B5=0, B6=1, E=1} E=0; i E on{BA=T BoXT—Be=TE=T] A_or{B2=1, B:

Designing controllers can be tricky and time

consuming
Example: EPS "hand-written” controller

Design time ~ 1 week [Nuzzo] (but have to verify also)

For a real controller, it could be months [e.qg., robotic
controllers, Willow Garage]

~e{E=i T e
/e e =TS B = =a]
L] 4 ’ - y o = - - -
SR | | L_OTB1S0,Bdm1, BE=1, BE=1, E=T3 = .
[\ \ P ™~ f
Can design /LT <
| £ on@1-1. 840821, 881, E=1}) ¢ -
/ Q NG 7 - N
[] / 2 1\ \,“ 7 N : :_”E__s& .‘A‘ 1 5:;-: B3
tl e b e / [/_AJETY 1. BY=1, B0, B6m1 Ex1) T | /
/ / \ | fon@ioraiet 50 et oy)/

Tripakis, CS 4830/7485 T e

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

Tripakis, CS 4830/7485

14

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

Example: EPS controller

Tripakis, CS 4830/7485 MATLAE Function

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

Tripakis, CS 4830/7485 16

Declarative specification of controllers

Example: LTL specification for EPS

~40 lines

#Assumptions

(gl healthy & gr healthy & al healthy & ar healthy)

[] (gl healthy | gr healthy | al healthy | ar healthy)
[](!gl healthy -> X(!gl healthy))

(] (!gr healthy -> X(!gr healthy))

[](!al healthy -> X(!al healthy))

[](lar healthy -> X(l!ar healthy))

#Guarantees

('cl & 'c2 & !'c3 & !cd4d & 'c5 & !'c6 & !c7 & !'¢c8 & !c9 & !'cl0 &
'cll & !'cl2 & !'cl3)

[1(X(c7) & X(c8) & X(cll) & X(cl2) & X(cl3))

[1(!'(c2 & c3))

[](!(cl & c5 & (al healthy | ar healthy)))

[](!(c4 & c6 & (al healthy | ar healthy)))

[]((X(gl _healthy) & X(gr healthy)) -> X(!c2) & X(!c3) & X(!c9)
X(!'cl0))

[]((X(!gl healthy) & X(!gr healthy)) -> X(c9) & X(c10))
[](X(!gl healthy)-> X(lcl))

[] (X(!gr healthy)-> X(!c4))

[] (X(!al healthy)-> X(!c2))

[] (X(lar healthy)-> X(!c3))

[] (X(gl healthy) -> X(cl))

[] (X(gr_healthy) -> X(c4))

&

#Guarantees
[

[]((X(gl_healthy)

[]((X(!'gl healthy)
X(c2) & X(c3)))

[]((X(!'gl healthy)
& 1c2) -> X(c2))

[]((X(al healthy)
[] ((X(ar_healthy)
[1((X(!'gl healthy)
> X(c3))

[]((X(!gr healthy)
> X(c2))

[]1((!'gl healthy &

[1((!gr _healthy &

] (!gl healthy -> X(c5))
[] (!gr healthy -> X(c6))

& X(gr_healthy))

& X(al healthy)

& X(!gr healthy)

& c2)
& c3)

-> X (c2))
-> X (c3))

& X('!'al healthy)

& X(!'ar healthy)

!al healthy &

!ar healthy &

lar healthy)

'al healthy)

-> (X(!chH)

& X(gr healthy))

& X(al healthy)

& X(ar healthy) &

& X(al healthy) &

-> X (c6))

-> X (cb))

& X(!coe)))

-> (

& !c3

lc2) -

'c3) -

Tripakis, CS 4830/7485

17

Declarative specification of controllers

Example: LTL specification for EPS
Close mapping from English to LTL.:

A2) At least one power source is always “healthy” (i.e. it is operational and can be inserted into the
network to deliver power);

[] (gl healthy | gr healthy | al healthy | ar healthy)

Tripakis, CS 4830/7485 18

The controller synthesis problem

Given formula specification (e.g., in LTL) synthesize
controller (e.g., FSM) which implements the
specification (or state that such a controller does not
exist).

Tripakis, CS 4830/7485

19

Automatic controller synthesis from declarative
specifications

Example: controller for EPS synthesized from previous
LTL spec using Tulip (Caltech) ~3k lines of Matlab

B Editor - Block: Lab2_AircraftEPS/BPCU/MATLAB Functionl

E,U.:' - ﬁ [Find Files Insert 5] fx [~ o o E > = @ 45 T e | () S Target. 20
) __ Compare » | Comment % S T — i & & :
New Open Save 5 = Breakpoints Run Siop BukiModel [/ EdiData | View Report Help
> v v [Pt v Indent (=] o) |2 L{ Find = - Mode! Wodsl - -
FE | EnT | WAVIGATE | BREAKPOINTS _RUN | SINULING
- | BPCU/MATLAB Functionl = | + |
1 [function [c6&,c3,c9,c8,c2,c13,c12,c11,c10,c7,cl,c5,c4] = centralized bpcu({gl healthy,gr_healthy,ar_healthy,al healthy) gD
= global scace;
3= coder.extrinsic('disp');
4 - switch scace
5 case -1
B = if isequal (gl_healthy, 1} && isequal (gr_healthy, 1) && isequal (ar_healthy, 1} && isequal (al_healthy, 1}
5= x
8 —
il
8=
23 Wi
2
5% =
18—
150 =
16—
T
18—
s He
20 =
21
A= nnot find a valid successor, environment assumption is like to be wviolated')
L or
24 - o;
R oz
26 — c& = 0;
28 = c2 = 0;
28 — £33 =0
LU= clz = 0;
30 - cll = 0;
S e clo = 0
32 = cT = 07
23 cl = 0;
34 - c5S = 07

w
o
|
[y}
r
|

I =
36 nd
* -l

e TE— o

Automatic controller synthesis from declarative
specifications

Example: controller for EPS synthesized using Tulip
(Caltech), ~40 states — zooming in

switch state
case -1
if isequal (gl healthy, 1) && isegqual (gr healthy, 1) && isequal (ar healthy, 1} && isequal (al healthy, 1)

atate = 0;
cbe = 0;

c3 = 0;

8 =07

c8 = 0;

c2 = 0;
=13 =.0:
clz2 = 0;
1l =-0;
cld = 0;
=7 = 0;

cl = 0;

co =-0;

o4 = 0;

else

disp('Cannot find a wvalid successor, environment assumption is like to be violated')
cb = 0;

c3 = 0;

O =07

cd = 0;

c2 = 0;

-

Synthesis in these two lectures

Part 1: Controller synthesis and game solving.

Part 2. Example-guided and syntax-guided synthesis.

Tripakis, CS 4830/7485

22

CONTROLLER SYNTHESIS

Tripakis, CS 4830/7485

23

Declarative specification of controllers

At the outset the controller is just a box with inputs and
outputs:

We can specify the input-output behavior of the controller
in a high-level language, e.g., in temporal logic.

Tripakis, CS 4830/7485 24

Controller synthesis (reactive synthesis)
[Pnueli-Rosner, POPL 1989]

Given interface of controller:

P1—— — 01

Pp—" —

and given temporal logic formula ¢ over set of
input/output variables,

synthesize a controller (= state machine) M, such that all
behaviors of M (for any sequence of inputs) satisfy .

Note: other notions of controller synthesis exist in the literature. For details,
see “Bridging the gap” paper [3], also available from instructor’s web site. 25

Examples

Consider controller interface:

and specifications

¢, =G — Xq)

P, = G(p < Xq)

@3 = G(q < Xp)

Tripakis, CS 4830/7485

26

Examples

Consider controller interface:

and specifications

¢, =G — Xq)

P, = G(p < Xq)

p ' — q

@3 = G(qg < Xp) No solution: controller cannot

Tripakis, CS 4830/7485

foresee the future!

27

Satisfiability vs. realizability

Satisfiability: exists some behavior that satisfies the
specification. (In this behavior, we may choose both
iInputs and outputs as we wish.)

Realizabllity: exists controller that implements the
specification. Must work for all input sequences, since
iInputs are uncontrollable.

Inherently different problems, also w.r.t. complexity:
LTL satisfiability: PSPACE
LTL realizability: 2EXPTIME

Tripakis, CS 4830/7485 28

Controller synthesis algorithms: computing
strategies in games

Solving safety games
Solving reachability games
Solving deterministic Buchi games (liveness)

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

29

Controller synthesis algorithms

Solving safety games
Solving reachability games
Solving deterministic Bluchi games (liveness)

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

30

Safety automata

In some fortunate cases, the LTL specification can be
translated to a safety automaton.

Example: 0 =G(/p-q)

Automaton: p+ q

_8 pq)@/“bad” state

Tripakis, CS 4830/7485

31

“Spreading” a safety automaton to a game
[Ehlers PhD thesis, 2013]

We need to separate the input moves from the output

moves:)
ptq

Automaton: 48 o])@
Game:
i@true
P, 1.0
e

Tripakis, CS 4830/7485

32

Safety games

_— uthemn

Input (environment) states:

___—‘us

Output (controller) states: o

if we reach this
Bad state: Q — state we lose
Goal: find winning strategy = avoiding bad state

D true

R

Tripakis, CS 4830/7485

33

Solving safety games

1. Compute set of losing states, starting with Losing := {®};
2. If initial state in Losing, no strategy exists.

3. Otherwise, all remaining states are winning. Extract
strategy from them by choosing outputs that avoid the
losing states.

Tripakis, CS 4830/7485 34

Solving safety games

1. Compute set of losing states, starting with Losing := {®};

repeat
UncontrollablyLosing := { s | s has uncontrollable succ in Losing };
ControllablyLosing := { s | all controllable succs of s are in Losing};
Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

until Losing does not change;

ﬁ true

Tripakis, CS 4830/7485 35

Solving safety games

1. Compute set of losing states, starting with Losing := {®};

repeat
UncontrollablyLosing := { s | s has uncontrollable succ in Losing };
ControllablyLosing := { s | all controllable succs of s are in Losing};
Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

until Losing does not change;

in1_>®
UncontrollablyLosing nZ Losing
out1 SON___—>

ControllablylLosing 3

Tripakis, CS 4830/7485 36

Solving safety games

Extracting the strategy: “cut” controllable transitions in
order to avoid losing states.

Strategy is state-based (also called “positional”, or
“memoryless”).

out_o)
out?2 ‘

ControllablyWinning

Tripakis, CS 4830/7485

37

Controller synthesis algorithms

Solving safety games
Solving reachability games
Solving deterministic Bluchi games (liveness)

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

38

Reachability games: dual of safety games

Reachability game: trying to reach a target state.

Observation: what is Losing for the safety player is

Winning for the reachability player (and vice versa).

ﬁ true

e

Tripakis, CS 4830/7485

39

Solving reachability games: direct algorithm

1. Compute set of Winning states;
Winning :={ };
repeat
Winning := Winning U ForceNext(Winning);
until Winning does not change;

ForceNext(S) := { s | all uncontrollable succs of sare in S }
U {s | s has controllable succin S}

UncontrollablyWinning Winning

ControllablyWinning out2‘>

Tripakis, CS 4830/7485

40

How to extract strategies in reachability games?

Similarly as for safety games:

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

UncontrollablyWinning Winning

ControllablyWinning out2‘>

|s strategy state-based?
Yes!

Tripakis, CS 4830/7485 41

How to extract strategies in reachability games?

Similarly as for safety games: BUT, a subtlety:

Need to fix successor the first time state is added in
Winning.

Tripakis, CS 4830/7485

42

Controller synthesis algorithms

Solving safety games
Solving reachability games
Beyond safety and reachability games

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

43

What about other types of properties?

Bounded response specifications can be translated to
safety automata/games:

p— —q @ =G(p - (qor Xqor XXq))

Automaton:
p+q

Tripakis, CS 4830/7485 44

What about liveness properties?

What about unbounded response?

p— —q @ =G — Fq)

More interesting example:

P1— — 1 =G~ Fq) &G(p, > Fq,)
P — — (> & G(—(q1 & q3))

Tripakis, CS 4830/7485 45

Synthesis for general LTL specifications
Given LTL specification ¢:

If @ can be translated to a deterministic Buchi automaton,
then can extend the previous ideas to solving Buchi
games.

Otherwise, solution involves more advanced topics, such
as tree automata. Will not be covered in this course.

Note: LTL cannot always be translated to deterministic
Buchi automata.

Tripakis, CS 4830/7485 46

Buchi automata

Syntactically same as finite state automata:

A=(S,s0,0,F)

/ N

alphabet accepting
states:
C
states Fes
initial transition
state function

But Buchi automata accept infinite words.
A run must visit an accepting state infinitely often.

Tripakis, CS 4830/7485

47

From LTL to Buchi automata

Consider unbounded response property:

¢ =G~ Fq)
Buchi automaton:
ptq q
accepting state —— g

Tripakis, CS 4830/7485

48

Controller synthesis algorithms

Solving safety games
Solving reachability games
Solving deterministic Buchi games (liveness)

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

49

Spreading Buchi automata to Buchi games
ptq q

Buchi automaton: B
pq
O

Blichi game: P true

Tripakis, CS 4830/7485

50

Solving deterministic Buchi games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

2. Solve reachability game with target = RecurrentAccepting.

p true

Tripakis, CS 4830/7485 51

1.

Solving deterministic Buchi games

Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

RecAcc = set of all accepting states;

repeat
Revisit .= { };
repeat
Reuvisit :== Revisit U ForceNext(Revisit U RecAcc);
until Revisit does not change;
RecAcc := RecAcc N Reuvistt,

until set RecAcc does not change;

Tripakis, CS 4830/7485 52

Recall

ForceNext(S) :={ s | all uncontrollable succs of s are in S }
U {s | s has controllable succ in S}

UncontrollablyWinning

ControllablyWinning out2

Tripakis, CS 4830/7485

53

Solving deterministic Buchi games —

Example _ g2
p true
O/
q q true

RecAcc = set of all accepting states; q

repeat
Revisit :={ };
repeat
Reuvisit := Revisit U ForceNext(Revisit U RecAcc);
until Revisit does not change;
RecAcc .= RecAcc N Reuvisit;

until set RecAcc does not change;

Tripakis, CS 4830/7485 54

Computing recurrent accepting states: a subtle
relation with reachability games

1. Compute set of RecurrentAccepting states = accepting
states from which controller can force returning to an
accepting state infinitely often.

RecAcc = set of all accepting states;

repeat _
Revisit .= { };
(almost) a
repeat o o - — reachability
Revisit := Revisit U ForceNext(Revisit U RecAcc); game iteration
until Revisit does not change; l

RecAcc := RecAcc N Reuvistt,
until set RecAcc does not change;

Tripakis, CS 4830/7485 55

Solving reachability games vs. computing Revisit

1. Compute set of Winning states:

What is the difference?

Winning = {}, Does it matter?
repeat
Winning := Winning U ForceNext(Winning);

until Winning does not change;
2. Compute Revistt:
Revisit :={ };
repeat

Revisit := Revisit U ForceNext(Revisit U RecAcc);

until Revisit does not change;

Tripakis, CS 4830/7485

56

Solving deterministic Buchi games —
modified example

RecAcc = set of all accepting states;

repeat
Revisit :={ };
repeat
Reuvisit := Revisit U ForceNext(Revisit U RecAcc);
until Revisit does not change;
RecAcc .= RecAcc N Reuvisit;

until set RecAcc does not change;

Tripakis, CS 4830/7485 57

How to extract strategies in deterministic Buchi
games”?

Similarly as for reachability games:

Extract strategy from ForceNext(S): ensure you choose the
right controllable transition that leads in winning state.

UncontrollablyWinning

ControllablyWinning

Careful to choose the transition the first time state is
added to S.

|s strategy state-based?
Yes!

Tripakis, CS 4830/7485

58

What about non-deterministic Buchi games?
Does same algorithm work?

Oql

?

Not quite:
algorithm sound
but incomplete.

Non-deterministic automaton for

-/ \ true 7 (GFr AGFg)V (FG—r ANFG—g)
r . input
g : output
[Ruediger Ehlers,

PhD thesis, 2013]
Non-deterministic

Blchi game

@ 59

Controller synthesis algorithms

Solving safety games
Solving reachability games
Solving deterministic Bluchi games (liveness)

Remarks on the general LTL synthesis problem

Tripakis, CS 4830/7485

60

Controller synthesis: EE vs. CS ?

in

CS: synthesize outputs to implement @: o 297

out

EE: synthesize inputs to stabilize a physical
process/plant: d

Controller Process

X =Ax+Bu
y=Cx+Du

Not different: plant inputs = controller outputs (and vice

versa).

Tripakis, CS 4830/7485

Can we capture plants in the CS synthesis
problem?

CS: given plant P (say, a FSM), synthesize controller C,
so that closed-loop system satisfies :

P

in C out
297 "

Can we reduce this problem to the standard LTL
synthesis problem?

Tripakis, CS 4830/7485

Remarks, assessment

Despite some (mostly isolated) success stories, controller
synthesis hasn't really caught on yet in practice.

Why is that?
- Normal: things like that take time (c.f. model-checking)

2EXPTIME is a horrible (worst-case) complexity (remember: even
linear is too expensive because of state explosion!)

Tools still impractical

Synthesis of real, complex systems from complete specs impractical
(imagine full synthesis of complete Intel microchip from LTL specs ...)

Lack of good debugging (e.g., counter-examples)
Need: better tools, better methods (incremental, interactive, ...)
Great opportunities for research!

Tripakis, CS 4830/7485

63

Automatic synthesis of
distributed protocols

Joint work with Rajeev Alur, Christos Stergiou et al (UPenn)
Sponsors: NSF Expeditions ExCAPE

64

Motivation: distributed protocols

ht Can we synthesize
such protocols
COMMUNICATIONS automatically? -

OF THE

AC M VIDEOS

HOME | CURRENTISSUE | NEWS | BLOGS | OPINION | RESEARCH PRACTICE | CAREERS ARCHIVE

* Notoriously hard to get rig

Home |/ Magazine Archive / April 2015 (Vol. 58, No. 4) /| How Amazon Web Services Uses Formal Methods / Full Text

CONTRIBUTED ARTICLES . (tO mOdel and verify
How Amazon Web Services Uses Formal Methods | istributed protocols)

By Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff

Communications of the ACM, Vol. 58 No. 4, Pages 66-73 Key I n S I g hts

10.1145/2699417
Comments (1)

' ; AT gir— — ; . — B Formal methods find bugs in system
viewas: B [@ B B st @ &S @ &1 & designs that cannot be found through
' ' ' ' - any other technique we know of.

Since 2011, engineers at Amazon Web Services (AWS) have use| m Formal methods are surp risinglv feasible
formal specification and model checking to help solve difficult for mainstream software development
design problems in critical systems. Here, we describe our and give good return on investment,.
motivation and experience, what has worked well in our proble
domain, and what has not. When discussing personal experien
we refer to the authors by their initials.

B At Amazon, formal methods are routinely
applied to the design of complex
real-world software, including public

At AWS we strive to build services that are simple for customer cloud services.

to use. External simplicity is built on a hidden substrate of

mnsrnrlaer Alcteilhatad cercbnssns Cianlh ccsnad e fndnamnala asea

S

Verification and synthesis in a nutshell

* Verification:
1. Design system “by hand”: S
2. State system requirements: ¢
3. Check: does S satisfy ¢ ?

* Synthesis (ideally):
1. State system requirements: ¢

2. Generate automatically system S that satisfies
¢ by construction.

State of the art synthesis

* From formal specs to discrete controllers:

#Assumptions

gl _healthy & gr healthy & al healthy & ar healthy)

] (gl_healthy | gr_healthy | al_healthy | ar healthy)

!gl healthy -> X(!gl healthy))

!gr healthy -> X(!gr healthy

'al healthy -> X(!al healthy
(

(
[
[
[
[
[1(lar_healthy -> X(!ar healthy

1()
1())
1())
1())

#Guarantees
(!'cl & !'c2 & !c3 & !cd4d & !'c5 & !c6 & !c7 & !'c8 & !'c9 & !cl0 &
'cll & !'cl2 & !'cl3)
] (X(c7) & X(c8) & X(cll) & X(cl2) & X(cl3))
!
!
!

(
(
(cl & c5 & (al_healthy | ar_healthy)))

(c4 & c6 & (al_healthy | ar_ healthy)))

X (gl healthy) & X(gr_healthy)) -> X(!c2) & X(!c3) &
9

X

(
('c9) & X(!'cl0))
] ((X(!gl healthy) & X(!gr_healthy)) -> X(c9) & X(cl0)

Specification (temporal logic formulas)

 Limitations:

— Scalability (writing full specs & synthesizing from them)

)

,,,,,

Controller (state machine)

— Not applicable to distributed protocols (undecidable)

Tripakis

67

Synthesis of Distributed Protocols from

Scenarios and Requirements

* |dea: combine requirements + example scenarios

ouul<_ » ”[14-; 2 end - :
g, —~ \MN del <-'pl\>
— R - meout ! L
: : : : : — L deliv
: ! TR : —~ o
: /> : . L'df:l —_— : . .
" d« , / \ smd<_§ 7
. < send N . . B B [£3% .
B : -« 7 : : a >—<}
\ deli —~— — : L deliv
44/"-> 1 i.»dd' Ufl‘_; Dy A/lln-b M
N . agy ; h . . .
; L ~ | : Synthesis tool
\ Al : a0 ;'>d6lz

example scenarios formal requirements

(safety, liveness,

These are typically deadlock-freedom, ...)

not complete specs!

synthesized
protocol
(state machines)

68

Scenarios: message sequence charts

* Describe what the protocol must do in some cases

* Intuitive language = good for the designer

* Only a few scenarios required (1-10)

Sender Receiver

send

Dy

I

deliver
a0

\

send

Vg

I8

an deliver

\
\

\

send

)

I

deliver
a9

\

<
<

Scenario 1
(nominal)

Sender

send

send

\/

4—.,01

timeout

—_—>_ 7

send

/

aQ

\

Scenario 2
(msg loss)

Receiver

deliver

deliver

deliver

Sender

send

-+)

send

timeout

[

agQ

I\

\E

— D7

send

[y

ay

Ly

/
|

Scenario 3
(ack loss)

Receiver

deliver

deliver

>

deliver

Sender

send

send

timeout

' b

send

Do

i

V2|

!

1
1

|

Do N

¥

Scenario 4
(delay)

Receiver

deliver

deliver

deliver

Synthesis becomes a completion problem

Incomplete automata learned from first scenario:

: deliver!
send! O\a{i‘? pé? N’
e ABP
sender)/Q ay! /Q Receiver
\O 1! send! \ deliver! C p1?

O

Automatically completed automata:

/
Po! @’

O/\ C deliver! el
send! ao? P’ Q\O.
ABP Q/ timeout? . | o ABP
Sender ap? p1! /Q <\al N —
ay? /\Q send! " Q deliver! C p1?

timeout?

Results

e Able to synthesize the distributed Alternating Bit Protocol (ABP)
and other simple finite-state protocols (cache coherence,
consensus, ...) fully automatically [HVC’14, ACM SIGACT’17].

e Towards industrial-level protocols described as extended state

machines [CAV’15].

Gwait (Pm, Po, flag, turn)

waltingy, -
requestp,!

flag[Pm| == false gerit (Pm, Po, flag, turn)
criticalpy!

Critical section

flag[Po] A turn = Po

waltingp, !
requestp, !
flag[Pm] := true turn := Po

)
—flag[Po| V turn = Pm
criticalpy!

Critical section

71

Algorithmic technigue: counter-example guided
completion of (extended) state machines

 Completion of incomplete machines: find missing transitions,
guards, assignments, etc.

(_ ‘<_" Constraints @g
Add input, on unknown functions
determinism, and
SYMIMELTY CONSETAINES | gruurrrursssessrssssrsnsssssessenserns BN Environment
. ; Aoy A ESM-S F
Yes?
l Interpretation . -
for unknown Y = ¥ :
SOIZG constrguili,s: s functions Instantiate protocol Model check
SRt : with interpretation protocol
unknown functions X)
No?
No completion 4
(P) [Analyze errors & Yes?
. Errors?
l update constraints
No?

Correct
Fig. 3: Completion Algorithm. [Interpretation]

Other recent work: learning Moore

machines from input-output traces
[Giantamidis, Tripakis, 2016]

* Model learning

|O-traces Learned FSM

(a1
aa — 020 b/Yb
baa — 0122
bha s 0120 —P | Learner | — >/\
b\ 2/
a,b

qdo
0 a
abaa — 02220 \
a

abba — 02220 \/
\2/

Fundamental question: what is
the right way to generalize?

Combining synthesis with learning

* Synthesis: given specification ¢, find system §,
suchthat S E ¢

* Learning: given set of examples E, find system S,
such that S is consistent with E and “generalizes
well” ...

* Synthesis from spec + examples: given set of
examples E and specification ¢, find system §,
such that S is consistent with E and S E ¢

— Key advantage: ¢ guides the generalization!

References

1. Pnueli, A., Rosner R., On the Synthesis of a Reactive Module, POPL 1989.
Ehlers, R., Symmetric and Efficient Synthesis, PhD thesis, 2013.
Jobstmann, B., Reachability and Buchi Games, slides available online, 2010.

Ehlers, Lafortune, Tripakis, Vardi, Supervisory Control and Reactive
Synthesis: a Comparative Introduction, DEDS 2017.

5. Bloem, Chatterjee, Jobsmann, Graph Games and Reactive Synthesis, in
Handbook of Model Checking, 2019

6. Alur, Tripakis, Automatic Synthesis of Distributed Protocols, ACM SIGACT
News on Distributed Computing, 2017

7. Kang, Lafortune, Tripakis, Automated Synthesis of Secure Platform Mappings,
CAV 2019

> L N

Tripakis, CS 4830/7485 75

