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From verification to synthesis

Verification:

first write program (or model of a system), then specify 
formal properties, then check correctness.

Synthesis:

first specify formal properties, then let synthesizer 
automatically generate a correct program.

Put another way:

from imperative (how) to declarative (what) design;

“raising the level of abstraction”.
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What is synthesis?

Roughly:

Many different variants, depending on what is P, φ, and 
how search is done.

Very old topic (Church, 1960s) recently rejuvenated.
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Program synthesis and proofs

From 2nd order formula

to 1st order formula

Synthesizing program P can be done by proving 
constructively that the above formula is valid.

Deductive program synthesis.
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Concept Language
 Programs

• Straight-line programs

 Automata

 Queries

 Sequences

User Intent
 Logic, Natural Language

 Examples, Demonstrations/Traces

Search Technique
 SAT/SMT solvers (Formal Methods)

 A*-style goal-directed search  (AI)

 Version space algebras (Machine Learning)

Dimensions in Synthesis (Gulwani)
PPDP 2010: “Dimensions in Program Synthesis”, Gulwani.

(Application)

(Ambiguity)

(Algorithm)

Also: logic synthesis
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Compilers vs. Synthesizers (Gulwani)

Dimension Compilers Synthesizers

Concept 
Language

Executable Program Variety of concepts: Program,
Automata, Query, Sequence

User Intent Structured language Variety/mixed form of 
constraints: logic, examples, 
traces

Search 
Technique

Syntax-directed
translation (No new 
algorithmic insights)

Uses some kind of search 
(Discovers new algorithmic 
insights)



7Tripakis, CS 4830/7485

MOTIVATING EXAMPLE
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Designing controllers can be tricky and time 
consuming
Example: Electrical Power Generation and Distribution 

System (EPS) of a modern aircraft

Thanks to:
Pierluigi Nuzzo
Antonio Iannopollo
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Designing controllers can be tricky and time 
consuming
Example: EPS requirements (in English)

Assumptions:

Guarantees:
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Designing controllers can be tricky and time 
consuming
Example: EPS requirements (in English) – zooming in
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller – zooming in
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Designing controllers can be tricky and time 
consuming
Example: EPS “hand-written” controller

Design time ~ 1 week [Nuzzo]  (but have to verify also)

For a real controller, it could be months [e.g., robotic 
controllers, Willow Garage]

Can design

time be

improved?
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Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:
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Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

Example: EPS controller
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Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

We can specify the input-output behavior of the controller 
in a high-level language, e.g., in temporal logic.
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Declarative specification of controllers

Example: LTL specification for EPS

~40 lines

#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy) )
[](!gr_healthy -> X(!gr_healthy) )
[](!al_healthy -> X(!al_healthy) )
[](!ar_healthy -> X(!ar_healthy) )

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 & 
!c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))

[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy) ) -> X(!c2) & X(!c3) & X(!c9) & 
X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy) ) -> X(c9) & X(c10))

[](X(!gl_healthy)-> X(!c1) )
[](X(!gr_healthy)-> X(!c4) )
[](X(!al_healthy)-> X(!c2) )
[](X(!ar_healthy)-> X(!c3) )

[](X(gl_healthy) -> X(c1) )
[](X(gr_healthy) -> X(c4) )

…

#Guarantees
…

[](!gl_healthy -> X(c5))
[](!gr_healthy -> X(c6))

[]((X(gl_healthy)  & X(gr_healthy) ) -> (X(!c5) & X(!c6) ))

[]((X(!gl_healthy) & X(al_healthy)  & X(gr_healthy) ) -> ( 
X(c2) & X(c3)) )

[]((X(!gl_healthy)  & X(!gr_healthy)  & X(al_healthy)  & !c3 
& !c2) -> X(c2) )

[]((X(al_healthy)  & c2) -> X(c2) )
[]((X(ar_healthy)  & c3) -> X(c3) )

[]((X(!gl_healthy) & X(!al_healthy)  & X(ar_healthy) & !c2) -
> X(c3) )

[]((X(!gr_healthy) & X(!ar_healthy)  & X(al_healthy) & !c3) -
> X(c2) )

[]((!gl_healthy & !al_healthy & !ar_healthy) -> X(c6) )

[]((!gr_healthy & !ar_healthy & !al_healthy) -> X(c5) )
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Declarative specification of controllers

Example: LTL specification for EPS

Close mapping from English to LTL:

[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
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The controller synthesis problem

Given formula specification (e.g., in LTL) synthesize 
controller (e.g., FSM) which implements the 
specification (or state that such a controller does not 
exist).
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Automatic controller synthesis from declarative 
specifications
Example: controller for EPS synthesized from previous 

LTL spec using Tulip (Caltech) ~3k lines of Matlab
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Automatic controller synthesis from declarative 
specifications
Example: controller for EPS synthesized using Tulip 

(Caltech), ~40 states – zooming in
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Synthesis in these two lectures

Part 1: Controller synthesis and game solving.

Part 2: Example-guided and syntax-guided synthesis.
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CONTROLLER SYNTHESIS
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Declarative specification of controllers

At the outset the controller is just a box with inputs and 
outputs:

We can specify the input-output behavior of the controller 
in a high-level language, e.g., in temporal logic.
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Controller synthesis (reactive synthesis)
[Pnueli-Rosner, POPL 1989]

Given interface of controller:

and given temporal logic formula φ over set of 
input/output variables,

synthesize a controller (= state machine) M, such that all
behaviors of M (for any sequence of inputs) satisfy φ.

Note: other notions of controller synthesis exist in the literature. For details, 
see  “Bridging the gap” paper [3], also available from instructor’s web site.
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Examples

Consider controller interface:

and specifications
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Examples

Consider controller interface:

and specifications

No solution: controller cannot 
foresee the future!



28Tripakis, CS 4830/7485

Satisfiability vs. realizability

Satisfiability: exists some behavior that satisfies the 
specification. (In this behavior, we may choose both 
inputs and outputs as we wish.)

Realizability: exists controller that implements the 
specification. Must work for all input sequences, since 
inputs are uncontrollable.

Inherently different problems, also w.r.t. complexity: 

LTL satisfiability: PSPACE

LTL realizability: 2EXPTIME
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Controller synthesis algorithms: computing 
strategies in games

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Safety automata

In some fortunate cases, the LTL specification can be 
translated to a safety automaton.

Example:

Automaton:

“bad” state
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“Spreading” a safety automaton to a game
[Ehlers PhD thesis, 2013]

We need to separate the input moves from the output 
moves:

Automaton:

Game: •

•
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Safety games

Input (environment) states:

Output (controller) states:

Bad state:

Goal: find winning strategy = avoiding bad state

•

•

•

“them”

“us”

if we reach this
state we lose
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Solving safety games

1. Compute set of losing states, starting with Losing := {   };

2. If initial state in Losing, no strategy exists.

3. Otherwise, all remaining states are winning. Extract 
strategy from them by choosing outputs that avoid the 
losing states.

•

•
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Solving safety games

1. Compute set of losing states, starting with Losing := {   };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

•

•
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Solving safety games

1. Compute set of losing states, starting with Losing := {   };
 repeat

• UncontrollablyLosing := { s | s has uncontrollable succ in Losing };

• ControllablyLosing := { s | all controllable succs of s are in Losing};

• Losing := Losing U UncontrollablyLosing U ControllablyLosing ;

 until Losing does not change;

Losing•
•

UncontrollablyLosing

ControllablyLosing •

in1

in2

out1
out2

out3
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Solving safety games

• Extracting the strategy: “cut” controllable transitions in 
order to avoid losing states.

• Strategy is state-based (also called “positional”, or 
“memoryless”).

Losing•ControllablyWinning
out2

out1
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Reachability games: dual of safety games

Reachability game: trying to reach a target state.

Observation: what is Losing for the safety player is 
Winning for the reachability player (and vice versa).

•

•
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Solving reachability games: direct algorithm

1. Compute set of Winning states;
 Winning := {    };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

• ForceNext(S) := { s | all uncontrollable succs of s are in S } 
U  { s | s has controllable succ in S }

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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How to extract strategies in reachability games?

Similarly as for safety games:

Is strategy state-based?

Yes! 

Extract strategy from ForceNext(S): ensure you choose the 
right controllable transition that leads in winning state.

Winning

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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How to extract strategies in reachability games?

Similarly as for safety games: BUT, a subtlety:

Need to fix successor the first time state is added in 
Winning.

•

•
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Beyond safety and reachability games

Remarks on the general LTL synthesis problem
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What about other types of properties?

Bounded response specifications can be translated to 
safety automata/games:

Automaton:
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What about liveness properties?

What about unbounded response?

More interesting example:
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Synthesis for general LTL specifications

Given LTL specification φ:

If φ can be translated to a deterministic Büchi automaton, 
then can extend the previous ideas to solving Büchi
games.

Otherwise, solution involves more advanced topics, such 
as tree automata. Will not be covered in this course.

Note: LTL cannot always be translated to deterministic 
Büchi automata.
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Büchi automata

Syntactically same as finite state automata:

But Büchi automata accept infinite words.

A run must visit an accepting state infinitely often.

accepting 
states:

alphabet

states
initial
state

transition
function
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From LTL to Büchi automata

Consider unbounded response property:

Büchi automaton:

accepting state



49Tripakis, CS 4830/7485

Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Spreading Büchi automata to Büchi games

Büchi automaton:

Büchi game:

•

•

•
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Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.

2. Solve reachability game with target = RecurrentAccepting.

•

•

•
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Solving deterministic Büchi games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;
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Recall 

ForceNext(S) := { s | all uncontrollable succs of s are in S } 
U  { s | s has controllable succ in S }

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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Solving deterministic Büchi games –
Example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

•

•1

2

3
4

5
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Computing recurrent accepting states: a subtle 
relation with reachability games

1. Compute set of RecurrentAccepting states = accepting 
states from which controller can force returning to an 
accepting state infinitely often.

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

(almost) a
reachability
game iteration
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Solving reachability games vs. computing Revisit

1. Compute set of Winning states:
 Winning := {    };

 repeat
• Winning := Winning U ForceNext(Winning);

 until Winning does not change;

2. Compute Revisit:
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

What is the difference?
Does it matter?
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Solving deterministic Büchi games –
modified example

 RecAcc := set of all accepting states;

 repeat
• Revisit := { };

• repeat
Revisit := Revisit U ForceNext(Revisit U RecAcc);

• until Revisit does not change;

• RecAcc := RecAcc ∩ Revisit;

 until set RecAcc does not change;

•

•

•1

2

3
4

56
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How to extract strategies in deterministic Büchi
games?

Similarly as for reachability games:

Careful to choose the transition the first time state is 
added to S.

Is strategy state-based?

Yes! 

Extract strategy from ForceNext(S): ensure you choose the 
right controllable transition that leads in winning state.

S

•
•UncontrollablyWinning

ControllablyWinning •

in1

in2

out1

out2
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What about non-deterministic Büchi games?
Does same algorithm work?

Not quite:

algorithm sound

but incomplete.

[Ruediger Ehlers, 
PhD thesis, 2013]

Non-deterministic
Büchi game

Non-deterministic automaton for

𝑟 : input
𝑔 : output
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Controller synthesis algorithms

Solving safety games

Solving reachability games

Solving deterministic Büchi games (liveness)

Remarks on the general LTL synthesis problem
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Controller synthesis: EE vs. CS ?

CS: synthesize outputs to implement :

EE: synthesize inputs to stabilize a physical 
process/plant:

Not different: plant inputs = controller outputs (and vice 
versa).

???
in out
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Can we capture plants in the CS synthesis 
problem?

CS: given plant P (say, a FSM), synthesize controller C, 

so that closed-loop system satisfies :

Can we reduce this problem to the standard LTL 
synthesis problem?

C
???

in out

P
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Remarks, assessment 

Despite some (mostly isolated) success stories, controller 
synthesis hasn’t really caught on yet in practice.

Why is that?
• Normal: things like that take time (c.f. model-checking)

• 2EXPTIME is a horrible (worst-case) complexity (remember: even 
linear is too expensive because of state explosion!)

• Tools still impractical

• Synthesis of real, complex systems from complete specs impractical 
(imagine full synthesis of complete Intel microchip from LTL specs …)

• Lack of good debugging (e.g., counter-examples)

• Need: better tools, better methods (incremental, interactive, …)

• Great opportunities for research!



Automatic synthesis of 
distributed protocols

Joint work with Rajeev Alur, Christos Stergiou et al (UPenn)
Sponsors: NSF Expeditions ExCAPE

64



Motivation: distributed protocols

• Notoriously hard to get right

65

(to model and verify 
distributed protocols)

Can we synthesize
such protocols 
automatically?



Verification and synthesis in a nutshell

• Verification:
1. Design system “by hand”: 
2. State system requirements: 
3. Check: does satisfy

• Synthesis (ideally):
1. State system requirements: 
2. Generate automatically system that satisfies 

by construction.

Tripakis 66



State of the art synthesis
• From formal specs to discrete controllers:

• Limitations:
– Scalability (writing full specs & synthesizing from them)
– Not applicable to distributed protocols (undecidable)
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Controller (state machine)

#Assumptions
(gl_healthy & gr_healthy & al_healthy & ar_healthy)
[](gl_healthy | gr_healthy | al_healthy | ar_healthy)
[](!gl_healthy -> X(!gl_healthy) )
[](!gr_healthy -> X(!gr_healthy) )
[](!al_healthy -> X(!al_healthy) )
[](!ar_healthy -> X(!ar_healthy) )

#Guarantees
(!c1 & !c2 & !c3 & !c4 & !c5 & !c6 & !c7 & !c8 & !c9 & !c10 & 
!c11 & !c12 & !c13)
[](X(c7) & X(c8) & X(c11) & X(c12) & X(c13))
[](!(c2 & c3))
[](!(c1 & c5 & (al_healthy | ar_healthy)))
[](!(c4 & c6 & (al_healthy | ar_healthy)))
[]((X(gl_healthy) & X(gr_healthy) ) -> X(!c2) & X(!c3) & 
X(!c9) & X(!c10))
[]((X(!gl_healthy) & X(!gr_healthy) ) -> X(c9) & X(c10))
…

Specification (temporal logic formulas)



Synthesis of Distributed Protocols from 
Scenarios and Requirements

• Idea: combine requirements + example scenarios

68

example scenarios formal requirements
(safety, liveness,

deadlock-freedom, …)

synthesized 
protocol

(state machines)

Synthesis tool

These are typically 
not complete specs!



Scenarios: message sequence charts
• Describe what the protocol must do in some cases
• Intuitive language good for the designer
• Only a few scenarios required (1-10)

69
Scenario 1
(nominal)

Scenario 2
(msg loss)

Scenario 3
(ack loss)

Scenario 4
(delay)



Incomplete automata learned from first scenario:

Automatically completed automata:

ABP
Sender

ABP
Receiver

Synthesis becomes a completion problem

ABP
Sender

ABP
Receiver



Results

• Able to synthesize the distributed Alternating Bit Protocol (ABP) 
and other simple finite-state protocols (cache coherence, 
consensus, …) fully automatically [HVC’14, ACM SIGACT’17].

• Towards industrial-level protocols described as extended state 
machines [CAV’15].
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Algorithmic technique: counter-example guided 
completion of (extended) state machines

• Completion of incomplete machines: find missing transitions, 
guards, assignments, etc.

Tripakis 72



Other recent work: learning Moore 
machines from input-output traces
[Giantamidis, Tripakis, 2016]

• Model learning

Tripakis 73

Fundamental question: what is 
the right way to generalize?



Combining synthesis with learning

• Synthesis: given specification , find system , 
such that 

• Learning: given set of examples , find system , 
such that is consistent with and “generalizes 
well” …

• Synthesis from spec + examples: given set of 
examples and specification , find system , 
such that is consistent with and 
– Key advantage: guides the generalization!

74
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