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Where we stand

@ We are done with the first part of the course: systems!

@ We now know how to model systems, formally.

@ We are ready to begin the second part: specification!
@ Specification tries to answer questions like:
What are the system requirements?
What is my system supposed to do?
What does it mean for my system to be correct?
What properties does my system have?
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Recall our ultimate goal: verification

Model-based design Example of a sucg:essful model-
‘ based design flow

How to describe * RTL synthesis flow FSM,

= ey what we want? — %‘ Verilog,
: < § Simulaton ' VHDL
Verification

- - RTL S—— )
Modeling Synthesis Boolean equations
How to be sure that this o
is what we want? How to build it? @ W Boolean circuit/network
Library/
logic

module
generators

optimization

| ]
B Boolean circuit/network
netlist \

physical
§ H “

Analysis  Synthesis

EESPIM  Graph / Rectangles

o B3

This version of the course focuses on Modeling and Analysis
3 K. Keutzer

We have designed a system.
We want to verify that it is correct.
But what does “correct” mean?

We need to specify correctness = we need a specification language.
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Current practice

Specifications often written in natural language, e.g., English.
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Example: specification of the SpaceWire protocol
(European Space Agency standard)

8.5.2.2 ErrorReset

a. The ErrorReset state shall be entered after a system reset, after link
operation is terminated for any reason or if there is an error during link
initialization.

b. In the ErrorReset state the Transmitter and Receiver shall all be reset.

c. When the reset signal is de-asserted the ErrorReset state shall be left
unconditionally after a delay of 6,4 pus (nominal) and the state machine
shall move to the ErrorWait state.

d. Whenever the reset signal is asserted the state machine shall move
immediately to the ErrorReset state and remain there until the reset signal
is de-asserted.

From Standard ECSS-E-ST-50-12C, SpaceWire — Links, nodes, routers and networks, 31 July
2008.
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But English is often imprecise: recall our quiz

Express the following English statements in your favorite mathematical formalism:
@ You can fool some people sometimes
@ You can fool some people all the time

© You can fool some people sometimes but you can't fool all the people all the time [Bob
Marley]

@ You can fool some of the people all of the time, and all of the people some of the time,
but you cannot fool all of the people all of the time [Abraham Lincoln]

We need a formal (mathematical language) = precise, unambiguous,
amenable to automation.

We need a logic!
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Language and logic

176 Whoops!

but by the standard of a failed company whose liabilities had
been taken on by the taxpayer.

These were just lurid examples of the insulating bubble of
money, and the comforting security of the cult. It wouldn’t
matter, if it weren't for the fact that the psychology of the
masters of the universe played a vital role in our journey to this
point. One of our culture’s deepest beliefs is expressed in the
question ‘If you're so smart why ain’t you rich?’ But people in
finance are rich — so it logically follows that everything they
choose to do must be smart. That was the syllogism followed
by too many people in the money business. The regulators failed;
Devastatingly funny but they failed because the bankers made them fail. Al the rules
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A Logic Primer

Knowledge of basic logic is important (in this course and beyond).
A Logic Primer (DRAFT) posted on course web site.

Go over it to refresh your logic background.

Ask me if and when things are unclear.
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Outline for the entire Specification part

@ Temporal logic
» Behaviors and properties
> Linear-time behaviors: LTL
» Safety and liveness
» Branching-time behaviors: CTL
» The model-checking problems for LTL and CTL

@ Automata-based specifications

» Finite vs. infinite behaviors

» Deadlocks

» Finite automata: DFA and NFA

» Omega automata (w-automata): Biichi automata

@ Specification, abstraction, refinement:

» Equivalences and preorders

» Trace inclusion, trace equivalence
» Simulation, bisimulation

» Refinement
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TEMPORAL LOGIC
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Temporal logic

a formal specification language

a way to state properties of our system mathematically
(precisely and unambiguously!)
(as opposed to natural language)

Becoming more and more widespread in the industry
(hardware, robotics, ...)
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Temporal logic

Amir Pnueli (1941 - 2009) won the ACM Turing Award in 1996.

“For seminal work introducing temporal logic into computing sci-
ence and for outstanding contributions to program and system
verification.”
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Temporal logics

@ Many variants: for linear-time, branching-time, real-time,
probabilistic, security, ..., properties

o We will look at

» LTL (/inear temporal logic) for linear-time properties.
» CTL (computation tree logic) for branching-time properties.
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LINEAR-TIME BEHAVIORS and PROPERTIES
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What is a “behavior”?

@ We can think of a system, mathematically, as simply a set of
behaviors.
@ But what exactly is a behavior?

@ The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)
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What is a “behavior”?

@ We can think of a system, mathematically, as simply a set of
behaviors.

@ But what exactly is a behavior?

The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)

Why not a finite sequence?
Reactive systems = they never stop!

What if | have a system that might stop?

No problem: add stuttering transitions (self-loops) to the legal stop
states.

@ We will return to this discussion later.
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What is a “property” ?

@ The linear-time view: a property is a set of behaviors, i.e., a set of
infinite sequences.

@ Every formula in LTL defines a property, i.e., a set of infinite
behaviors.

@ We will make all this more mathematical when we talk about safety
and liveness.
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LTL: SYNTAX and SEMANTICS
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LTL (Linear Temporal Logic) — Syntax

LTL! formulas are defined by the following grammar:

¢ == plq|.., where p,q,... € AP (atomic propositions)
| o1 A p2 | =1
| Go1 | For | Xp1 | 1 U 9o

¢1 N\ d2: @1 and @2 (logical conjunction)
—¢1:  not ¢ (logical negation)
G¢: globally ¢ (always ¢), also written O¢.
F¢: in the future ¢ (eventually ¢), also written <¢.
X¢: next ¢, also written ()¢.
¢1 U ¢2: @1 until ¢o.

We will only look at propositional LTL (PLTL). There is also first-order LTL with
quantifiers V, 3.
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LTL — Syntax

We will also use

1V ¢2: @1 or ¢ (logical disjunction)
can be defined as =(—¢1 A —¢2)

01 — @21 ¢1 implies ¢y (logical implication)
can be defined as —¢1 V ¢9

p1 <> Pa: ¢ iff ¢2 (logical equivalence)
can be defined as ¢1 — ¢a A o — @1
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LTL — Syntax

Recall LTL syntax:

¢ = plal..| 1 ANd2| 1| G| For | Xy | ¢1U ¢

Examples: let's look at some syntactically correct (and some incorrect!)
LTL formulas.

pP—q p— Gp GFp G
GAFp Gp—Fq Gp—F) pU@U[pAT))

pU (Gq) pU(Uyg) pXq p — XXq
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LTL — Syntax

syntactically correct

incorrect

p—q
Gp
GFp
G(p— Fq)
pU@U(pAr))
pU (Gg)
p — XXgq

p—
pG
G A Fp
Gp—F)
pU(Ugq)
pXgq
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LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -
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LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -

What do these traces mean?
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LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -

What do these traces mean? p holds at step 7 iff p € P;.
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LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}’{p}v“'
o3 = A{ph{at.Ap. ¢} {3 A{p. q}, -

What do these traces mean? p holds at step 7 iff p € P;.
Where do these traces come from? From (Kripke-style) transition systems
(we'll see exactly how later).
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LTL Semantics — lllustration

Figure taken from [Baier and Katoen, 2008]

a arbitrary arbitrary arbitrary arbitrary

atomic prop. a  (O)——() O O O
arbitrary a arbitrary arbitrary arbitrary

next step Oa O———O) O O O
a N\ ‘!b a N\ jb a /\ ‘!b b arbitrary

until aUb - O O O O O
-a -a -a a arbitrary

eventually 0a Qe e OO

a a a a a

always D OO OO
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LTL: examples

Let's find some traces that satisfy (and some that violate!) these formulas:

Gp (1)

Fp (2)

Xp (3)

pUgq (4)
GFp (5)

FGp (6)

G(p — Fq) (7)
G(p — XXq) (8)
pU(qU(pAr)) (9)
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LTL — Semantics: Formally

We want to define formally the satisfaction relation: o = ¢.
Let

O-:P()aPlaPQa"'
Notation (suffix): o[i..] = P;, Pi+1, Piyo, - -
Satisfaction relation defined recursively on the syntax of a formula:

ocEDp iff pe PRy
ocE o1 NPy iff o= ¢ and o= b
o= ¢ iff oo

ok Go iff Vi=0,1,...:0[i..] F
ocE=Fo iff 3i=0,1,...:0[i..] F
o X¢ iff o[l.]E=¢
cE¢Ugpy iff 3i=0,1,...:0[i..] = ¢2

Vo< <1 O‘[]] )=¢1
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LTL — Semantics: Formally

Let

O-:P07P17P27”'

Satisfaction relation defined recursively on the syntax of a formula:

ocEp iff
oE @1 Agy iff
ol = iff
o= Go iff
o = Fo iff
o = Xo iff
o= Uy iff

p € Py p holds at the first (current) step
g ': ¢1 and o ': ¢2
ofE¢
Vi=0,1,..:0[i.] E¢ ¢ holds for every suffix of o
3 =0,1,...:0[i.] Ed ¢ holds for some suffix of o
o[l.] = ¢ ¢ holds for the suffix starting at the next step
3 =0,1,...:0[..] F ¢2 A
VO<j<i:o[j.]FE ¢
@2 holds for some suffix of o and
¢1 holds for all previous suffixes
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Logic recap: basic vocabulary

o A formula ¢ is valid if it is “always” true, i.e., true in all models. In
the case of LTL, it means that Vo € ¢ : 0 |= ¢.

o A formula ¢ is satisfiable if it is “sometimes” true, i.e., true in some
model. In the case of LTL, it means that 30 € ¥¥ : 0 |= ¢.
Otherwise, ¢ is unsatisfiable.

@ A formula ¢q is stronger than another formula ¢ if the formula
$1 — ¢ is valid.? Equivalently: Yo € ¥ : 0 |= ¢1 = 0 = ¢9.

A formula ¢ is weaker than another formula ¢5 if ¢ is stronger
than ¢1. Equivalently: if ¢o — ¢; is valid.

Formulas ¢1, ¢2 are equivalent if the formula ¢1 <> ¢o is valid, i.e., if
both ¢1 — ¢2 and ¢ — ¢ are valid, i.e., both ¢; is stronger than
¢2 and ¢o is stronger than ¢;.

e A condition ¢ is necessary for ¢ if ¢ implies (is stronger than) ¢;.

@ A condition ¢; is sufficient for ¢o if ¢1 implies ¢o.

250 “stronger” really means “stronger or equivalent” .
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Stavros Tripakis, Northeastern University SSVS, Fall 2019



Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46



Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fo < trueU ¢

What is “true” ?
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢

What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢
What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.

@ Can we express X in terms of G, F, U?
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Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢
What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.

@ Can we express X in terms of G, F, U? No!
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LTL — more examples
Let's try to express the following requirements in LTL:

@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
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LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”

G—(p1 A p2)
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LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 A p2)

@ The grant signal must be asserted some time after the request signal
is asserted.
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LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)
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LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)

© A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
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LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)

© A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r,a}, with r request and a acknowledgment.

G(r— (rUa))
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LTL in the industry

Several industrial standard languages based on LTL, e.g.,

e PSL (Property Specification Language), an |IEEE standard.
e PSL/Sugar (IBM variant).

Example properties written in PSL/Sugar:

assert always req -> next (ack until grant);
G(r - X(aUyg))

assert always req -> next[3] (grant);

G(r —» XXXyg)
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LTL expressiveness

@ Are there properties that we cannot write in LTL?
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LTL expressiveness

@ Are there properties that we cannot write in LTL?

@ There must be, because of cardinality arguments: X% is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable — why?
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LTL expressiveness

@ Are there properties that we cannot write in LTL?

@ There must be, because of cardinality arguments: X% is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable — why? | can enumerate
all formulas of length 1 (there's finitely many of them), then all those
of length 2, then length 3, etc.

@ You will explore this a bit more in the next homework.

@ We will also return to it when we talk about Biichi automata.
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THE MODEL-CHECKING PROBLEM FOR LTL
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The verification problem

Specification (the “what”) = the property that we want the system to
have

Implementation (the "how”) = the system that we want to verify

The verification problem: does the implementation satisfy the
specification?
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The verification problem for LTL = LTL model checking

The LTL model checking problem:
o Given:

> Implementation: state machine or transition system M
» Specification: LTL formula ¢

@ Check whether every trace of M satisfies ¢:
Vo € Traces(M) : o |= ¢

We write this as:

ME g
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The verification problem for LTL = LTL model checking

The LTL model checking problem:
o Given:

» Implementation: state machine or transition system M
» Specification: LTL formula ¢

@ Check whether every trace of M satisfies ¢:
Vo € Traces(M) : o = ¢

We write this as:

ME g

@ In case M = ¢ we would also like to get a counter-example: most
model-checkers provide that

@ In case M = ¢ we might want to get a “proof”: this is typically not
provided (what would that proof look like?)
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Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:
o Given: X
e Find: Y
@ Such that: Z
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Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:
o Given: X
e Find: Y
@ Such that: Z

Make sure you follow that format when you present your papers: you
should be able to explain to us what problem each paper is trying to solve
in the above terms!

Understanding what problem is being solved is much more important than
understanding how it is being solved!
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Traces of a transition system
An infinite path in a Kripke structure (AP, S, Sy, L, R) is an infinite
sequence of states linked by transitions:

50,581,582, "

such that sg € Sy and Vi : (Si,8i+1) € R.

The corresponding observable trace o is the corresponding infinite
sequence of sets of atomic propositions:

g = L(SQ), L(Sl), L(SQ), e

If M is a Kripke structure then Traces(M) is the set of all observable
traces over all infinite paths of M.
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Example

List some of the traces of the following transition system:

How many traces are there in total?
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Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

0o/ Yo r1/Y1 xr2/Y2
S0 L) S1 L) S92 —/) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;, i), and Vi : y; = A(si, ;).
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Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

xo/Yo T1/Y1 T2/Y2
S0 4 S1 4 S92 —/) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;, ), and Vi : y; = A(si, 25).
The observable 1/O behavior (trace) corresponding to the above run is
0= {5("07 y0}7 {3317 yl}7 {J"Qa y2}7 T

where we assume AP = I U O and interpret x; as the atomic proposition
“the value of the input is z;", and similarly for y;.
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Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

xo/Yo T1/Y1 T2/Y2
S0 4 S1 4 S92 L) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;, ), and Vi : y; = A(si, 25).
The observable 1/O behavior (trace) corresponding to the above run is

g = {5607.@0}7 {3317?/1}7 {J;27y2}7 T

where we assume AP = I U O and interpret x; as the atomic proposition
“the value of the input is z;", and similarly for y;.

(Here we assume that only 1/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)
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Examples

Let’s check the following LTL formulas on the previous Kripke structure:

Gp

Fp

GFp
G(p — Fq)

pUgq
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INVARIANTS IN LTL
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Recall: Invariants

@ In a transition system, an invariant is a superset of the set of
reachable states.

@ So, an invariant is a “property” that all reachable states must have,
or in other words, a condition/constraint that all reachable states
must satisfy.

@ How can we express that something is an invariant in LTL?
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Invariants in LTL

@ Let ¢ be an LTL formula without temporal operators, i.e., ¢ can
contain only atomic propositions and Boolean operators (A, V, —,...),
but no G,F, X, U.

Such a ¢ is called a state formula.

@ Then, a linear-time property is an invariant if it can be expressed as
an LTL formula G¢, where ¢ is a state formula.
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LTL in Spin
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LTL in Spin: a toy example

bool a, b // initialized to false

active proctype system()

{
do
:ta=1; b=1; a=0; b=20
od

}

/7 181 pt { (0 <> a) }

/7 1t1 p2 { ([1 <> (a & b)) }

// 11 p3 { [1 (a > (x> b)) }

// 1tl p4 { always (a -> (eventually b)) }

// 1tl p5 { always (a -> (next b)) }

1tl p5 { always (a -> (next a)) }
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More Spin examples

See, for instance, http://spinroot.com/spin/Man/1_Exercises.html
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