System Specification, Verification and Synthesis
(SSVS) — CS 4830/7485, Fall 2019

9: Formal Specification:
Temporal logic
LTL

Stavros Tripakis

Northeastern University
Khoury College of
Computer Sciences

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 1/46

Where we stand

@ We are done with the first part of the course: systems!

@ We now know how to model systems, formally.

@ We are ready to begin the second part: specification!
@ Specification tries to answer questions like:
What are the system requirements?
What is my system supposed to do?
What does it mean for my system to be correct?
What properties does my system have?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 2/46

Recall our ultimate goal: verification

Model-based design Example of a sucg:essful model-
‘ based design flow

How to describe * RTL synthesis flow FSM,

= ey what we want? — %‘ Verilog,
: < § Simulaton ' VHDL
Verification

- - RTL S——)
Modeling Synthesis Boolean equations
How to be sure that this o
is what we want? How to build it? @ W Boolean circuit/network
Library/
logic

module
generators

optimization

|]
B Boolean circuit/network
netlist \

physical
§ H “

Analysis Synthesis

EESPIM Graph / Rectangles

o B3

This version of the course focuses on Modeling and Analysis
3 K. Keutzer

We have designed a system.
We want to verify that it is correct.
But what does “correct” mean?

We need to specify correctness = we need a specification language.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL

Current practice

Specifications often written in natural language, e.g., English.

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Example: specification of the SpaceWire protocol
(European Space Agency standard)

8.5.2.2 ErrorReset

a. The ErrorReset state shall be entered after a system reset, after link
operation is terminated for any reason or if there is an error during link
initialization.

b. In the ErrorReset state the Transmitter and Receiver shall all be reset.

c. When the reset signal is de-asserted the ErrorReset state shall be left
unconditionally after a delay of 6,4 pus (nominal) and the state machine
shall move to the ErrorWait state.

d. Whenever the reset signal is asserted the state machine shall move
immediately to the ErrorReset state and remain there until the reset signal
is de-asserted.

From Standard ECSS-E-ST-50-12C, SpaceWire — Links, nodes, routers and networks, 31 July
2008.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 5/46

But English is often imprecise: recall our quiz

Express the following English statements in your favorite mathematical formalism:
@ You can fool some people sometimes
@ You can fool some people all the time

© You can fool some people sometimes but you can't fool all the people all the time [Bob
Marley]

@ You can fool some of the people all of the time, and all of the people some of the time,
but you cannot fool all of the people all of the time [Abraham Lincoln]

We need a formal (mathematical language) = precise, unambiguous,
amenable to automation.

We need a logic!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 6 /46

Language and logic

176 Whoops!

but by the standard of a failed company whose liabilities had
been taken on by the taxpayer.

These were just lurid examples of the insulating bubble of
money, and the comforting security of the cult. It wouldn’t
matter, if it weren't for the fact that the psychology of the
masters of the universe played a vital role in our journey to this
point. One of our culture’s deepest beliefs is expressed in the
question ‘If you're so smart why ain’t you rich?’ But people in
finance are rich — so it logically follows that everything they
choose to do must be smart. That was the syllogism followed
by too many people in the money business. The regulators failed;
Devastatingly funny but they failed because the bankers made them fail. Al the rules

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 7/46

A Logic Primer

Knowledge of basic logic is important (in this course and beyond).
A Logic Primer (DRAFT) posted on course web site.

Go over it to refresh your logic background.

Ask me if and when things are unclear.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 8/46

Outline for the entire Specification part

@ Temporal logic
» Behaviors and properties
> Linear-time behaviors: LTL
» Safety and liveness
» Branching-time behaviors: CTL
» The model-checking problems for LTL and CTL

@ Automata-based specifications

» Finite vs. infinite behaviors

» Deadlocks

» Finite automata: DFA and NFA

» Omega automata (w-automata): Biichi automata

@ Specification, abstraction, refinement:

» Equivalences and preorders

» Trace inclusion, trace equivalence
» Simulation, bisimulation

» Refinement

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 9/46

TEMPORAL LOGIC

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Temporal logic

a formal specification language

a way to state properties of our system mathematically
(precisely and unambiguously!)
(as opposed to natural language)

Becoming more and more widespread in the industry
(hardware, robotics, ...)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 11/46

Temporal logic

Amir Pnueli (1941 - 2009) won the ACM Turing Award in 1996.

“For seminal work introducing temporal logic into computing sci-
ence and for outstanding contributions to program and system
verification.”

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 12 /46

Temporal logics

@ Many variants: for linear-time, branching-time, real-time,
probabilistic, security, ..., properties

o We will look at

» LTL (/inear temporal logic) for linear-time properties.
» CTL (computation tree logic) for branching-time properties.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 13 /46

LINEAR-TIME BEHAVIORS and PROPERTIES

Stavros Tripakis, Northeastern University SSVS, Fall 2019

What is a “behavior”?

@ We can think of a system, mathematically, as simply a set of
behaviors.
@ But what exactly is a behavior?

@ The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 15 /46

What is a “behavior”?

@ We can think of a system, mathematically, as simply a set of
behaviors.

@ But what exactly is a behavior?

The linear-time view: a behavior is an infinite sequence (of states,
actions, sets of atomic propositions, ...)

Why not a finite sequence?
Reactive systems = they never stop!

What if | have a system that might stop?

No problem: add stuttering transitions (self-loops) to the legal stop
states.

@ We will return to this discussion later.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 15 /46

What is a “property” ?

@ The linear-time view: a property is a set of behaviors, i.e., a set of
infinite sequences.

@ Every formula in LTL defines a property, i.e., a set of infinite
behaviors.

@ We will make all this more mathematical when we talk about safety
and liveness.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 16 / 46

LTL: SYNTAX and SEMANTICS

Stavros Tripakis, Northeastern University SSVS, Fall 2019

LTL (Linear Temporal Logic) — Syntax

LTL! formulas are defined by the following grammar:

¢ == plq|.., where p,q,... € AP (atomic propositions)
| o1 A p2 | =1
| Go1 | For | Xp1 | 1 U 9o

¢1 N\ d2: @1 and @2 (logical conjunction)
—¢1: not ¢ (logical negation)
G¢: globally ¢ (always ¢), also written O¢.
F¢: in the future ¢ (eventually ¢), also written <¢.
X¢: next ¢, also written ()¢.
¢1 U ¢2: @1 until ¢o.

We will only look at propositional LTL (PLTL). There is also first-order LTL with
quantifiers V, 3.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 18 /46

LTL — Syntax

We will also use

1V ¢2: @1 or ¢ (logical disjunction)
can be defined as =(—¢1 A —¢2)

01 — @21 ¢1 implies ¢y (logical implication)
can be defined as —¢1 V ¢9

p1 <> Pa: ¢ iff ¢2 (logical equivalence)
can be defined as ¢1 — ¢a A o — @1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 19 /46

LTL — Syntax

Recall LTL syntax:

¢ = plal..| 1 ANd2| 1| G| For | Xy | ¢1U ¢

Examples: let's look at some syntactically correct (and some incorrect!)
LTL formulas.

pP—q p— Gp GFp G
GAFp Gp—Fq Gp—F) pU@U[pAT))

pU (Gq) pU(Uyg) pXq p — XXq

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Temporal logic, LTL 20/ 46

LTL — Syntax

syntactically correct

incorrect

p—q
Gp
GFp
G(p— Fq)
pU@U(pAr))
pU (Gg)
p — XXgq

p—
pG
G A Fp
Gp—F)
pU(Ugq)
pXgq

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL

21/46

LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 /46

LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -

What do these traces mean?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 /46

LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}a{p}v“'
o3 = {pt{dt.{p.a}, {}.{p.a}, -

What do these traces mean? p holds at step 7 iff p € P;.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 /46

LTL — Semantics

LTL formulas are evaluated over infinite sequences of sets of atomic
propositions (execution traces).

O-:P[)a P17 P27
where P; C AP for all i.

For instance, let AP = {p, q}. Examples of traces:

o1 = {p},{q},{p},{q},{p},---
02 = {p}v{p}’{p}v{p}’{p}v“'
o3 = A{ph{at.Ap. ¢} {3 A{p. q}, -

What do these traces mean? p holds at step 7 iff p € P;.
Where do these traces come from? From (Kripke-style) transition systems
(we'll see exactly how later).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 22 /46

LTL Semantics — lllustration

Figure taken from [Baier and Katoen, 2008]

a arbitrary arbitrary arbitrary arbitrary

atomic prop. a (O)——() O O O
arbitrary a arbitrary arbitrary arbitrary

next step Oa O———O) O O O
a N\ ‘!b a N\ jb a /\ ‘!b b arbitrary

until aUb - O O O O O
-a -a -a a arbitrary

eventually 0a Qe e OO

a a a a a

always D OO OO

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Temporal logic, LTL

23 /46

LTL: examples

Let's find some traces that satisfy (and some that violate!) these formulas:

Gp (1)

Fp (2)

Xp (3)

pUgq (4)
GFp (5)

FGp (6)

G(p — Fq) (7)
G(p — XXq) (8)
pU(qU(pAr)) (9)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 24 /46

LTL — Semantics: Formally

We want to define formally the satisfaction relation: o = ¢.
Let

O-:P()aPlaPQa"'
Notation (suffix): o[i..] = P;, Pi+1, Piyo, - -
Satisfaction relation defined recursively on the syntax of a formula:

ocEDp iff pe PRy
ocE o1 NPy iff o= ¢ and o= b
o= ¢ iff oo

ok Go iff Vi=0,1,...:0[i..] F
ocE=Fo iff 3i=0,1,...:0[i..] F
o X¢ iff o[l.]E=¢
cE¢Ugpy iff 3i=0,1,...:0[i..] = ¢2

Vo< <1 O‘[]])=¢1

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 25 /46

LTL — Semantics: Formally

Let

O-:P07P17P27”'

Satisfaction relation defined recursively on the syntax of a formula:

ocEp iff
oE @1 Agy iff
ol = iff
o= Go iff
o = Fo iff
o = Xo iff
o= Uy iff

p € Py p holds at the first (current) step
g ': ¢1 and o ': ¢2
ofE¢
Vi=0,1,..:0[i.] E¢ ¢ holds for every suffix of o
3 =0,1,...:0[i.] Ed ¢ holds for some suffix of o
o[l.] = ¢ ¢ holds for the suffix starting at the next step
3 =0,1,...:0[..] F ¢2 A
VO<j<i:o[j.]FE ¢
@2 holds for some suffix of o and
¢1 holds for all previous suffixes

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 26 / 46

Logic recap: basic vocabulary

o A formula ¢ is valid if it is “always” true, i.e., true in all models. In
the case of LTL, it means that Vo € ¢ : 0 |= ¢.

o A formula ¢ is satisfiable if it is “sometimes” true, i.e., true in some
model. In the case of LTL, it means that 30 € ¥¥ : 0 |= ¢.
Otherwise, ¢ is unsatisfiable.

@ A formula ¢q is stronger than another formula ¢ if the formula
$1 — ¢ is valid.? Equivalently: Yo € ¥ : 0 |= ¢1 = 0 = ¢9.

A formula ¢ is weaker than another formula ¢5 if ¢ is stronger
than ¢1. Equivalently: if ¢o — ¢; is valid.

Formulas ¢1, ¢2 are equivalent if the formula ¢1 <> ¢o is valid, i.e., if
both ¢1 — ¢2 and ¢ — ¢ are valid, i.e., both ¢; is stronger than
¢2 and ¢o is stronger than ¢;.

e A condition ¢ is necessary for ¢ if ¢ implies (is stronger than) ¢;.

@ A condition ¢; is sufficient for ¢o if ¢1 implies ¢o.

250 “stronger” really means “stronger or equivalent” .

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 27 / 46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fo < trueU ¢

What is “true” ?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢

What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢
What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.

@ Can we express X in terms of G, F, U?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

Interesting facts about LTL

@ Can we express Gp using only F, p, and boolean operators?

Gp < —F-p

@ Vice versa, can we express F in terms of G?

Fop o -G

@ Can we express F in terms of U?
Fop < trueU ¢
What is “true” 7 Can be defined as a primitive formula, or as p VvV —p.

@ Can we express X in terms of G, F, U? No!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 28 /46

LTL — more examples
Let's try to express the following requirements in LTL:

@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”

G—(p1 A p2)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 A p2)

@ The grant signal must be asserted some time after the request signal
is asserted.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)

© A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL — more examples
Let's try to express the following requirements in LTL:
@ No more than one processor (in a 2-processor system) shall have a
cache line in write mode.
Let AP = {p1,p2}, with p; meaning “processor i has the cache line in
write mode.”
G—(p1 Ap2)
@ The grant signal must be asserted some time after the request signal
is asserted.
Let AP = {r, g}, with r meaning “request signal is asserted” and g
meaning “grant signal is asserted.”

G(r — Fg)

© A request must receive an acknowledgement, and the request should
stay asserted until the acknowledgment is received.
Let AP = {r,a}, with r request and a acknowledgment.

G(r— (rUa))
Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 29 /46

LTL in the industry

Several industrial standard languages based on LTL, e.g.,

e PSL (Property Specification Language), an |IEEE standard.
e PSL/Sugar (IBM variant).

Example properties written in PSL/Sugar:

assert always req -> next (ack until grant);
G(r - X(aUyg))

assert always req -> next[3] (grant);

G(r —» XXXyg)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 30/46

LTL expressiveness

@ Are there properties that we cannot write in LTL?

Stavros Tripakis, Northeastern University SSVS, Fall 2019

LTL expressiveness

@ Are there properties that we cannot write in LTL?

@ There must be, because of cardinality arguments: X% is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable — why?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 31/46

LTL expressiveness

@ Are there properties that we cannot write in LTL?

@ There must be, because of cardinality arguments: X% is uncountable,
so its powerset is even more uncountable!
But the set of all LTL formulas is countable — why? | can enumerate
all formulas of length 1 (there's finitely many of them), then all those
of length 2, then length 3, etc.

@ You will explore this a bit more in the next homework.

@ We will also return to it when we talk about Biichi automata.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 31/46

THE MODEL-CHECKING PROBLEM FOR LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019

The verification problem

Specification (the “what”) = the property that we want the system to
have

Implementation (the "how”) = the system that we want to verify

The verification problem: does the implementation satisfy the
specification?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 33/46

The verification problem for LTL = LTL model checking

The LTL model checking problem:
o Given:

> Implementation: state machine or transition system M
» Specification: LTL formula ¢

@ Check whether every trace of M satisfies ¢:
Vo € Traces(M) : o |= ¢

We write this as:

ME g

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 34 /46

The verification problem for LTL = LTL model checking

The LTL model checking problem:
o Given:

» Implementation: state machine or transition system M
» Specification: LTL formula ¢

@ Check whether every trace of M satisfies ¢:
Vo € Traces(M) : o = ¢

We write this as:

ME g

@ In case M = ¢ we would also like to get a counter-example: most
model-checkers provide that

@ In case M = ¢ we might want to get a “proof”: this is typically not
provided (what would that proof look like?)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 34 /46

Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:
o Given: X
e Find: Y
@ Such that: Z

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 35/46

Parenthesis: how to be precise about the problem you are
solving

Thesis: Every CS problem can be cast in this form:
o Given: X
e Find: Y
@ Such that: Z

Make sure you follow that format when you present your papers: you
should be able to explain to us what problem each paper is trying to solve
in the above terms!

Understanding what problem is being solved is much more important than
understanding how it is being solved!

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 35/46

Traces of a transition system
An infinite path in a Kripke structure (AP, S, Sy, L, R) is an infinite
sequence of states linked by transitions:

50,581,582, "

such that sg € Sy and Vi : (Si,8i+1) € R.

The corresponding observable trace o is the corresponding infinite
sequence of sets of atomic propositions:

g = L(SQ), L(Sl), L(SQ), e

If M is a Kripke structure then Traces(M) is the set of all observable
traces over all infinite paths of M.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 36 /46

Example

List some of the traces of the following transition system:

How many traces are there in total?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 37/46

Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

0o/ Yo r1/Y1 xr2/Y2
S0 L) S1 L) S92 —/) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;, i), and Vi : y; = A(si, ;).

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38/46

Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

xo/Yo T1/Y1 T2/Y2
S0 4 S1 4 S92 —/) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;,), and Vi : y; = A(si, 25).
The observable 1/O behavior (trace) corresponding to the above run is
0= {5("07 y0}7 {3317 yl}7 {J"Qa y2}7 T

where we assume AP = I U O and interpret x; as the atomic proposition
“the value of the input is z;", and similarly for y;.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38/46

Traces of a state machine

An infinite run of a Mealy machine (I, 0, S, sg,d, A) is an infinite sequence
of states / transitions:

xo/Yo T1/Y1 T2/Y2
S0 4 S1 4 S92 L) S3 -

such that Vi : z; € I,y; € O, Vi : si41 = 0(s;,), and Vi : y; = A(si, 25).
The observable 1/O behavior (trace) corresponding to the above run is

g = {5607.@0}7 {3317?/1}7 {J;27y2}7 T

where we assume AP = I U O and interpret x; as the atomic proposition
“the value of the input is z;", and similarly for y;.

(Here we assume that only 1/O are observable. We could also define traces that
expose the internal state of the machine. E.g., we may want to state the
requirement that a certain register never has a certain value.)

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 38/46

Examples

Let’s check the following LTL formulas on the previous Kripke structure:

Gp

Fp

GFp
G(p — Fq)

pUgq

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 39 /46

INVARIANTS IN LTL

Stavros Tripakis, Northeastern University SSVS, Fall 2019

Recall: Invariants

@ In a transition system, an invariant is a superset of the set of
reachable states.

@ So, an invariant is a “property” that all reachable states must have,
or in other words, a condition/constraint that all reachable states
must satisfy.

@ How can we express that something is an invariant in LTL?

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 41 /46

Invariants in LTL

@ Let ¢ be an LTL formula without temporal operators, i.e., ¢ can
contain only atomic propositions and Boolean operators (A, V, —,...),
but no G,F, X, U.

Such a ¢ is called a state formula.

@ Then, a linear-time property is an invariant if it can be expressed as
an LTL formula G¢, where ¢ is a state formula.

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 42 /46

LTL in Spin

Stavros Tripakis, Northeastern University SSVS, Fall 2019

LTL in Spin: a toy example

bool a, b // initialized to false

active proctype system()

{
do
:ta=1; b=1; a=0; b=20
od

}

/7 181 pt { (0 <> a) }

/7 1t1 p2 { ([1 <> (a & b)) }

// 11 p3 { [1 (a > (x> b)) }

// 1tl p4 { always (a -> (eventually b)) }

// 1tl p5 { always (a -> (next b)) }

1tl p5 { always (a -> (next a)) }

Stavros Tripakis, Northeastern University SSVS, Fall 2019 Temporal logic, LTL 44 / 46

More Spin examples

See, for instance, http://spinroot.com/spin/Man/1_Exercises.html

Stavros Tripakis, Northeastern University SSVS, Fall 2019

http://spinroot.com/spin/Man/1_Exercises.html

Bibliography

Baier, C. and Katoen, J.-P. (2008).

Principles of Model Checking.

MIT Press.

Clarke, E., Grumberg, O., and Peled, D. (2000).
Model Checking.

MIT Press.

Huth, M. and Ryan, M. (2004).

Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press.

Pnueli, A. (1981).

A temporal logic of concurrent programs.
Theoretical Computer Science, 13:45-60.

Stavros Tripakis, Northeastern University SSVS, Fall 2019

	Specification
	Temporal logic
	LTL

