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Abstract

Ziggurat is a meta-language system that permits programmers to develop Scheme-like macros for
languages with nontrivial static semantics, such as C or Java (suitably encoded in an S-expression
concrete syntax). Ziggurat permits language designers to construct “towers” of language levels with
macros; each level in the tower may have its own static semantics, such as type systems or flow
analyses. Crucially, the static semantics of the languages at two adjacent levels in the tower can be
connected, allowing improved reasoning power at a higher level to be reflected down to the static
semantics of the language level below. We demonstrate the utility of the Ziggurat framework by im-
plementing higher-level language facilities as macros on top of an assembly language, utilizing static
semantics such as termination analysis, a polymorphic type system and higher-order flow analysis.

1 Models and design

Designers work with models of the artifacts they propose to construct: architects work with
building schematics, antenna engineers with pole plots, electrical engineers with circuit
diagrams, chip designers with gate diagrams, financial engineers with multivariate CAPM
portfolio models, and so forth. The power of a model lies in its ability to provide predictive
power—it tells us about critical properties of the artifact while we can cheaply alter it “on
paper,” giving us the freedom to explore possibilities at design time with little commitment.

Models, themselves, are created and manipulated in some form of constraining frame-
work, which defines the form of the model. The meta-task of defining these frameworks
is a key enabler to doing good design: a good framework makes the design task clear and
straightforward; a poor one can complicate the task or unnecessarily limit the space of
possibilities.

Design frameworks have multiple important properties:

• Expressive range
Does it allow us to describe the full range of artifacts we wish to construct? (We
might not, for example, be able even to write down asynchronous-logic circuits using
a notation designed for globally-clocked gates.)

• Expressive constraint
Does it prevent us from erroneously specifying artifacts with undesireable proper-
ties? (For example, it’s impossible for a program specified as a regular expression to
become stuck in an infinite loop.) In other words, a model framework is as important
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for what it does not allow us to say as for what it does. Restricting the framework
is a cognitively focussing mechanism that channels us toward good designs—if, that
is, our framework is well chosen.
• Analysis

Can a human or an automatic tool reason about properties of the specified artifact?
(How much load can the bridge carry? How fast can the airplane fly? Can we gener-
ate photo-realistic pictures of the building’s exterior at dusk?)
• Abstraction

Does the model allow us to suppress and delay parts of the specification deemed to
be inessential to the current stage of design? (Which processor registers will hold
which values? What physical transport will carry the protocol’s packets? Will the
amplifier handle American or European voltage standards?)

Abstraction has an interaction with analysis in the standard tradeoff between model de-
tail and analytic power. If, for example, we wish to design an electronic circuit that will
function at microwave frequency, we cannot use the standard transistor model, but must
instead employ the more complex Ebers-Moll model which captures, among other things,
the parasitic capacitances that become relevant at very high frequencies. The extra com-
plexity necessary to capture the behavior of transistors operating in the microwave regime
comes with cost: it’s much harder to analyse the circuit and make predictions about it.

What this means is that when we design circuits to function at audio frequencies, we do
not want to use the more “accurate” Ebers-Moll model, for the same reason we do not try to
model the orbit of the planets using quantum mechanics. The simpler, less accurate model
gives us better answers. Thus the ability to choose a model that abstracts away properties
inessential to the intended task is an important source of model clarity and analytic power.

2 Meta-design of specialised notations

Many design tasks, software engineering among them, function primarily with text-based
or language-based design frameworks. A design framework in one of these domains, then,
is a language or set of languages whose syntax and semantics span the relevant design
spaces. All the criteria discussed above apply to the design of these design frameworks.

Software engineering is a particularly interesting text-based design task, because the
boundary between model and artifact is (usefully) vague: software is a domain where the
map is the territory. A C program can be considered both a final product as well as a “partial
specification” for the actual machine-code program that it represents. In turn, we could say
the same thing of the machine-code program, given different implementations of the same
instruction-set architecture (e.g., a super-scalar IA32 processor from Intel, versus a deeply
pipelined implementation from AMD, versus a system that does binary translation of the
IA32 machine code to a Transmeta executable). This indefinite recursion is another sign of
model/artifact identification.

Language designers—that is, people whose job is designing the design framework
itself—exploit this identification of model and artifact. For example, a type system can
be considered an auxiliary, redundant, coarse-grained behavioral model of the program.
It bounds the behavior of the program by ruling out possible bad actions (run-time type
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errors). By serving as a redundant specification, it acts to double-check the rest of the pro-
gram: if the types and the code get out of sync, an error is revealed. So, the types in a
program are simultaneously a part of the artifact—the program—as well as annotations
modelling important properties of the artifact.

The basic structure of a language-based design framework is a syntax specification and
an associated semantics assigning meaning to forms from the language—that is, it connects
the syntactic forms (text strings or trees) to the world of artifacts they describe (bridges,
computations, airplanes, etc.). The meaning of a design is the thing it models or describes
or specifies. The semantics is usually provided in multiple phases: a “static” semantics that
describes properties of the artifact that can be determined purely from the specification,
and a “dynamic” semantics describing properties that may escape static determination due
to the lack of an effective procedure to compute them, or dependence on the external en-
vironment. These are concepts and terms taken from the field of programming languages,
but they apply to other design frameworks as well: some examples are the description of
images (Abelson et al., 1985), 3D objects (ISO, 2004), electronic circuits, and financial
models (Peyton Jones et al., 2000).

To take the example of a financial model for a stock portfolio or equity option, its “static
semantics” are necessarily described in terms of statistical and probabilistic properties,
since we do not know at analysis time the future of the stock market. A portfolio’s “dy-
namic semantics” are determined by external events in the real world—that is, what the
given portfolio will be worth at some point in time, or what actual value a call option will
yield six months from now. The static semantics helps guide financial advisors as they
construct portfolios.

The ability to choose an appropriate framework, one that hides the inessential, eliminates
the undesirable, constrains and focusses one’s thinking toward good designs, and allows
appropriate reasoning about the artifact being designed, is a critically important part of the
design process.

In this article, we will explore a tool, Ziggurat, that makes it possible for engineers to
engage in meta-design—that is, to design specialised notations to aid the design process.
The notation-design process happens by means of what we call “language towers.”

Our goal is to provide a system that will drastically reduce the difficulty of construct-
ing useful text-based design frameworks. While our expertise lies within the domain of
software, we believe this technology could be applied to other areas as well—any design
domain that can profit by having a text-based design notation that permits useful formal,
static analysis of the design as expressed in this notation.

The remainder of this paper describes the Ziggurat metadesign framework. We begin
(Section 3) by explaining the concept of a “language tower;” then (Section 4) outline how
this topic has been addressed with Scheme macros, and discuss how this solution does not
by itself generalize to other languages. Next, we give a high-level overview (Section 5) of
how a language designer can use Ziggurat to construct a language tower that has associ-
ated static semantics. We then introduce (Section 6) the key model of computation behind
Ziggurat, called lazy delegation. The next two sections discuss how Ziggurat is used to im-
plement languages: how it is used to define an abstract syntax tree (Section 7), and how one
parses terms with Ziggurat (Section 8). We then begin an extended example (Section 9) by
designing an assembly language with Ziggurat. With our language defined, we demonstrate
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how to perform static analyses on this language: termination analysis (Section 10) and a
simple type system (Section 11). In both cases, the static semantics of the language can be
extended to syntactic extensions created with Ziggurat. The next few sections build a tower
up from this language, beginning with one-way continuation-passing function calls (Sec-
tion 12) and an associated procedural control-flow analysis (Section 13), then introducing
closures (Section 14) and direct-style functions (Section 15). We conclude by discussing
possible variations on the Ziggurat design, and related and future work.

3 Language towers

The notion of a language tower arises when we are able to use a higher-level language to
describe an artifact expressible in some lower-level notation by specifying a relationship
between the semantics of the two languages. We typically specify the relationship between
the two languages by providing a translation from the higher-level to the lower-level one.
Having done so, we can shift to performing design in the high-level language, yet still
realise these artifacts in the lower-level framework by means of translation.

3.1 Specialised notations as sources of understanding

The use of language towers allows us to express a design in a specialised notation. These
notations are a source of information that helps us to understand the system we are design-
ing. When we think of extending a language, we frequently think of adding new features,
in the sense that C++ extends C. However, it is far more frequent to adopt a specialised
notation that removes features. This is because of a fundamental tradeoff between the
power of a programming language and our ability to analyse computations expressed in
that language—restricting the expressiveness or power of the notation usually increases
our ability to statically analyse the programs so expressed, and vice versa.

Consider, for example, the great success of regular expressions as a specialised notation.
There’s nothing we can do with regular expressions that we can not do with C or some
other Turing-complete language. A major benefit of regular expressions lies precisely in
their lack of power. Because they are so restricted, there are almost no questions one can
ask about a regular expression or its associated automaton that cannot be answered. When
we shift to Turing-complete languages, the situation is much worse: there are almost no
questions we can ask that we can answer, in general. Program analyses for Turing-complete
languages are always limited approximations that skate along the edge of intractability (if
we’re lucky) or uncomputability (if we’re not).

When we can express a desired computation in a restricted notation such as regular
expressions, it’s almost always to our benefit to do so. It’s easier for automatic tools to
analyse the computation; it’s easier for a human to write the program and get it right;
it’s easier for a human to look at the program and understand it. These benefits—clarity
of expression and power of analysis—are related, which is one of the key reasons why
domain-specific languages have become a focus of interest in recent years.
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3.2 Connecting across layers of the tower

One of the key desiderata in the design of a system for constructing language towers is
providing a way to relate the static semantics of adjacent layers in the tower. This enables
us to project the increased analytic power we have for terms in the higher layer down to
their corresponding translations in the lower layer.

Consider our regular-expression example. Suppose our regular expressions are given
dynamic semantics by translating them into C code that implements the corresponding
finite-state automata. Suppose, further, that we have a static analysis for general-purpose
C code that determines if a given C statement is guaranteed to terminate. Since such an
analysis is necessarily approximate, we clearly would be better off if we could do the
analysis at the regular-expression level, where we can do a perfectly precise job (since all
regular expressions represent terminating computations), and then map the answer down
to the underlying C layer of the language tower.

4 Scheme macros

The most successful system for extending syntax in use today is the Lisp family’s macro
facility, including Scheme’s “hygienic” macros. It is an everyday task for Scheme and Lisp
programmers to create small, domain-specific languages to handle database queries, string
searches, Unix shell scripts, VLSI design or web-based service queries, when programming
in these domains.

Our goal, then, is to take Scheme’s syntax-extension facility, and adapt it for use as a
front end for other languages, such as Java, Standard ML, C or even assembly language.
We’ll commence by exploring the basic elements of Scheme macro technology, and then
move to the issues that are raised when we attempt to apply it in other contexts.

4.1 Macros and S-expression languages

Scheme’s concrete syntax is unusual in that it is not defined in terms of character strings,
but in terms of trees, that is, list structure whose leaves are symbols and literals such as
integers, strings and booleans. These trees, and their sub-trees, correspond to Scheme ex-
pressions. Thus we describe the concrete syntax of the Scheme conditional as “a four-
element list whose first element is the symbol if, and whose other three elements are the
test, consequent and alternate expressions, respectively.”

This form of concrete syntax is often called S-expressions or sexps. In Scheme’s syntax,
symbols represent program identifiers and literals represent constants, but there are two
possibilities for lists. If the first element of a list is a keyword (such as if or lambda), then
the keyword specifies the syntactic form. Otherwise, the list is interpreted as a function
call.

Similarly, we can define other, completely different languages using sexp-based concrete
syntax. For example, we could define a regular-expression notation where

(: bol ; beginning of line

(* (| " " "\t")) ; zero or more space or tab chars

";" ; semicolon char
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(* any) ; zero or more chars of any kind

eol) ; end of line

represents, not Scheme code, but a regular expression that matches, in sequence, the be-
ginning of the line, zero or more occurrences of a space or tab character, a semi-colon,
and then zero or more characters up to the end of the line. We might, alternately, define an
S-expression grammar for Unix process notation, so that

(| (gunzip -c notes.txt.gz)

(spell)

(lpr -Pgaugin))

creates a three-process pipeline that uncompresses a file, spell checks it, and sends the
spelling errors to the printer.

The macro facility in Scheme and Lisp permit the programmer to define new keyword-
marked syntactic forms. The new keyword is tagged with code that is executed by the
compiler: when the compiler encounters an expression of the form

(keyword subform1 . . .)

it passes the entire expression (as a tree) to the keyword’s associated code, which is respon-
sible for translating the entire form into some other expression. This is the macro-expansion
step; it is repeated as necessary until the entire program is nothing but core Lisp or Scheme
syntax.

We can use this facility simply to provide a new form in the language. For example, we
might define an “arithmetic if” form that branches one of three ways depending on the sign
of its first expression by tagging the keyword arith-if with code to translate

(arith-if exp neg-arm zero-arm pos-arm)

into

(let ((tmp exp))
(if (< tmp 0) neg-arm

(if (= tmp 0) zero-arm
pos-arm)))

More ambitiously, we can use Scheme’s macro facility to embed an entire language
within Scheme, by arranging for the macro to be a compiler that translates terms in the em-
bedded language to an equivalent term in Scheme. For example, we might have a macro rx

that translates regular expressions written in an S-expression grammar (as in our example
above) to Scheme code implementing a string-matcher for that regular expression:

(let ((matcher (rx regexp-term)))

. . . (matcher str) . . .)

This is how we can embed arbitrary domain-specific languages within Scheme or Lisp—
assuming that they are represented using an S-expression (or tree-based) concrete grammar.
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4.2 Scheme macros, hygiene and lexical scope

One of the key features of the Scheme macro facility (which is not found in the older Lisp
macro systems) is that Scheme macros are ‘hygienic,” in that they respect Scheme’s lexical
scope. The notion of lexical scope has a subtle interaction with macros; in particular, it has
two main implications.

First, suppose we declare a macro keyword in a Scheme program, with, for example, the
Scheme form

(let-syntax ((keyword macro-definition))
body)

In the body of the let-syntax form, occurrences of the identifier keyword refer to the
defined macro; the syntax binding shadows any meaning that keyword might have outside
the let-syntax form. Similarly, forms occurring within body that themselves bind the
identifier keyword will lexically shadow the macro definition. Note that keyword can be
any identifier, including one that is bound elsewhere as a regular variable, or even one
that, at the top level of the program, is used to mark core language forms, such as if or
lambda: in Scheme, there are no “reserved” words at all; there are only identifiers with
lexical scope.

Second, note that our macro has two significant lexical contexts: the one pertaining at its
point of definition, and the one pertaining at its point of use. In our example above, if our
keyword macro is used somewhere inside the body expression, the lexical context at that
point may be quite different from the context where the keyword/macro-definition binding
was made.

When the macro executes, it expands into Scheme code that itself contains identifiers.
Should these identifiers be resolved, in turn, using their meaning at the macro’s point of
definition, or using their meaning at the macro’s point of use? In fact, we need both. Con-
sider our arith-if macro defined above. Referring back to its expansion, we can see that
the macro produces a sexp tree containing the identifiers let, tmp, if, <, and =, plus all
the identifiers occurring in the sub-trees exp, neg-arm, zero-arm and pos-arm. The macro
writer intended for all the identifiers in the first part of this list to mean what they mean at
the macro’s point of definition, which almost certainly includes these meanings:

• let should mean the keyword for Scheme’s basic variable-binding form;

• if should mean the keyword for Scheme’s core conditional form; while

• < and = should mean the top-level variables bound to Scheme’s numeric-comparison
functions.

It would break the macro if bindings appearing in body were accidentally to shadow these
bindings. That is, it would be a bad thing if a binding of tmp, or <, or if occurring in body
caused arith-if to break, e.g.:
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(let-syntax ((arith-if macro-definition))
. . .

(let ((< gregorian-date-less-than))

. . .

(arith-if (* x y)

(- x 3)

0

(+ x 3))

. . .))

Further, we would not want to require arith-if clients to avoid binding any of these
identifiers; it should be invisible to the arith-if client how the form is implemented.

On the other hand, lexical scope also means that we want all identifier references ap-
pearing in the exp, neg-arm, zero-arm and pos-arm sub-expressions to be resolved in the
context where they actually appear in the original source code—that is, at the point of
the macro’s use. Suppose, for example, that the body expression of our let-syntax form
itself contained a binding of the variable tmp, e.g.

(let-syntax ((arith-if macro-definition))
. . .

(let ((tmp (- x 3)))

. . .

(arith-if (* x y)

(- x tmp)

0

(+ tmp 3))

. . .))

When the arith-if form expands, it will introduce its own binding of tmp (marked with
an underline):

(let-syntax ((arith-if macro-definition))
. . .

(let ((tmp (- x 3)))

. . .

(let ((tmp (* x y)))

(if (< tmp 0) (- x tmp)

(if (= tmp 0) 0

(+ tmp 3))))

. . .))

It would break the program if bindings introduced by arith-if were accidentally to
shadow the client’s ability to bind and reference its own tmp. Again, we would not want
to require arith-if clients to avoid binding tmp; it should be invisible to the arith-if

client how the form is implemented.
Thus, we want (1) identifiers introduced by the macro (e.g., let and <, in our arith-if

macro) to have the meaning that they have at the point where the macro is defined, and
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(2) identifiers appearing within the macro use’s subforms (e.g., the *, x and y references
appearing within the exp sub-tree) to have the meaning that they have at the point where
the macro is used. “Hygiene” is the means by which these bindings and references are kept
sorted out.1 We will return to the mechanisms that provide hygiene, but the key point to
observe here is that what the Scheme community calls “macro hygiene” is nothing more
than correctly providing lexical scope for macros. This allows programmers to reason about
their macro definitions with the solid assurances that come with lexical scope: it is always
possible to resolve an identifier reference in a Scheme program simply by looking at the
point in the code where the reference occurs.

4.3 Parsing in the presence of hygienic macros

The classical view of compiler construction holds that we first lex and parse our program
into a syntax tree, and then—after parsing is completed—we implement our language’s
static semantics with algorithms that process the tree, resolving variable references, check-
ing types, and so forth.

Scheme’s lexically-scoped (or hygienic) macros, however, require that we abandon this
simple picture: parsing, in Scheme, must be intertwined with static analysis. This is nec-
essary because Scheme abandons the notion of the fixed “reserved keyword” in favor of
lexically-scoped keywords. Consider, then, what is required when the parser attempts to
parse the form (if x 4 5). It must resolve the identifier if to determine where in the
program it is defined. Perhaps it is the top-level if—that is, it is the keyword for Scheme’s
basic conditional form. But there are no reserved tokens in Scheme, so perhaps it is instead
a reference to a variable bound by some intermediate let or λ form, e.g.,

(λ (x if z) . . . (if x 4 5) . . .)

in which case our (if x 4 5) form is not a conditional, but is instead a function call.
Or perhaps the if reference is a reference to a macro the programmer bound with an
intermediate let-syntax form:

(let-syntax ((if macro-definition))
. . . (if x 4 5) . . .)

We must resolve the if reference and determine where it was defined in the current scope
before we can parse the (if x 4 5) form in which it appears. But this is a static analysis
problem: lexical scope (which is the rule by which we are resolving identifier references)
is part of a language’s static semantics.

Thus we have a circularity not occurring in more classical compilers: we need a parse
tree in order to perform static analysis, but we need to do static analysis in order to parse.
This is why Scheme’s provision of macros with lexical scope requires parsing to be inter-
leaved with analysis.

1 It’s also useful to have a controlled ability to violate hygiene. For example, we might wish to define a macro
that causes its body to be evaluated in an augmented scope that binds the identifier abort to a function; calling
this function during evaluation of the body triggers a non-local exceptional transfer from the entire form. Thus
the macro must introduce a binding for abort which is visible to its subform, hiding any outer binding of
abort. Scheme macro systems provide mechanisms by which this can be managed.
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4.4 Hygiene mechanisms

The simplified core of what a macro does is that it (1) substitutes its arguments into some
template, and then (2) substitutes the filled-in template at the point of the macro use. The
identifiers in the template appear in the program at one lexical context (where the macro
is defined), while the identifiers in the arguments appear in the program at a different,
inner context (where the macro is used). The essential requirement of hygiene is that we
perform these substitutions in a manner that preserves lexical scope. This is a problem
that was solved at the birth of the λ-calculus, in the form of specifying precisely how
β-reduction performs substitution (Church, 1941; Barendregt, 1984; Baader & Nipkow,
1998). Hygiene mechanisms in macro systems are simply mechanisms that employ the
substitution machinery from the λ-calculus, instead of using naı̈ve textual substitution—
for the same reason that β-reduction does not employ naı̈ve textual substitution. The core of
the λ-calculus’s substitution mechanism lies in its ability to α-rename identifiers that might
capture or be captured to fresh names that cannot possibly interfere with other, distinct
bindings of the original name. Thus, all Scheme macro systems that provide hygiene do so
by means of some kind of renaming capability.

One such mechanism is Rees’s explicit-renaming system (Clinger, 1991; Clinger &
Rees, 1991). To explain explicit renaming, suppose that we have a compiler recursively
walking the S-expression source-code tree, parsing it and expanding macros. As the com-
piler recurs through the source tree, it keeps track of a symbol table, which is used to
resolve identifiers. Looking up an identifier in a symbol table produces the static definition
of the identifier in a given lexical context; these definitions include meanings such as “the
core-Scheme if conditional form,” “the second parameter of λ term t37,” “the third vari-
able bound by the letrec term t82” or “a macro with such-and-such definition,” where
t37 and t82 are nodes in the syntax tree. When the compiler encounters identifier-binding
forms, such as let, λ, letrec or let-syntax forms, it adds the new bindings to the
symbol table, and recurs into the body of the binding form with the augmented table.

In explicit renaming, the right-hand side of a macro definition is written as Scheme code
that takes three arguments, e.g.

(let-syntax ((arith-if (λ (exp rename compare) ...)))

...)

When the compiler encounters a use of the macro, (arith-if ...), it invokes the asso-
ciated procedure, passing it the entire macro form as the first argument exp. The rename

argument is bound to a special function which provides the renaming capability. It addi-
tionally captures, as we’ll see, the lexical context where the macro was defined, for use as
the macro expander executes at the inner, macro-use context.

This renamer function has two key properties. First, when applied to an identifier, it
guarantees to return a fresh identifier that occurs nowhere in the program. Suppose that the
macro’s expander procedure applies the renamer function to the symbol =, e.g., (renamer
’=). It is guaranteed to get an identifier id that is completely fresh. Thus, if our macro con-
structs a source tree containing occurrences of id, it can be sure that these occurrences can
not be accidentally captured by other code in the program; references to such an identifier
can only be references inserted by the macro itself.
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But this leaves the question: when the compiler later attempts to parse the result of
our macro expression, which contains a reference to id, to what will id refer, when it is
looked-up in the symbol table? This is the second key property of the renamer function.
The renamer function has access to the symbol table that describes the lexical context at
the macro’s point of definition. When passed the symbol =, it looks up the meaning m of =
in this symbol table, then inserts an id 7→ m binding into the outermost, top-level contour
of the symbol table. So if, in the future, the compiler encounters a free reference to the
identifier id at some point in the code, it will resolve to the same thing at that point that =
resolves to at the macro’s definition point. So the macro writer can confidently insert id into
constructed code and know that no matter what its lexical context might be, id will serve as
a suitable “synonym” for the top-level = variable—this will be true even in some context
that locally binds = to some other meaning. Thus, the renamer function gives the macro
access to the scoping context that pertains at its point of definition; it permits the macro
to rename identifiers from this context away to fresh names that have the same meaning,
where they cannot subsequently be accidentally captured by the vagaries of the client code
where the macro is used.

Note, however, that if the code produced by the macro expansion itself chooses to bind
the fresh identifier id, then this local definition will shadow the top-level binding inserted
in the symbol table by the renamer function. Here is our arith-if macro, then, written
using explicit renaming:
;;; Call this let-syntax form’s lexical context lcls.
(let-syntax ((arith-if (λ (e r c)

(let ((exp (cadr e)) ; Disassemble

(neg-arm (caddr e)) ; source

(zero-arm (cadddr e)) ; tree

(pos-arm (car (cddddr e))))

(%let (r ’let)) ; Make fresh synonyms

(%if (r ’if)) ; for these ids --

(%< (r ’<)) ; with their

(%= (r ’=)) ; lcls meaning.

(%tmp (r ’tmp)) ; Fresh var.

‘(,%let ((,%tmp ,exp))

(,%if (,%< ,%tmp 0) ,neg-arm

(,%if (,%= ,%tmp 0) ,zero-arm

,pos-arm)))))))

. . .)
Thus, the macro’s renamer function r is used to get synonyms for the identifiers we’d
like to reference from the macro’s point of definition (let, if, < and =), and is also used
simply to generate a unique identifier to serve the role of the tmp variable. (Note that we
have not discussed the purpose of the transformer function’s third argument, the “compare”
procedure. It only comes into play with more sophisticated transforms.)

Another approach involves the use of annotating identifiers in the source tree with marks
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(sometimes called “paint”) to α-rename entire sub-terms during macro processing (Dybvig
et al., 1992); the syntax-case system is the chief example of such a macro system (Dy-
bvig, 1992). As with the explicit-renaming mechanism, the point of the α-renaming is
to make the textual substitution performed by the macro expansion conform to the kind
of reference-preserving substitution we find in the λ-calculus. The basic idea is to begin
macro expansion by renaming the source sub-trees comprising the macro’s “arguments” or
sub-terms (e.g., the exp, neg-arm, zero-arm and pos-arm sub-trees in our arith-if exam-
ple). That is, every identifier occurring in the macro-use’s source tree is marked with a new,
fresh mark, effectively α-renaming them. This mark-annotated source tree is then given to
the macro’s associated source-to-source transform function. If these marked sub-terms are
incorporated into the macro’s result, their unique marks distinguish them from identifiers
introduced by the macro itself. After the macro has assembled its complete result term, the
macro system walks the term, where it toggles the fresh mark added previously. That is,
we (1) remove the marks from these incorporated sub-trees, and (2) mark the identifiers
that the macro itself introduced. Part (1) causes these identifiers to return to their original
form, so that they are restored to whatever meaning they had in the lexical context where
the macro appeared. Part (2), however, ensures that identifiers introduced by the macro
are renamed away to unique names, ensuring they will not interfere with part (1)’s local
identifiers.

4.5 Problems adapting Scheme macro technology to other languages

Macro hygiene makes it straightforward to correctly construct general syntax extensions in
Scheme. The next logical step is to take the macro mechanism, “peel” it from the Scheme
language, and apply it other languages. However, the system is narrowly adapted to the
specifics of Scheme, in ways that make it difficult to apply the technology to other lan-
guages.

Focus on expressions The Scheme language has an extremely spare grammar in the fol-
lowing sense: its S-expressions represent very little besides expressions. Thus, in Scheme
we can restrict macros to the syntactic context of an expression, and that will cover nearly
all uses we might wish to make of them. (Some examples of the few syntactic forms that
would not be covered are the variable/initial-expression bindings in a let or let* form,
the parameter list in a lambda form, and the arms of a cond conditional form. We cannot,
in Scheme, write macros for these syntactic elements.)

By way of contrast, consider what would be needed if we added macros to a version
of the C language with a sexp-based concrete syntax. Unlike Scheme, the expression is
not the overwhelmingly dominant syntactic form in C. We would wish to allow macros to
appear in many syntactic contexts: expressions, statements, declarations, types, initialisers,
and so forth.

Little static semantics Even more problematic is that Scheme’s static semantics is as spare
as its syntax. The only real static semantics provided by the language is lexical scope:
the ability to resolve an identifier reference to its point of definition. As we’ve seen, this
is reflected in Scheme’s macro system: hygiene is precisely the mechanism one needs to
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control identifier scoping during macro expansion. It’s not a problem that there is no other
mechanism in the Scheme macro system to reason about static semantics, because Scheme
does not have any other static semantics about which to reason.

This is a serious problem for languages with more static semantics. Suppose, for ex-
ample, that we implemented a Scheme-like macro system for a variant of Standard ML
written with an S-expression concrete syntax. Loops in SML are typically written with
tail-recursive function calls, but a programmer might wish to implement an SML version
of Scheme’s do loop, so that expressions of the form

(do ((var1 initial1 update1) . . .)

(end-test final-value)
body)

would expand into

(letrec ((loop (λ (var1 . . .)

(if end-test final-value
(begin body

(loop update1 . . .))))))

(loop initial1 . . .))

How should we type-check programs written in our macro-augmented SML dialect?
One way would be simply to expand all macros, and then type-check the residual core-
SML program. This would work, in the sense that it would guarantee the type safety of
the program. But in a more practical sense, it works only when the programmer makes no
mistakes: type errors are reported to the programmer not in terms of the original source
code, but in terms of its macro-expanded residue, which might be an incomprehensible
mess of low-level code bearing little obvious relationship to the original source.

The compiler needs the ability to reason about the program as it is written by the pro-
grammer. To return to our example above, the compiler needs a type rule for do forms, just
as it has type rules for if forms and λ-expressions; then it can type-check the program and
report type errors in terms of the original code the programmer wrote. In other words, we
need the ability to associate static semantics with our extensions, something Scheme macro
technology does not provide. With Scheme macros, the static and dynamic semantics of
a new form are given implicitly by means of translation—i.e., specification by compiler.
The translation mechanism is opaque, being defined procedurally either in Scheme itself,
or by means of the Turing-complete pattern-matching language used for Scheme’s “high-
level” macros. As the macros get larger and more complex, e.g., providing object systems,
database-query languages or parser generators, there is no hope at all that an automatic sys-
tem can extract much useful static information from their specification in standard Scheme
technology.

4.6 Adding static semantics to macros

Ziggurat extends the basic technology of Scheme’s hygienic macros, allowing macros to
be tagged not only with code that provides its dynamic semantics by means of translation,
but also with code that provides its static semantics. Our approach is twofold:
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• Ziggurat employs a specialised object system, called lazy delegation. Syntax nodes
are represented as objects, and analyses are done as methods on these objects. If
a particular analysis is undefined for a class of syntax node, then the analysis is
delegated to a macro-rewritten form of the syntax object.
• Analyses are structured monadically. This solves a problem in building complex se-

mantic analyses incrementally: it is difficult to do a global analysis that requires
information to flow through the syntax tree in ways that do not correspond to the se-
quencing associated with a recursive walk through the tree, i.e., not obeying a simple
propagation pattern, such as bottom-up. In Ziggurat, this is solved by arranging for
the syntax nodes locally to provide higher-order analysis constructors. That is, we
structure the analysis as a set of syntax-node methods, each one of which takes in a
partial analysis, and returns the analysis augmented with the part for that node.
We also provide two standard libraries to help the meta-designer define static se-
mantics for languages constructed with Ziggurat: Kanren, a Prolog-like logic lan-
guage (Friedman et al., 2005; Byrd & Friedman, 2006), and Tsuriai, a system we
developed for computing fixed points of recursively defined, monotone functions on
lattices. In the context of language semantics, Kanren is useful for reasoning in type-
ful ways; Tsuriai is a framework that makes it straightforward to work in the flow-
analysis paradigm. Neither of these subsystems is primitive; they are simply libraries
defined in Ziggurat for the convenience of the Ziggurat programmer. There’s nothing
to prevent an ambitious Ziggurat programmer from implementing other libraries of
a similar assistive nature. For example, it might be useful to provide programmers
with a library to assist programmers in constructing abstract interpretations (Cousot
& Cousot, 1977), or an implementation of the extensible HM(X) type system (Pot-
tier & Remy, 2005), which permits language designers to implement Hindley-Milner
style type reconstruction, parameterised over different base types.

Using this semantic extension capability, it is possible to layer one language on top of
another, thus building up a “tower” of languages. In this way, Ziggurat is a tool for the
incremental development of programming languages.

5 Designing a language with Ziggurat

Languages in Ziggurat are meant to be designed in stages, thus providing an opportunity
for several actors to contribute (or for one person to play several roles). Figure 1 shows a
sample workflow for building a language in two stages, but this is by no means the only way
to go about it. Languages can be layered as deeply as is needed, and Ziggurat is designed
to allow for complex collaboration between layers.

Consider the three characters of Figure 1. Let us assume they are building a software
system in assembly language. The first character is a programmer, who will be the eventual
consumer of our language. Another is a language designer, who will focus on producing
a low-level assembly language. The programmer will probably not want to program in the
raw assembly language, so we introduce a third character: the macro programmer. The
macro programmer writes new control primitives and data operations in order to make the
application programmer’s life easier.
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Application
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termination
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Fig. 1. Workflow to design a language with Ziggurat

We will introduce an example assembly language later in the paper. (We’ve purpose-
fully chosen assembly to have an example language that is as far from Scheme as we can
arrange.) Since this will not be the final language that the application programmer will be
using, the language designer is free to make the language very simple. A language with
a small semantics has several advantages: it can be easy to implement, reason about, and
analyse. In this paper, the lowest-level language we use is an assembly language, with
register and control manipulation instructions similar to a machine language. The macro
writer adds additional forms, such as nested blocks and loops, and cons, car and cdr

forms for constructing and manipulating simple tuples.
This is enough for the application programmer to start programming. However, we are

not yet done; the language designer will also want to specify static semantics for his assem-
bly language. Thus, he specifies a type system for the language, and implements algorithms
for termination analysis, type reconstruction, and control-flow analysis.

At this point, though, the macro writer has information that the language designer does
not have. The programmer may use structured control operations, which can provide more
precise information about control flow; similarly, data operations can provide more precise
type information. So, the macro writer extends the analyses of the language designer to
better account for the new forms.

In order to see how this all works, we show the system from the ground up. We start
with the object system of Ziggurat, which uses a mechanism for method resolution we call
lazy delegation.
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i, c, f,m ∈ Identifier ::= x, a, foo, . . .
d ∈ Definition ::= . . .

| (define-class c (f . . .) [edeleg])
| (define-generic (m i . . .) [edefault])
| (define-method c m e)

e ∈ Expression ::= . . .
| (object c e . . .)
| (pass)

Fig. 2. Ziggurat extends Scheme with lazy-delegation objects

6 Lazy delegation

Ziggurat is used by the language designer to define the low-level language, and by the
macro designer to extend the semantics of that language. The Ziggurat language is based
on Scheme, to which we add an object model, called lazy delegation. Lazy delegation
is similar to other delegation-based object systems, such as Self (Ungar & Smith, 1987),
with a twist: the parent of an object, instead of being provided at object-creation time,
is calculated only when it is needed. The additions that Ziggurat makes to the standard
Scheme grammar are presented in Figure 2.

In Ziggurat, each object has a unique class. A class defines (among other things) the
fields that an object has. If we wanted to define a class to represent floating-point real
numbers, we would use the code

(define-class real (mantissa exponent))

(define real-seven (object real 7 0))

The first line declares that objects of class real have two fields: mantissa and exponent.
The second line declares a variable real-seven to be an object of class real with man-
tissa 7 and exponent 0.

Generic functions are introduced with the form

(define-generic (m i . . .) [edefault])

which defines a generic function named m with the i . . . providing the argument parame-
ters. The optional body edefault, if it is present, defines the default behavior of the function.
Generic functions must have at least one argument, which is the “this” object of the func-
tion invocation. Generic functions are called as if they were ordinary Scheme functions,
and can be passed around and used as such. Thus, the following code defines a generic
function of one argument, num, whose default behavior is to return the string "<object>".

(define-generic (object-number->string num)

"<object>")

In order to give the generic function more interesting behavior, we must override it with
class-specific method definitions:

(define-method real object-number->string

(λ (this) (string-append (number->string mantissa) "e"

(number->string exponent))))
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This code defines the behavior of the object-number->string generic function if its
first argument is an object of class real. Since we know that the first argument of this
method is an object of class real, we know that it has fields mantissa and exponent.
These fields are available in the method body, as if they were ordinary Scheme variables.
One consequence of this is that classes cannot be first-class values, since we must be able
to tell statically what is a field of the object, and what is a regular variable. Objects and
generic functions are first-class values, though, and can be passed around and manipulated
just like any other Scheme value.

Objects have a special method, the delegate-instantiation method. Unlike other methods,
delegate-instantiation methods have no arguments. A delegate-instantiation method must
return an object or #f. This object is the delegate of the current object, and is used in case
a generic function is applied to the object and it has no corresponding defined method. If
the delegate-instantiation method returns #f, the object has no delegate, and any method
the object attempts to delegate will fall through to the generic function’s default behavior.
Delegates are thus created on demand and then cached; after an object has invoked its
delegate-instantiation method, future method lookups will automatically be passed to the
delegate object when needed.

The delegate-instantiation method is provided as part of the define-class form. For
example, to define an int class that delegates to a real object:

(define-class int (value)

(λ () (if (= value 0)

(object real 0 0)

(let* ((exponent (inexact->exact

(floor (/ (log (abs value))

(log 10)))))

(mantissa (exact->inexact

(/ value (expt 10 exponent)))))

(object real mantissa exponent)))))

What if we called (object-number->string (object int 4007))? Since the int
class does not have its own method for object-number->string, it delegates the generic
function to the real object produced by its lazy-delegation method, which in turn pro-
duces "4.007e3". If we wanted integers to have a specialised object-number->string

method, we would simply define one, e.g.

(define-method int object-number->string

(λ (this) (number->string value)))

Now (object-number->string (object 4007)) will return "4007".
Ziggurat also allows the programmer to delegate explicitly through the function pass.

The return value of the function pass during a function call is the same as calling the
generic function on the delegate object. For example, if we wanted an int object to use
scientific notation when its value is less than zero, we would define the method object-

number->string on objects of class int to be
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v ∈ Var ::= a | b | c . . .
c ∈ Const ::= . . . -1 | 0 | 1 . . .
e ∈ Expr ::= v

| c
| (let ((v e) . . .) e)
| (+ e e)
| (* e e)
| (/ e e)
| (- e e)

Fig. 3. An arithmetic-expression language

(define-class arith-var (name))

(define-class arith-const (value))

(define-class arith-let (vars exprs expr))

(define-class arith-add (left right))

(define-class arith-mul (left right))

(define-class arith-div (left right))

(define-class arith-sub (left right))

Fig. 4. Implementation of the arithmetic-expression language

(define-method int object-number->string

(λ (this) (if (< value 0)

(pass)

(number->string value))))

The use of pass here specifies that the delegate will be invoked if and only if the integer
value is less than zero.

7 Representing abstract syntax trees

Building abstract syntax trees is a simple matter in Ziggurat. Consider a language for ex-
pressing simple arithmetic calculations, presented in Figure 3. This language has one basic
syntax class: the expression. An expression is either a variable, a constant, a primitive
operation such as multiplication or addition, or a let form to bind variables.

In order to implement this in Ziggurat, each syntax node is represented by an object. The
classes of the syntax nodes correspond to the productions of the grammar, and the fields of
the syntax node correspond to the sub-terms of the production. Implementing this involves
directly transcribing the grammar into code, as seen in Figure 4.

In the let form, we have two fields to represent bindings: a list of variables, and a list
of expressions. The two lists are linked by their order; e.g., the third item in the list of
variables is the variable bound to the value of the third item in the list of expressions. This
is in opposition to the concrete syntax of a let statement, which takes the form of a list of
pairs of labels and expressions.

This language is fairly basic, and there are any number of extensions we might want to
add. For example, we might want to add a sqr form, that squares the value of an expression.
With our AST represented by lazy-delegation objects, this is easy to do:
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(define-class arith-sqr (expr)

(λ ()

(let ((temp-var-name (gensym))) ; create fresh var

(object arith-let ‘(,(object arith-var temp-var-name))

‘(,expr)

(object arith-mul

(object arith-var temp-var-name)

(object arith-var temp-var-name))))))

Suppose that we have a generic function (execute expr ctx), defined on the basic
language nodes, that calculates the numerical value of the arithmetic expression expr in
the variable-binding context ctx. Evaluating

(execute (object arith-mul (object arith-const 3)

(object arith-const 7))

empty-arith-context)

would return the value 21. Now, what about running execute on a syntax node of class
arith-sqr? Consider what would happen if we attempted to evaluate

(execute (object arith-sqr (object arith-const 5))

empty-arith-context)

Since arith-sqr does not define an execute method, it gets delegated to the expanded
syntax tree:

(object arith-let ’(,(object arith-var ’g300))

’(,(object arith-const 5))

(object arith-mul (object arith-var ’g300)

(object arith-var ’g300)))

When execute is delegated to this AST, the result is the expected 25. Although we did
not explicitly write an execute method for arith-sqr, that piece of semantics was handled
though rewriting.

8 Parsing

Up to this point, we’ve looked at programs built as Ziggurat objects with Ziggurat code.
But programmers do not write programs this way; they write concrete syntax that must be
parsed into corresponding Ziggurat objects.

In our S-expression setting, we have a reader that takes in a stream of characters, and
produces a tree of raw data that corresponds to the nested list structure of the unparsed
code. For example, the reader takes the string “(* (+ 1 2) 3),” and produces the data
structure constructed by

(cons ’* (cons (cons ’+ (cons 1 (cons 2 ’())))

(cons 3 ’())))
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The parser is a function that takes the output of the reader and produces a tree of Ziggurat
objects based on the abstract syntax of the language being implemented. For our arithmetic
language, we will define a generic Ziggurat function, parse-arith-expr, that will take,
for example, the list (+ x 3), and construct the syntax tree:

(object arith-plus

(object arith-var ’x)

(object arith-const 3))

We could implement parse-arith-expr as a function of one argument, such that evalu-
ating (parse-arith-expr ’(+ x 3)) would construct the term’s syntax tree as above.
However, this means of parsing makes it difficult to add a new keyword, and thus we in-
troduce syntactic environments.

8.1 Syntactic Environments

A syntactic environment is a lazy-delegation object that defines one or more parse methods.
For our arithmetic language, we will define a syntactic-environment class, arith-env.
This class defines a method parse-arith-expr. The parse method is invoked with two
arguments, (parse-arith-expr e s), where e is a syntactic environment, and s is the
form to be parsed. The class arith-env can naı̈vely be defined as

(define-class arith-env ()

(λ () #f))

We will expand this definition shortly.

When the generic function parse-arith-expr is invoked on a parse environment of
class arith-env, the environment’s method extracts a keyword from the form it is pars-
ing, and then uses a specialised parse function based on that keyword. We could define
parse-arith-expr as

(define-generic (parse-arith-expr env form)

(error "Could not parse arithmetic expression" form))
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(define-method arith-env parse-arith-expr

(λ (env form)

(if (pair? form)

(if (symbol? (car form))

(case (car form)

((’+) (parse-arith-add env form))

((’-) (parse-arith-sub env form))

((’*) (parse-arith-mul env form))

((’/) (parse-arith-div env form))

((’let) (parse-arith-let env form))

(else (pass)))

(pass))

(cond ((symbol? form) (parse-arith-var env form))

((integer? form) (parse-arith-const env form))

(else (pass))))))

While this would certainly parse the language we have described, it is too inflexible for
our purposes: in order to add a new keyword, we would have to alter the definition of the
generic function. So, in order to fix this, we alter the definition of arith-env to include
a field keywords that contains an association list mapping keywords (symbols) to parse
functions:

(define-class arith-env (keywords)

(λ () #f))

(define-method arith-env parse-arith-expr

(λ (env form)

(if (pair? form)

(if (symbol? (car form))

(let ((parse-fun (assq (car form) keywords)))

(if parse-fun

((cadr parse-fun) env form)

(pass)))

(pass))

(cond ((symbol? form) (parse-arith-var env form))

((integer? form) (parse-arith-const env form))

(else (pass))))))

(The Scheme assq function will search the list of keyword/parser pairs, and return the
first match it finds.) For this new parse method, in order to define a new keyword, all we
need to do is alter the keywords field of an object of class arith-env. We would define a
top-level syntactic environment that contains the basic keywords of the arith language:

(define top-level-arith-env

(object arith-env ‘((+ ,parse-arith-add) ...)))

However, this is still too inflexible for our purposes. What if we alter the language to permit
local syntax declarations, similar to let-syntax in Scheme?



22 David Fisher and Olin Shivers

For this, we permit layering of syntactic environments. We alter the class arith-env
to define a field super. The field super contains the syntactic environment to which the
current arith-env will delegate if it does not recognise the current keyword.

(define-class arith-env (keywords super)

(λ () super))

Now, to define a new keyword locally, we can create a new syntactic environment that
contains the keyword in its keyword table. For example, if we wanted to define a keyword
sqr, we would write

(define sqr-arith-env

(object arith-env ‘((sqr ,parse-arith-sqr))

top-level-arith-env))

Upon defining this, we can invoke parse-arith-expr with sqr-arith-env if we
wish to recognise the sqr form, or top-level-arith-env if we do not.

In Ziggurat, we provide a form define-keyword-syntax-class that automates the
process of writing such a parse function. Invoking

(define-keyword-syntax-class syntax-class-name
parse-function-name environment-name
no-keyword-function atom-function)

defines a generic parse function named parse-function-name, and a syntactic environment
named environment-name, in order to parse concrete syntax for syntax-class-name. The
argument atom-function is a parse function which is invoked if the form is not a list, and the
argument no-keyword-function is a parse function which is invoked if the form is a list but
the first element is not a recognised keyword. We can use this form to define arith-env.

(define-keyword-syntax-class arith-expr

parse-arith-expr arith-env

(λ (env form)

(error form "Could not parse arithmetic expression"))

(λ (env form)

(cond ((symbol? form) (object arith-var form))

((integer? form) (object arith-const form))

(else (pass)))))

Note that we are using lazy delegation for a new purpose here. Previously, we’ve been
using it to layer abstract syntax; here, we are using it to layer syntactic environments.

Parse functions for non-terminals, such as parse-arith-add, typically work by match-
ing a pattern, recursively parsing subforms, and creating an object. Ziggurat provides a
utility to automate this process: the macro parse-pattern-variables. This section of
code, for example, defines a function parse-arith-add that matches the concrete syntax
of the addition non-terminal and produces the corresponding piece of abstract syntax.
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(define parse-arith-add

(parse-pattern-variables ‘(+ ,parse-arith-expr

,parse-arith-expr)

(_ l r)

(object arith-add l r)))

The Ziggurat macro parse-pattern-variables takes three arguments: a pattern, a pat-
tern of variables, and an action. The macro produces a parser that matches the pattern,
binds the variables to the sub-forms of the input, and then performs the action.

The expression (parse-pattern-variables P V A) evaluates to a parse function
R. Calling (R env F) matches the form F to the pattern P and binds the variable pattern
V in the action A.

• If P is a parser function, it is used to parse the term F ; the result value is bound
to identifier V , unless V is _, the “don’t-care” symbol. The action A occurs in the
scope of the V binding.

• If P is a symbol, then the pattern matches when the term F is the same symbol. V
should again be _, or an identifier that will be bound to F .

• If P is a list of sub-patterns (p1 p2 . . . pn), and V is a list of variable sub-patterns
(v1 v2 . . . vn), then a successful pattern-match requires that F be a list of sub-forms
(f1 f2 . . . fn), and for all 1 ≤ i ≤ n, pi matches fi and binds the variable pattern vi.

If the pattern does not match the form, the parser function signals an error.
Once we have defined parse functions for the language primitives, we must define an ini-

tial syntactic environment for the language containing those primitives. The macro make-

keyword-syntax-env instantiates an environment of a class previously declared with
define-keyword-syntax-class. Parsers are added to an environment with the generic
function add-keyword-parser!, e.g.:

(define initial-arith-env (make-keyword-syntax-env arith-env))

(add-keyword-parser! initial-arith-env ’+ parse-arith-add)

This is all of the low-level machinery necessary to define parsers in Ziggurat. However, we
can provide high-level machinery on top of this to make basic language implementation
easier.

8.2 Template environments

A macro needs to define two things: a parse function, and a rewrite function. We have
mentioned that in Ziggurat, the rewrite function takes the form of the delegate-instantiation
method of the new syntax node. One way of designing these methods is to completely
instantiate the AST of the rewritten syntax. Doing this with the arith-sqr syntax class
looks like
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(define-class arith-sqr (expr)

(λ ()

(let ((temp-var-name (gensym))) ; create fresh var

(object arith-let ‘(,(object arith-var temp-var-name))

‘(,expr)

(object arith-mul

(object arith-var temp-var-name)

(object arith-var temp-var-name))))))

We can simplify this process by using the fact that we already have a parse function
handy. Ziggurat’s parse-template-with-variables macro takes advantage of this.
When a parse-template-with-variables form is evaluated, it creates a template envi-
ronment. A template environment is a syntactic environment that defines a number of meta-
variables. The methods of a template environment are all of the parse functions known
to Ziggurat. These parse functions all behave the same way: if the form they are pars-
ing is one of the meta-variables of the template environment, they return the AST bound
to it in the template environment. Otherwise, they delegate to the higher-level environ-
ment. Invoking (parse-template-with-variables e p ((v1 f1) . . .) g) builds a
template environment in which the template variable v1 is bound to f1 and so forth. Like
other syntactic environments, template environments have enclosing environments; this is
the argument e to parse-template-with-variables. The form then parses g with the
parse function p in the context of this template environment. A simple implementation of
a template environment would be:

(define-class template-env (variables super)

(λ () super))

(define-method template-env parse-arith-expr

(λ (env form)

(if (symbol? form)

(let ((match (assq form variables)))

(if match (cdr match) (pass)))

(pass))))

This allows us to build delegate-instantiation functions out of templates, rather than
Ziggurat primitives. If we wished to rewrite the arith-sqr delegate-instantiation method
via templates, for example, we would write

(define-class arith-sqr (expr)

(λ ()

(parse-template-with-variables top-level-arith-env

parse-arith-expr

((’e expr))

’(let ((temp e)) (* temp temp)))))

This has the advantage of allowing us to write delegate-instantiation methods in our target
language, thereby abstracting away from Ziggurat primitives.
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d ∈ DSyn ::= (define-syntax n t)
e ∈ Expr ::= . . .

| (let-syntax ((n t) . . .) e)
t ∈ Transformer ::= (syntax-rules (n . . .) ((p e) . . .))
p ∈ Pattern ::= (n (n u) . . . [...]) ; Optional “...” is literal keyword.
u ∈ Parser ::= n
n ∈ Name ::= x, y, z, . . .

Fig. 5. A grammar for high-level macros

8.3 High-level macros

Now that we have the ability to write the rewrite function in the target language, we need
not use the Ziggurat language at all when designing macros. Instead, we can have forms
in our target language that define a macro. Ziggurat makes it straightforward to introduce
a let-syntax form and a define-syntax form to the target language, similar to how
Figure 5 extends the Arith language. These language additions are a general template for
high-level macros; they need not be the only way high-level macros are added to a target
language.

The let-syntax form defines new syntax keywords, and then parses an expression
in the context of those keywords. The define-syntax form behaves the same way, but
defines the new syntax at the top level, and does not yet parse a new form, e.g.

(define-syntax square-five

(syntax-rules ()

((square-five) (* 5 5))))

This code defines a parse function and a rewrite function. The parse function will create an
object of class extended-syntax. Each extended-syntax object has three fields:

• A field indicating which syntax-rules pattern was matched
• A field indicating what variables were bound when the form was parsed
• A rewrite function.

The actual delegate-instantiation method of an extended-syntax object merely passes
off to the field rewrite-function.

(define-class extended-syntax

(matched-pattern variables rewrite-function)

(λ () (rewrite-function matched-pattern variables)))

The field rewrite-function is a function defined by the transformer part of the high-
level-macro. For the square-five example, the value of this field would be:

(λ (matched-pattern variables)

(parse-template-with-variables top-level-arith-env

variables

’(* 5 5)))
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The parse function for square-five is simple: it matches only (square-five), parses
no sub-expressions, and binds no variables. However, usually we will need to parse sub-
forms. Thus, our high-level macro language allows us to parse patterns. We allow only one
kind of pattern: a list of sub-forms. Since there are several parse functions one could use to
parse a sub-form, we require the macro writer to specify which one.

(define-syntax sqr

(syntax-rules ()

((sqr (x arith-expr)) (* x x))))

The macro sqr has one sub-form. When the parser encounters source code of the form
(sqr 3), it first parses 3 as an arith-expr, and then binds the parsed form to the variable
x in the variables field of the associated extended-syntax.

The list of sub-forms can be made expandable, through the ... keyword.

(define-syntax mult

(syntax-rules ()

((mult (x arith-expr)) x)

((mult (x arith-expr) (y arith-expr) ...)

(let ((temp (mult y ...)))

(* x temp)))))

The variable y here is associated with the list of arith-exprs that begins with the second
sub-form of the mult statement, and ends at the end of the form.

The first subform of syntax-rules is the set of names we wish to capture. That is a
facet of the hygiene system: it means that, when we refer to these names in the macro
definition, we wish them to refer to the same things the names would refer to in the context
of the macro use. To explain how this works, first we need to explain how hygiene works
in Ziggurat.

8.4 Hygiene and referential transparency

Scheme’s macro system has a property that we’d like to ensure: we want to make sure that
the names introduced and used inside of a macro do not interfere with those appearing
where the macro is used.

Consider the arithmetic form (let ((temp 3)) (mult temp 6)). A naı̈ve imple-
mentation of the mult macro presented at the end of the last section would simply rewrite
the mult statement directly, resulting in the code (let ((temp 6)) (* temp temp)).
The result of executing this is 36, instead of the expected 18. The clear problem here is
that the temp referred to by the macro writer is not the same temp that the macro reader
intended to use, but since they have the same name, they are not distinguished. In other
words, the macro captures the variable temp, although we do not want it to.

Ziggurat employs a traditional solution (Dybvig et al., 1992) to this problem, tailored
to use lazy-delegation objects and to be language independent. We replace simple Scheme
data with annotated data, which maintains information about the syntactic context in which
it appears:
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(define-class annotated-datum

(datum namespace start-location end-location))

The start-location and end-location fields contain source-file information and are
merely for informed error-reporting. The namespace field is what provides our hygiene
functionality. Hygiene comes from the annotated-datum-eq? predicate.

(define-generic (annotated-datum-eq? a b) #f)

(define-method annotated-datum annotated-datum-eq?

(λ (a b) (annotated-datum-namespace-eq? b datum namespace)))

(define-generic (annotated-datum-namespace-eq? a dat ns) #f)

(define-method annotated-datum annotated-datum-namespace-eq?

(λ (a dat ns)

(and (eq? datum dat)

(eq? namespace ns))))

In the example given above, the two temp variables will not collide assuming that the
namespace fields of these symbols are set correctly. The namespace field should properly
refer to a lazy-delegation object of class namespace. Objects of class namespace remem-
ber what names they define, and are layered. Symbols can be looked up in namespaces:
if a namespace is questioned about a symbol it defines, it returns itself, and if it is ques-
tioned about a symbol defined in a higher space, it returns that space. We also have a role
argument that reflects the syntactic category of the name. This is so that we can maintain
different namespaces for different types of syntax nodes.

(define-class namespace (super table)

(λ () super))

(define (new-namespace super)

(object namespace super (make-hash-table)))

(define-generic (namespace-declare ns role name))

(define-method namespace namespace-declare

(λ (ns role name)

(hash-table-put! table role name ns)))

(define-generic (namespace-lookup ns role name) #f)

(define-method namespace namespace-lookup

(λ (ns role name)

(hash-table-get table role name pass)))

Now, all that needs to be done is to associate symbols with their proper namespace in-
formation. Adding namespace information is a form of parsing: when we want to parse
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a symbol in a particular context, we will want to maintain that context as part of its se-
mantic information. We therefore add a method get-current-namespace to syntactic
environments.

(define-class namespace-env (namespace super)

(λ () super))

(define-generic (get-current-namespace env) top-level-namespace)

(define-method namespace-env get-current-namespace

(λ (env) namespace))

It’s now a simple matter to alter the definition of parse-template-with-variables
such that for each template environment, a new namespace is defined.

However, sometimes we want to have variable capture. For these instances, we introduce
a capture mechanism into syntax-rules.

(define-generic (namespace-declare-capture ns role

name captured-ns))

(define-method namespace namespace-declare-capture

(λ (ns role name captured-ns)

(hash-table-put! table role name captured-ns)))

Thus, when we use syntax-rules in a high-level macro, for each name in the argument
to syntax-rules, we first look it up in the context of the macro use, and put that role into
the namespace of the rewrite function.

8.5 Macro-defining macros

Like Scheme, Ziggurat enjoys the powerful feature of macros that define other macros. In
fact, since high-level macros utilise parse functions that may well already contain a macro
facility, macro-defining macros are included for free. However, in some instances, some
additional annotation is required.

Consider the arithmetic macro:

(define-syntax macro-with-a-macro

(syntax-rules ()

((macro-with-a-macro (exp arith-expr))

(let-syntax ((inner-syntax (syntax-rules ()

((_) 3))))

(+ exp (inner-syntax))))))

Despite the fact that this macro has a macro definition inside of it, it does not require
any special techniques to deal with, since it applies the parse function to make a rewrite
function. Ziggurat handles this sort of situation automatically.

However, a common use of macro-defining macros is to define a macro for use by the
user somewhere else. Let us alter the definition of the above macro slightly:
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(define-syntax let-three-macro

(syntax-rules (three)

((let-three-macro (exp arith-expr))

(let-syntax ((three (syntax-rules ()

((_) 3))))

(exp)))))

Now, let’s use this new macro:

(let-three-macro (+ 7 (three)))

Here, when we use the name three, we are using it as the keyword for a macro that
rewrites to 3. Ziggurat, as specified above, can not handle this case, at least not with high-
level macros. When the expression (+ 7 (three)) is parsed, the macro three is not yet
defined, since that macro is only defined in the rewrite function of let-three-macro. For
the writer of a low-level macro, there are two options: either we define the macro three

earlier, or hold off the parsing of (+ 7 (three)) until later.
We can build this later method into the high-level macro system directly by use of the

delay keyword.

(define-syntax let-foo-macro

(syntax-rules (foo)

((let-foo-macro (exp arith-expr delay))

(let-syntax ((foo (syntax-rules ()

((foo (y arith-expr)) y))))

exp))))

The delay keyword tells the parse function to delay parsing the exp sub-form until it is
needed by the rewrite function. Thus, parsing (let-foo-macro (foo (+ 7 5))) will
parse (foo (+ 7 5)) in a context where the foo macro is defined.

The delay macro combines in an interesting way with the namespace mechanism. It is
important that the names in the delayed sub-form be parsed in the namespace they orig-
inally appear in. Thus, instead of parsing the sub-form, we reify it, and force it when it
appears in the rewrite function.

(define-class delayed-syntax (form namespace))

(define-generic (force-delayed-syntax ds env parse-function))

(define-method delayed-syntax force-delayed-syntax

(λ (ds env parse-function)

(parse-function (object namespace-env namespace env) form)))

9 An example: assembly language

Every tower must have a ground floor: for our running example, we start our language
tower with an assembly language. Our assembly language has a slight twist: in order to
make macro writing more convenient, code labels have nested, lexical scope, based on
elements we explored in a previous language design (Shivers, 2005).
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i ∈ Identifier ::= a | b | c | . . .
r ∈ Reg ::= i
l ∈ Label ::= (star i)
c ∈ Const ::= . . . | -2 | -1 | 0 | 1 | 2 | . . .
e ∈ Expr ::= r | l | c
s ∈ Stmt ::= (mv r e)

| (add r e e)
| (ld r e)
| (st e e)
| (bez e e)
| (jmp e)
| (let ((l s). . .) s)
| (letrec ((l s). . .) s)

g ∈ Seg ::= (code s)
| (null-segment)

Fig. 6. A grammar for a sexp-based assembly language

(define-class asm-register (name))

(define-class asm-constant (value))

(define-class asm-label (name))

(define-class asm-mv (dst src))

(define-class asm-add (dst srcl srcr))

(define-class asm-ld (dst src))

(define-class asm-st (dst src))

(define-class asm-bez (tst dst))

(define-class asm-jmp (dst))

(define-class asm-let (labels stms stm))

(define-class asm-letrec (labels stms stm))

(define-class asm-code-segment (stm))

(define-class asm-null-segment ())

Fig. 7. Assembly-language abstract syntax as Ziggurat class declarations

9.1 Syntax and dynamic semantics

The grammar of our assembly language is shown in Figure 6. Implementing this in Ziggurat
is again a matter of directly transcribing the grammar, as seen in Figure 7. Once again, in
the AST node for let statements, we separate the labels and the code points they bind.

Expressions specify values that are available without computation. We have three forms
of expression.

• Constants c are data values encoded directly in the program. Values in assembly are
fundamentally untyped; the only way to distinguish an integer from a floating-point
value from a data pointer from a code pointer is by context.

• Registers i are the variables of this language level. Registers are not declared; the
value of a register is set via assignment, and the value of a register is undefined
before it is assigned for the first time. At this language level, we have an unlimited
number of registers.

• Labels (star i) represent program locations. As a convenience, the S-expression
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reader interprets *i as (star foo), similar to the way Scheme readers handle the
’foo form as (quote foo). Labels are bound to code points by the let and letrec
instructions, and are first-class values: they can be assigned to registers, stored in
memory, and so forth.

Statements manipulate registers, perform control transfers, and manipulate the store. We
have eight forms of statement.

• (mv r e) moves the value specified by e into the register r, and then branches to the
label *next in the scope of the statement.

• (add r e1 e2) adds the value specified by e1 to e2, and stores the result in register
r. Then, it branches to the label *next.

• (ld r e) loads the value in the store at location e, and stores it in the register r.
Control then branches to *next.

• (st e1 e2) stores the value e2 at location e1 in the store, and then branches to
*next.

• (bez e1 e2) tests value e1. If it is equal to zero, then control branches to the code
at location e2. Otherwise, control branches to the label *next.

• (jmp e) always transfers control to e.
• (let ((l1 s1) (l2 s2) . . .) sb) sets up a context in which the label l1 is bound

to the statement s1, l2 to s2 and so forth, and then evaluates sb in this context. These
bindings for l1, l2, . . . are not available in s1, s2, . . .

• (letrec ((l1 s1) (l2 s2) . . .) sb) works similarly to let, with the important
distinction that labels l1, l2, . . . are available in the scope of s1, s2, . . .

Our assembly language also has segments. A segment represents a whole program.

• (code s) represents a block of code.
• (null-segment) is an empty segment of code.

The let and letrec instructions are the only way in this language to combine and
order instructions. This means that programs must be written, essentially, in reverse, with
later instructions occurring earlier in the program text. This can make assembly language
programs difficult to read. Here, for example, is a statement to multiply 3 by 5:

(let ((*exit (jmp *next)))

(letrec ((*loop (let ((*next (jmp *loop)))

(let ((*next (add i i -1)))

(let ((*next (add y y x)))

(bez i *exit))))))

(let ((*next (jmp *loop)))

(let ((*next (mv y 0)))

(let ((*next (mv i 5)))

(mv x 3) )))))

Clearly, some syntax extensions to this core language are needed in order to make it possi-
ble to write comprehensible programs.
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s ∈ Stmt ::= . . .
| (let-syntax ((n t) . . .) s)

g ∈ Seg ::= . . .
| (define-syntax n t)

t ∈ Transformer ::= (syntax-rules (n . . .) ((p s) . . .))
p ∈ Pattern ::= (n (n u) . . . [...]) ; Optional “...” is literal keyword.
u ∈ Parser ::= asm-exp | asm-stm

Fig. 8. A grammar for assembly macros

9.2 Some simple macros

Writing code at this low level can be difficult. The core assembly language was designed
with two goals in mind:

• to have locally scoped labels, to aid in writing macros, and
• given this, to make the language as syntactically simple as possible.

There is no reason at the lowest assembly language for there to be any conveniences to
the programmer to make code easier to write and to read, since these can be easily added
as macros.

To begin with, the way of sequencing instructions is awkward. What we would like
would be a way to put instructions in sequential order. Instead of writing

(let ((*next (add z x y)))

(let ((*next (mv y 5)))

(mv x 3)))

we would like to be able to write

(seq (mv x 3)

(mv y 5)

(add z x y))

In order to do this, we have two ways to define high-level macros: one global, and one local,
as seen in Figure 8. This macro system is a default implementation of the one presented in
Section 8.

Using this macro system, we can define a seq macro:

(define-syntax seq

(syntax-rules ()

((seq (s1 asm-stm)) s1)

((seq (s1 asm-stm) (s2 asm-stm) ...)

(let ((*next (seq s2 ...)))

s1))))

Another kind of macro we might want to write would provide more advanced control-
flow. Writing a loop, as we see above, is very awkward in the base assembly language.
What we would like would be a simple loop keyword, written (loop e s), that would
execute the statement s for e iterations. This can be done with high-level macros.
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(define-syntax loop

(syntax-rules ()

((loop (n asm-exp) (s asm-stm))

(letrec ((*loop (seq (bez loopvar *escape)

s

(add loopvar loopvar -1)

(jmp *loop)))

(*escape (jmp *next)))

(seq (mv loopvar n)

(jmp *loop))))))

With these macros, we can now rewrite the multiplication example in the previous sec-
tion:

(seq (mv x 0)

(loop 5

(add x x 3)))

9.2.1 High-level assembly macros and namespaces

The namespace mechanism described in the last section works well with the assembly
language. Labels work with it directly. When a label is declared, we merely need to call
namespace-declare on the current namespace, and when we parse a label, we merely
need to call namespace-lookup. There is only one exception to this rule, and that is
next. The label next is always implicitly captured: it exists at the top-level assembly
namespace only. When let and letrec statements bind the label next, the label is found
in the top-level namespace.

Registers would seem to be incompatible with namespaces, since they are not declared.
However, we can introduce a rule: if a register is introduced via the hygiene-capturing
feature of syntax-rules, it is declared; otherwise, registers in separate namespaces are
always separate. Thus, in the statement

(let-syntax ((init-i (syntax-rules () ((init-i) (mv i 40))))

(dec-i (syntax-rules ()

((dec-i) (add i i -1)))))

(seq (init-i)

(loop i (dec-i))))

the occurrences of the name i in init-i, dec-i and the loop statement are implicitly
referring to separate registers, whereas in the statement

(let-syntax ((init-i (syntax-rules (i) ((init-i) (mv i 40))))

(dec-i (syntax-rules (i)

((dec-i) (add i i -1)))))

(seq (init-i)

(loop i (dec-i))))

the four occurrences of i are referring to the same register. It is interesting to note that we
have allowed separate hygiene rules for separate sorts of identifiers.
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10 Termination analysis

An observation we frequently would like to make on our code is whether it terminates or
not. This observation is often useful to know just for itself—we would often like to ensure
that code we write will not lock up under any circumstances. Additionally, this observation
is required for some optimisations, such as constant folding. We provide this capability by
implementing a basic analysis for the core language, and permitting it to be extended for
embedded languages that might have more restricted semantics.

Our analysis takes the form of a generic function halts?. If halts? returns a true value
for a syntax node, then the analysis has determined that control will exit that node in all
environmental contexts. If there exists a context under which control will never exit the
specified syntax node, then the method will return #f. If the analysis cannot determine
whether or not the current node will terminate, it will return #f. In this way, the analysis is
conservative.

10.1 A simple algorithm for termination analysis

At the assembly language level, we would prefer not to do a complicated analysis; most of
our information will come from higher language levels. So, our algorithm at this language
level is very basic. The method halts? on letrec nodes always returns #f. Additionally,
jmp nodes always return #f, not because they do not terminate, but instead because state-
ments containing them are not guaranteed to terminate, since it is difficult to track where
control goes. Applying halts? to a let node returns #t if and only if halts? produces
true when applied to every sub-expression of the let node. Here is the halts? method for
let nodes:

(define-method asm-let halts?

(λ (s) (and (halts? stm)

(andmap halts? stms))))

Note that every assembly-language statement containing a loop or a recursive call will
necessarily return #f.

10.2 Extending termination analysis

In its current incarnation, this algorithm is not very useful. The generic function halts?

will return #f for code of any significant complexity. As we move up the language tower,
we will have much more interesting things to say about termination analysis. Currently,
for example, calling halts? on the multiplication example presented above will return #f,
since the rewritten expression is a letrec node.

With the language extensions we have introduced to the assembly language, we already
have a good opportunity for improving the analysis: the loop macro is a good source of
control information. In order to provide a more precise analysis for loop nodes, we merely
override the halts? method for loops:



Building Language Towers with Ziggurat 35

τ ∈ TypeSchema ::= ∀v.ct
v ∈ TypeVar ::= α, β, γ, . . .
t ∈ Type ::= word | ct | v
ct ∈ CodeType ::= (r : t; ct)

| v

Fig. 9. A type system for the assembler language

(define-method loop halts?

(λ (s) (and (asm-constant? n)

(<= 0 (asm-constant-value n))

(halts? s))))

The analysis is now more advanced. A loop node is now defined to halt whenever its
loop bound is a constant, the bound is at least 0, and the loop body halts. Now, running
halts? on the multiplication example will return #t.

11 A type system for assembly language

An analysis we would like to be able to do at the assembly-language level is type analysis.
There are several purposes that a typed assembly language such as the one developed by
Morrisett et al. (1999) can fulfill, but our main focus here will be on debugging: we would
like our type system to catch errors arising from misuse of data. It would be possible for
such a type system to make stronger guarantees about the code it is used to analyze, and
to implement this system in Ziggurat; however, such a system would require a radically
different design than is presented here.

For the assembly language, both statements and expressions are typed. The type of an
expression represents the kind of value it produces, while the type of a statement repre-
sents requirements on registers on entry to that statement. In order for this to work, we
need parametric polymorphism: although (add z x y) requires x and y to be numbers,
z can have any type on entry, since its value will be overwritten. We refer to the types of
statements as code types. Since labels are bound to statements, and labels can be used as
expressions, expressions can have code types, as can registers: this reflects the fact that
registers can hold code pointers.

At this language level, we have only one base data type: word. A word can be an integer,
a character, or a pointer to structured data. This part of the type system is deliberately kept
open, with the expectation that higher language levels will elaborate on it.

A monomorphic code type would be a mapping from all possible registers to types. Since
this would be impractical to represent, and also too restrictive, we employ polymorphism
by means of the type system in Figure 9. Using this type system, we can specify the code
type that only requires the register r to have type word as ∀α.(r :word;α).

Using this basic system, we can define three typing relations: one for segments, one
for statements, and one for expressions. For segments, the relation g⊥ indicates that the
segment g has a correct typing. For statements, the relationE ` s : ct specifies that in label
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E ` e : t in ct
E ` r : t in inst(E[next])
inst(E[next])/r = ct/r

MVTYPE
E ` [[(mv r e)]] : ct

E ` el : word in ct
E ` er : word in ct

E ` r : word in inst(E[next])
inst(E[next])/r = ct/r

ADDTYPE
E ` [[(add r el er)]] : ct

E ` e : word in ct
E ` r : t in inst(E[next])
inst(E[next])/r = ct/r

LDTYPE
E ` [[(ld r e)]] : ct

E ` e′ : t in ct
E ` e : word in ct
inst(E[next]) = ct

STTYPE
E ` [[(st e e′)]] : ct

E ` e : ct in ct
JMPTYPE

E ` [[(jmp e)]] : ct

E ` e′ : ct in ct
inst(E[next]) = ct
E ` e : word in ct

BEZTYPE
E ` [[(bez e e′)]] : ct

E ` s1 : ct1, . . . , E ` sj : ctj
E[l1 7→ gen(ct1), . . . , lj 7→ gen(ctj)] ` s : ct

LETTYPE
E ` [[(let ((l1 s1). . .(lj sj)) s)]] : ct

E′ ` s : ct E′ ` s1 : ct1, . . . , E′ ` sj : ctj
LETRECTYPE

E ` [[(letrec ((l1 s1). . .(lj sj)) s)]] : ct
where E′ = E[l1 7→ gen(ct1), . . . , lj 7→ gen(ctj)]

CONSTTYPE
E ` c : word in ct

LABELTYPE
E ` l : inst(E[l]) in ct

REGISTERTYPE
E ` r : ct[r] in ct

` s : α
CODESEGMENTTYPE

(code s)⊥

Fig. 10. Typing relations for the assembly language

environment E, statement s has type ct. A label environment is a partial mapping from
labels to type schemas. For expressions, the relation E ` e : t in ct specifies that in label
environment E, inside of a statement of type ct, an expression e has type t. For example,
we might conclude that {next 7→ ∀α.(r2 : word;α)} ` [[(mv r2 r1)]] : (r1 : word;β)

holds. The mutually recursive definitions of these relations are shown in Figure 10.
Consider, for example, the MVTYPE rule. We wish to show that E ` [[(mv r e)]] : ct.

First, we look up the type of the expression e in ct. This corresponds to the precondition
E ` e : t in ct, which can be derived from one of the three expression type rules. Next,
we require that the destination register have the same type, which corresponds to the pre-
condition E ` r : t in inst(E[next]). Since we require that the destination register have
this type after the instruction has completed, this is a precondition on the type of the next
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label, which can be found by looking up next in the current label environment: E[next].
Finally, we require that registers not altered by the mv instruction retain their type. This
corresponds to inst(E[next])/r = ct/r. The rules for add, ld and st are analogous.

A word about the “function” inst(): this is the instantiation relation—it is not technically
a function, despite the fact that we use function notation. When we write inst(τ) = ct, we
mean that the pair (τ, ct) is in the inst relation, i.e., that ct instantiates type schema τ . When
we write that inst(τ)/r = ct/r, we mean that the condition on inst(τ) is satisfied by some
ct′ that instantiates τ . In more mathematical terms, ∃ct′ . ct′ instantiates τ and ct′/r =

ct/r.
The rules for jmp and bez are not complex, despite their control effects. If we have an

instruction (jmp e), we merely check that the type of the expression e is compatible with
the type of the entire statement. The rule for bez is analogous.

The rules for let and letrec rely on the generalisation function gen(), which takes a
type and returns a type schema. It does this by finding all of the type variables in the type,
replacing them with fresh type variables, and quantifying over those variables. The gen()

function takes an extra argument, which we have elided for brevity’s sake. Although its
behavior is predictable, it requires fresh type variables, which must be different for each
invocation. Some additional machinery is necessary to make this happen, for example, by
threading a state through the type computation, but the specifics are not important to this
paper.

11.1 Type reconstruction via Kanren

For our type system to act as a debugger, we need some way to assign types to syntax
nodes. Ziggurat gives us an opportunity to build an extensible algorithm for this. For each
syntax node, we generate a constraint. Then we solve the resulting system of constraints in
order to come up with a correct type assignment. When we generate new classes of syntax
object, we (optionally!) override the constraint-generating function as needed. This is how
we allow global analyses in an environment where methods can only manipulate local data.
In order to solve these constraints, we employ a unification-based constraint-solver called
Kanren (Byrd & Friedman, 2006), modified to employ lazy delegation.

Kanren works by solving goals. A Kanren goal is a statement of relations between struc-
tures, either of which may contain variables. Solving the goal consists of either finding a
mapping of variables to values that makes the relations true, or discovering that no such
mapping exists. The basic goal in Kanren is unification. By specifying (== a b), we as-
sert that the structures a and b are the same. In the original Kanren, a and b are Scheme
data, but for our purposes, we will need a bit more complex structure. We require that a
and b be lazy-delegation objects.

Just as we have three varieties of type in the type system, we have three classes of type
in the Kanren implementation. Our three classes are variables, the word type, and label
types. However, we differentiate between label types and partially-instantiated row types,
and represent the latter as its own class:

(define-class word-type ())

(define-class label-type (row))

(define-class row-type (name type rest))
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Type variables are special. We use Kanren’s built-in variables for these. They are intro-
duced by the fresh macro:

(fresh (alpha beta) . . .)

In addition, we have a class to represent type schemas:

(define-class forall-type-schema (vars type))

The purpose of representing these as lazy delegation objects is to allow us to write spe-
cialised unification methods. In the basic Kanren, since we are unifying basic Scheme list
structure, when we assert that (== ’(a . b) ’(c . d)), it is assumed that this implies
(== a c) and (== b d). However, this does not apply to row types. If we have the row
type (x :α;β) and we wish to unify it with the row type (x : γ; δ), we unify, as sub-goals,
α with γ, and β with δ. To unify (x : α;β) and (y : γ; δ), the process is only slightly
more complex: we generate a fresh logic variable ε, and unify β with (y :γ; ε), and δ with
(x :α; ε). We can accomplish this by making unify a generic function on type objects, and
directly encoding these rules as Kanren goals.

(define-method row-type unify

(λ (v w) (unify-row w name type rest)))

(define-generic (unify-row v name-prime type-prime

rest-prime))

(define-method row-type (unify-row v name-prime type-prime

rest-prime)

(if (eq? name name-prime)

(all (== type type-prime)

(== rest rest-prime))

(fresh (new-row-var)

(== rest (object row-type name-prime

type-prime new-row-var))

(== rest-prime (object row-type name

type new-row-var))))))

Now that we have types representable in Kanren, it’s a fairly simple matter to en-
code the type rules as unification constraints. For each syntax class, we write a method
(make-stm-type-goal s ct e), that returns a goal asserting that a statement s has
type ct in label environment e.

For example, take the MVTYPE rule.

E ` e : t in ct
E ` r : t in inst(E[next])

inst(E[next])/r = ct/r
MVTYPE

E ` [[(mv r e)]] : ct
The generic function (make-stm-type-goal s ct e) is the implementation of E `

s : ct. Therefore, the goal that make-stm-type-goal returns must reflect each of the
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preconditions of this type rule. The make-stm-type-goal method for a mv syntax object
is:

(define-method asm-mv make-stm-type-goal

(λ (s ct e)

(let* ((next-type (instantiate-type

(type-env-lookup e ’next))))

(fresh (after-dst-type before-dst-type rest-type)

(make-exp-type-goal src after-dst-type e ct)

(fresh (rest)

(== ct (object label-type

(object row-type (asm-var-name dst)

before-dst-type

rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

after-dst-type

rest-type)))

To understand how this method works, we take it line by line. First, we must define a
type to represent the type of the label next. This is done by locally binding next-type

to the result of a call to instantiate-type. The function instantiate-type takes a
type schema, and replaces each of its type variables with fresh Kanren logic variables. This
corresponds to inst() in our type system. Thus, the local variable next-type holds the type
of the label next.

Next, we create three fresh logic variables with the fresh form: after-dst-type,
before-dst-type and rest-type. If the mv statement is of the form (mv dst src), then
after-dst-type is the type of dst after the move instruction, before-dst-type is its
type before, and rest-type represents the types of all registers not affected by the move.

We need to assert that the type of the source expression is the same as the destination reg-
ister’s type, dst-type. This corresponds to the preconditionE ` e : t in ct. This is accom-
plished by the goal constructed by generic function (make-exp-type-goal e t E ct).
The make-stm-type-goal method next performs two unifications, which form the meat
of the type rule’s implementation:

• The first unification asserts that the statement’s type maps the destination register to
before-dst-type and the rest to rest-type; i.e., that its type (in the syntax of the
type system) is (name :before-dst-type; rest-type).

• The second unification asserts that the type of the next instruction to be executed is
(name :after-dst-type; rest-type).

The rules for add, jmp and bez are similar. However, with let and letrec, the story
is a bit more complicated. In this case, we have to gather up the constraints for each of
the sub-expressions, solve them, and assign them to variables in order to build a new label
environment. In order to do this, we need a generalisation function.
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(define (generalize-type t)

(object forall-type-schema (find-variables t) t))

The generalisation function takes a type, and returns a type schema, quantified over
the variables found therein. In other type-reconstruction algorithms, the generalisation
function must take another argument, representing variables not to generalise; however,
in our system we do not have function definitions or let-bound variables, so this is not
an issue. In Kanren, we run (that is, solve) goals with the run macro. Therefore, our
make-stm-type-goal for asm-let looks like this:

(define-method asm-let make-stm-type-goal

(λ (s ct e)

(let ((new-env

(let loop ((labels labels) (stms stms) (env e))

(if (pair? labels)

(loop (cdr labels) (cdr stms)

(extend-environment

env

(asm-label-name (car labels))

(generalize-type

(run 1 (t)

(make-stm-type-goal

(car stm) ct e))))))

env)))

(make-stm-type-goal stm t new-env))))

The argument 1 to run specifies that we want at most one solution.

11.2 Extending type judgements for new syntax

Since type goals are generic functions on syntax nodes, they interact transparently with
macros. For example, if we were to type-check the loop macro introduced above, it would
work with our type system with no extension. If we were to typecheck the erroneous state-
ment

(loop *next (add x x 1))

Because there is no make-stm-type-goalmethod defined on loop, Ziggurat would apply
the delegation method and rewrite the statement to

(letrec ((*loop (seq (bez loopvar *escape)

(add x x 1)

(add loopvar loopvar -1)

(jmp *loop)))

(*escape (jmp *next)))

(seq (mv loopvar *next)

(jmp *loop))))))
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This would cause a type error, as expected. However, there is a problem with this: although
this code generates an error, the statement that is actually causing the problem and thus
would be reported by the type-checker is (mv loopvar *next), which does not appear
in the original code at all.

For better error-reporting, then, we might want to have a specialised method for invoking
make-stm-type-goal on loop statements. The type judgement for loop statements is
simple: it merely needs to verify that the loop variable is a word type, and that the inner
statement type-checks.

(define-method asm-loop make-stm-type-goal

(λ (s ct e)

(all

(make-exp-type-goal loop-bound (object word-type) e ct)

(make-stm-type-goal loop-stm ct e))))

Upon defining this, the type-checker will correctly report that the problem is with the loop
bound.

11.3 Sum and product types

Our type system has a flaw: it has nothing to say about the state of memory. Therefore,
our type goals for ld and st instructions necessarily require a loss of information. When
loading from memory, the type of the loaded value is allowed to have any type.

(define-method asm-ld make-stm-type-goal

(λ (s ct e)

(let* ((next-type

(instantiate-type (type-env-lookup e ’next))))

(fresh (dst-type mirror-dst-type rest-type)

(make-exp-type-goal src reference-word-type e ct)

(== ct (object label-type

(object row-type (asm-var-name dst)

mirror-dst-type

rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

dst-type

rest-type))))))

Because of this permissive type system, it is possible to store a word value to memory,
and read it back as a code pointer. However, if we implement structured data with macros,
we can extend our implementation of the type system to better aid us in debugging.

At the next level above our core assembly language, we add only three kinds of struc-
tured data: sum types, product types, and named recursive types. We will defer discussing
named types for the moment. We define the rest of the new grammar in Figure 11.
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s ∈ Stmt ::= . . .
| (kons r e e)
| (kar r e)
| (kdr r e)
| (left r e)
| (right r e)
| (branch r l l)

Fig. 11. Extending the assembler syntax to provide sum and product datatypes

• kons, kar and kdr define product types. The (kons r x y) form builds a two-place
data structure (or pair) containing the values of x and y, and places the address of the
pair in r. A (kar r x) form extracts the first value of pair x and places the result
in r; likewise, (kdr r x) extracts the second value.
The macro for kons expands into code that performs a system call to a malloc

procedure to allocate a new two-word block of storage; this keeps the macro simple
and the extraneous details of memory management off-stage so that we may focus
on our static semantics. Figure 12 shows the implementation of the pair operations.

• left, right and branch produce and consume values with sum types. A (left r

e) form builds a two-way sum object by injecting the value of e into its left side;
likewise, (right r e) injects e into the right side of the sum. A (branch r l1
l2) performs a conditional branch based on the value of r: if it was constructed
with left, then control transfers to l1, otherwise, it jumps to l2. In both cases, r is
overwritten with the injected value.

Providing advanced type constructors is not adequate to introduce an advanced type
system. Despite the fact that we have built macros for structured data, the core type system
lacks the type structure permitting it to discriminate correct uses of structured data from
incorrect ones. Code such as

(seq (kons x 1 2) (kdr y x) (kdr z y))

will not signal an error, as it still delegates handling for type checking to the underlying ex-
panded code. However, we are now in a position to add extension-specific static semantics
to the new forms, as shown in Figure 13.

The problem with our type system is that it has no sum types, product types or named
types: all of these are represented by the universal word type. So, we begin by defining
these, as lazy-delegation object classes. There is very little functionality in the basic defi-
nition of the classes: at a lower language level, structured data simply looks like a pointer,
and the rewrite function reflects that.

To implement the type rules in Figure 13, we must first define our new types.

(define-class pair-type kar kdr

(λ () reference-word-type))
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(define-syntax kons

(syntax-rules ()

((kons (n asm-var) (kar asm-exp) (kdr asm-exp))

(let ((*k (seq (mv n rv) ; memory location allocated

(st n kar)

(add tmp n 1)

(st tmp kdr))))

(seq (mv arg1 2) ; number of words to allocate

(mv rp *k) ; return point

(jmp *malloc))))))

(define-syntax kar

(syntax-rules ()

((kar (x asm-var) (k asm-exp))

(ld x k))))

(define-syntax kdr

(syntax-rules ()

((kdr (x asm-var) (k asm-exp))

(seq (add tmp k 1)

(ld x tmp)))))

Fig. 12. Macros for structured data. Note that the identifiers rv, rp and arg1 are globally defined at
top level as fixed registers.

(define-method pair-type unify

(λ (u v) (unify-kar-kdr v kar kdr)))

(declare-generic (unify-kar-kdr v kar kdr)

(λ (v kar kdr) (type-error "not a pair type" v)))

(define-method pair-type unify-kar-kdr

(λ (v kkar kkdr)

(all (== kar kkar)

(== kdr kkdr))))

We want product types to unify with other product types, and not with any other struc-
tured types. Product type s unifies with product type t iff the kar of s unifies with the kar
of t, and the kdr of s unifies with the kdr of t. This is directly represented in the code that
implements the type rule (Figure 14).

11.4 Adding named types

Now that we have types for structured data, the next language feature we’d like to add
is the ability to name types, which is useful, e.g., for recursively defined type structures
such as lists and trees. In order to associate a named type with a form, we must create an
additional class of syntax node to represent a structured type, and insert these nodes into
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E ` el : tl in ct
E ` er : tr in ct

E ` e : pair(tl, tr) in inst(E[next])
inst(E[next])/r = ct/r

KONSTYPE
E ` [[(kons r el er)]] : ct

E ` e : pair(tl, tr) in ct
E ` r : tl in inst(E[next])

inst(E[next])/r = ct/r
KARTYPE

E ` [[(kar r e)]] : ct

E ` e : pair(tl, tr) in ct
E ` r : tr in inst(E[next])

inst(E[next])/r = ct/r
KDRTYPE

E ` [[(kdr r e)]] : ct

E ` e : tl in ct
E ` r : sum(tl, tr) in inst(E[next])

inst(E[next])/r = ct/r
LEFTTYPE

E ` [[(left r e)]] : ct

E ` e : tr in ct
E ` r : sum(tl, tr) in inst(E[next])

inst(E[next])/r = ct/r
RIGHTTYPE

E ` [[(right r e)]] : t

E ` r : sum(tl tr) in ct
ct/r = t

E ` ll : [r 7→ tl]t in ct
E ` lr : [r 7→ tr]t in ct

BRANCHTYPE
E ` [[(branch r ll lr)]] : ct

Fig. 13. Type relations for structured types

the language as extensions. This is reflected in the fact that the grammar now requires new
syntax categories. The new additions are shown in Figure 15.

• typedef introduces named types. The (typedef ((n t)) s) form introduces one
named type, n, in the statement s. The type t describes the internal format of ob-
jects of type n. The name n is visible in t; this allows the language user to define a
recursive type.

• name and unname construct and deconstruct named types. The (name r n e)

form introduces into register r data of form e, with the named type n; e must have
the same type as the form of n. Likewise, (unname r n e) takes data of named
type n from e, strips off the name, and puts the result in r.
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(define-method kons make-stm-type-goal

(λ (s ct e)

(let ((next-type (instantiate-type

(type-env-lookup e ’next))))

(fresh (kar-type kdr-type kons-type

mirror-type rest-type)

(make-exp-type-goal kar kar-type e ct)

(make-exp-type-goal kdr kdr-type e ct)

(== kons-type (object pair-type kar-type kdr-type))

(== next-type

(object label-type

(object row-type (asm-var-name n)

kons-type rest-type)))

(== ct (object label-type

(object row-type (asm-var-name n)

mirror-type rest-type)))))))

Fig. 14. Extending the type system for tuple construction.

n ∈ TypeName ::= a | b | c | . . .
t ∈ Type ::= word

| n ; Named-type reference
| (x t t) ; Product type
| (+ t t) ; Sum type

s ∈ Stmt ::= . . .
| (typedef ((n t). . .) s)
| (name r n e)
| (unname r n e)

Fig. 15. Extending the assembler syntax to provide named types

This is easily implemented in Ziggurat. First, we must have a class for named types.
A named type compiles into its internal form. For example, if named type inflist is
declared to be (x word inflist), then the object representing the type inflist rewrites
to a pair-type object containing a word and an inflist.

(define-class named-type (name form)

(λ () form))

Unification for a named-type is simple: a named type only unifies with itself.
We still need to define type goals in this augmented type system. The goals we will im-

plement are shown in Figure 16. We introduce the notion of a type-name environment. A
type-name environment is a mapping from type names to types. A type goal is now of the
form E,F ` s : ct, meaning that in variable environment E and type-name environment
F , statement s has type ct. Implementing this would seem to present a complication: the
object-oriented methods we use to create type goals take only one environment as an argu-
ment. In actuality, this is not a problem: since the environment is a lazy-delegation object,
we can layer different forms of type environment in the same way we layer different forms
of syntactic environment. By building a named-type environment that delegates to a raw
type environment, that environment can serve double duty.
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E,F ′ ` s : ct
TYPEDEFTYPE

E,F ` [[(typedef ((n1 f1) . . .) s)]] : ct
where F ′ = F [n1 7→ s1, . . .]

E ` r : F [n] in ct
E ` e : n in inst(E[next])

inst(E[next])/r = ct/r
NAMETYPE

E,F ` [[(name r n e)]] : ct

E ` r : n in ct
E ` e : F [n] in inst(E[next])

inst(E[next])/r = ct/r
UNNAMETYPE

E,F ` [[(unname r n e)]] : ct

Fig. 16. Type rules for named types

With this addition, defining type goals is straightforward. Notably, there are no type
goals generated by the typedef syntax; it merely uses the type goals from its inner state-
ment, after augmenting the type-name environment. The name and unname statements
merely enforce that uses of a named type match the form of that named type, as found
in the type-name environment.

(define-class asm-name (dst src type)

(λ () (object asm-mv dst src)))

(define-method asm-name make-stm-type-goal

(λ (s ct e)

(let* ((next-type (instantiate-type

(type-env-lookup e ’next))))

(fresh (mirror-dst-type rest-type)

(make-exp-type-goal dst type e ct)

(== ct (object label-type

(object row-type (asm-var-name dst)

mirror-dst-type rest-type)))

(== next-type

(object label-type

(object row-type (asm-var-name dst)

type rest-type))))))

Named types require us to write new parsing methods. We now have a new kind of
syntax for type forms, which means we need new syntax classes, syntax environments, and
parse methods. This can be handled by define-keyword-syntax-class.

12 Adding function calls

Up until now, the language extensions we have built have been minor additions to the
languages, mostly for convenience. To start building towards a much higher-level language,
we build a language with simple function calls. We can additionally augment the type
system. We begin by adding a simple facility that permits us to marshal and transmit values
across one-way control transfers. Much more sophisticated systems have been designed for
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g ∈ Segment ::= . . .
| (fundef (f . . .) s)

a ∈ FunArg ::= n
f ∈ FunDef ::= (a (a . . .) s)
s ∈ Stm ::= . . .

| (funcall a a . . .)
| (arg2reg r a)
| (exp2arg a e)

Fig. 17. Extending the assembler syntax to add one-way function calls

describing function-call protocols (Olinsky et al., 2006); the system we develop here could
certainly be extended and made more powerful.

At this new language level, we define a “function” to be a special label defined at the top
level. Functions are defined by using the fundef form, and called using the funcall form.
Functions are called with an arbitrary number of arguments, and never return. Functions
that return will be introduced at a higher language level. If we assume a new syntactic
form putchar that calls a system routine to print a character, we can write code to print
the characters ab:

(fundef ((foo (x y) (seq (arg2reg z x)

(putchar z)

(funcall y)))

(bar () (putchar #\b)))
(seq (exp2arg char1 #\a)

(funcall foo char1 bar))

Arguments, both formal and actual, are a type of syntax node separate from ordinary reg-
isters. This is mostly convenient for semantic analysis: keeping registers that are only used
in function calls separate from those that can be arbitrarily manipulated will help us in later
analyses, particularly in calculating control-flow. In order to use arguments outside of the
realm of a function call, they must be accessed by using the arg2reg and exp2arg forms.
The arg2reg transfers an argument into a register, while exp2arg performs the reverse
transfer. These forms translate into register moves, which will either be eliminated during
register allocation, or will lessen register pressure. The grammar of this new language is
presented in Figure 17.

Function arguments are implemented as assembly registers and labels. Their implemen-
tation takes the form of a lazy-delegation object that delegates to an expression.

(define-class funarg (name register?)

(λ () (if register?

(object asm-register name)

(object asm-label name))))

Likewise, arg2reg and exp2arg translate into mv instructions.
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(define-class arg2reg (dst src)

(λ () (object asm-mv dst src)))

(define-class exp2arg (dst src)

(λ () (object asm-mv dst src)))

The Ziggurat definition of the function form is fairly simple: for each function call, we
allocate a heap frame containing the arguments to the function. At a function call, we
allocate the frame and store the actual arguments, and at the function site, we unload the
arguments from the arguments frame. While it is not practical to define these as high-level
macros, the use of templates simplifies it quite a bit.

(define-class fundef (label formals body)

(λ ()

(let loop ((formals formals) (num 0))

(if (pair? formals)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr formals) (+ num 1)))

(’temp-reg (generate-arg-register-object))

(’formal-reg (car formals)))

‘(seq (add temp-reg arg-reg ,num)

(ld formal-reg temp-reg)

fnext))

body))))

This code specifically captures an external arg-reg; we do this so that we have one register
common to all function calls and returns that contains the location of the current argument
frame.

12.1 Types for continuation-passing style

In order to add types to our functions, we must alter the syntax a little bit. We now put types
on the formal parameters of our functions: f ∈ FunDef ::= (a ((a t) . . .) s) Next, we
must define a function type:

t ∈ Type ::= . . . | (t1 . . .→ ⊥)

(define-class function-type (args))

We could have our function type delegate to a code type, but we do not, for two reasons:

• We do not wish to bake our function-call mechanism into the type system, as would
be necessary to do inside the delegation function.
• It is not necessary, since we wish to enforce that functions are only called in the

context of a function-call instruction.

Since argument registers are separate from ordinary registers, we must augment the def-
inition of code types to be not a Reg → Type map, but rather a Reg ∪ FunArg → Type
map. Now, we can easily specify the new type rules, in Figure 18.
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E ` a : t in ct
E ` r : t in inst(E[next])
inst(E[next])/r = ct/r

ARG2REGTYPE
E ` [[(arg2reg r a)]] : ct

E ` e : t in ct
E ` a : t in inst(E[next])
inst(E[next])/a = ct/a

EXP2ARGTYPE
E ` [[(exp2arg a e)]] : ct

E ` e : (t1. . .→ ⊥) in ct
E ` e1 : t1 in ct . . .

FUNCALLTYPE
E ` [[(funcall e e1 . . .)]] : ct

F ` s1 : (a11 : t11; . . .) . . .
F ` sb : ctb

FUNDEFTYPE
[[(fundef ((l1 ((a11 t11) . . .) s1) . . .) sb)]]⊥

where
F = [l1 7→ (t11 . . .→ ⊥)] . . . E

Fig. 18. Adding types for continuation-passing style functions

Encoding these is once again simply a matter of encoding the type rules.

(define-method funcall make-stm-type-goal

(λ (s ct e)

(let loop ((args actuals) (arg-types ’()))

(if (pair? args)

(fresh (new-arg-type)

(make-exp-type-goal (car args)

new-arg-type e ct)

(loop (cdr args)

(cons new-arg-type arg-types)))

(make-exp-type-goal fun (object function-type

(reverse arg-types))

e t)))))

13 Control-flow analysis

In addition to providing a nice link to the type system, the function-call abstraction allows
us to do some more complicated analysis. Something we will need later on for compila-
tion, as well as for simple debugging, is a notion of control-flow: we wish to answer the
question, “from a particular instruction, where might control go next?” Naturally, we want
a conservative analysis: while we can tolerate control never going to a position we thought



50 David Fisher and Olin Shivers

it might, we may have problems if control does go to a position we never anticipated. Thus,
our low-level analysis might be somewhat broad, while we use the extensibility of Ziggurat
to make it more precise when we extend the syntax.

13.1 Fixed-point analysis with Tsuriai

In order to perform global control-flow analysis, we employ a constraint solver called
Tsuriai, which we developed specifically for Ziggurat, designed much in the same vein
as Kanren. Unlike Kanren, however, goals are based on set inclusion rather than unifica-
tion, and are run until a fixed point is reached.

The basic goal in Tsuriai is an assignment of a set to a variable. For example, if we have
two variables x and y, where x is defined by x = y∪{3}, and y is defined by y = x∪{4},
and we wish to find the least fixed point of these mutually recursive definitions, we would
write

(fresh (x y)

(<- x (U y (set 3)))

(<- y (U x (set 4))))

Solving the goal with a run command tells us that x = y = {3, 4}.
We need one more thing in order to start building control-flow analyses. The fresh

keyword will not suffice in order to introduce logic variables; we will need a logic variable
for each statement, since we will need a mapping from each statement to a set of statements.
Therefore, Tsuriai provides a function ! that is a simple mapping from lazy delegation
objects to variables.

Now we can define Tsuriai goals for control-flow problems. These are created by the
generic function (make-stm-flow-goal s e), where s is the statement in question and
e is the label environment. Most of these will be quite simple. For example, since a mv

statement always branches to the statement labeled next, its associated goal is:

(define-method asm-mv make-stm-flow-goal

(λ (s e)

(<- (! s) (label-flow-lookup e ’next))))

The methods for add, ld and st are analogous. Flow analysis for let and letrec

simply extends the label environment and calls make-stm-flow-goal recursively.
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(define-method asm-let make-stm-flow-goal

(λ (s e)

(let ((new-env (let loop ((labels labels) (stms stms))

(if (pair? labels)

(extend-label-flow-environment

(loop (cdr labels) (cdr stms))

(car labels)

(car stms))

e))))

(fold (λ (s g) (all (make-stm-flow-goal s e)

g))

(make-stm-flow-goal stm new-env)

stms))))

However, jmp and bez do present a challenge—in fact, the main challenge—of control-
flow analysis: what if we branch to a register? At the base assembly-language level, we give
the most conservative answer possible, and use a special value, ⊥, which in this context is
our “don’t-know” value: that is, if the set of statements that a statement may go to is⊥, then
control may go anywhere.2 The rule for jmp is thus dependent on the kind of expression
of the destination expression. So, we call a generic function on the relevant expression.

(define-method asm-jmp make-stm-flow-goal

(λ (s e) (make-exp-flow-goal dst s e)))

The generic function make-exp-flow-goal returns a goal corresponding to the state-
ment s branching to the proper target. For example, the make-exp-flow-goal on labels
is

(define-method asm-label make-exp-flow-goal

(λ (ex s e)

(<- (! s) (U (! s) (label-flow-lookup e name)))))

The generic function make-exp-flow-goal on registers then simply gives us ⊥.

(define-method asm-register make-exp-flow-goal

(λ (ex s e) (<- (! s) bottom)))

Using this, we can analyse

(seq (add x x 1)

(jmp x))

and discover that the only next statement for (add x x 1) is (jmp x), and the set of
possible statements for (jmp x) is ⊥.

2 In actual practice, control cannot go absolutely anywhere; it can only go to labels that have been stored into
registers or memory. Therefore, we maintain a flow variable bottom, and every time we store a label l, we add
a goal that bottom may contain l.
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13.2 Control-flow analysis for functions

The fact that we give up on control-flow analysis whenever a statement jumps through a
register greatly restricts the kinds of programs we can effectively analyse. For example, the
function calls presented above will be completely unanalysable, since every function call
involves a jump to a register. However, control-flow analyses for higher-order languages
do exist, and we would very much like to take advantage of them.

Using Tsuriai, we can implement a constraint-based version of 0CFA (Shivers, 1991),
a basic control-flow algorithm for higher-order languages. But first, we’ll need to add an
additional function to Tsuriai, maps. The function maps takes an accessor and a function
from one argument to a Tsuriai goal. This function then returns a Tsuriai goal. Running
maps on an accessor a and a function f applies f to each value returned by a. So, in order
to compute the set S defined by

1 ∈ S
∀n ∈ S . 3− n ∈ S

we write the Tsuriai goal:

(fresh (S)

(<- S (U S (set 1)))

(maps S (λ (n) (<- S (U S (- 3 n))))))

Tsuriai does not give us the computational power we would need for true abstract in-
terpretation, but we can run a constraint-based algorithm. We use Tsuriai to find a set of
possible values for each funarg. At this language level, control-flow is manipulated through
higher-order functions, and our algorithm is explicitly designed to take this into account:
we only consider mappings of funargs to sets of fundefs; all other possible assignments,
for example, through the use of exp2arg, cause the funarg to be mapped to a conservative
⊥ value.

The algorithm is implemented as the generic function make-stm-flow-goal for fun-
defs and funcalls. For fundefs, all we need to do is map the function name to its definition.

(define-method fundef make-stm-flow-goal

(λ (s e)

(all (<- (! (funarg-name label))

(U (set s) (! (funarg-name label))))

(make-stm-flow-goal body e))))

The reason we have the goal

(<- (! (funarg-name label))

(U (set s) (! (funarg-name label))))

instead of the apparently equivalent (<- (! (funarg-name label)) (set s)) is that
the former allows for the possibility that the funarg that represents the current function
might be overwritten with an exp2arg instruction. Now, for each function call, we map
the formal arguments to the actual arguments.



Building Language Towers with Ziggurat 53

g ∈ Seg ::= . . .
| (function-language s)

s ∈ Stmt ::= . . .
| (let-fun (f . . .) s)

Fig. 19. Extending the assembler syntax to provide lexically-scoped function declarations

(define-method funcall make-stm-flow-goal

(λ (s e)

(maps (! (funarg-name fun))

(λ (fundef)

(map-formals-to-actuals fundef actuals)))))

(define-method fundef map-formals-to-actuals

(λ (fundef actuals)

(let loop ((formals formals) (actuals actuals))

(if (and (pair? formals) (pair? actuals))

(all (<- (! (funarg-name (car formals)))

(! (funarg-name (car actuals))))

(loop (cdr formals) (cdr actuals)))

succeed))))

The rules for exp2arg returns ⊥, which is pre-assigned to the set of all functions.3 The
succeed goal succeeds automatically, without binding any variables.

14 Closure conversion

While now we have functions, we are still missing many of the features of a high-level pro-
gramming language. In the next step, we attempt to start using lexically-scoped variables
as opposed to the registers available lower than this point. In order to make this conversion,
we have to start using closures.

14.1 Function flattening

At the simple function-call language level, all of our functions are introduced at the top
level. At higher language levels, we will need the ability to introduce functions in the
middle of the program. So, we introduce a let-fun form, as in Figure 19.

The function-language form indicates that the program may contain local functions.
It acts as a wrapper, allowing us to embed source written in the language that provides
lexically-scoped function declarations into the language context of the lower-level lan-
guage, which only permits top-level, globally-scoped function declarations. The wrapper
is, of course, a macro that compiles its body into a fundef form.

3 Once again, in actuality, ⊥ need not map to every function, merely the ones that escape via arg2reg.
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(define-class cl-function-language (stm)

(λ () (syntax-object fundefs source

(local-fundefs stm)

start)))

The function definitions of the rewritten fundef form are discovered as a result of invok-
ing the local-fundefs generic function on the enclosed statement. The generic function
local-fundefs returns all of the function definitions made inside an assembly statement.
We need to define this method for all assembly-language statements. For let and letrec

statements, it will combine the local function definitions of all of the statements inside that
statement. For all other base-assembler forms, it will return the empty set.

(define-generic (local-fundefs stm) ’()))

(define-method asm-let local-fundefs

(λ (this)

(append (local-fundefs stm)

(foldl append ’()

(map local-fundefs stms)))))

Local let-fun forms will return the functions defined.

(define-method let-fun local-fundefs

(λ (this) (append fundefs

(foldl append ’()

(map local-fundefs fundefs))

(local-fundefs start))))

Since function definitions are lifted to the top level, the let-fun form, when it is com-
piled, simply removes the function definitions.

(define-class let-fun (fundefs start)

(λ () start))

This will allow us to define functions locally.

14.2 Defining closures

The argument registers introduced in the previous section have different scoping rules from
ordinary registers. They are declared in the function header, and are accessible within the
scope of the function definition. With locally defined functions, this presents us with a
potential problem: argument registers defined in one function may be used in another.
Therefore, we need closures.

The purpose of a closure is to store the values bound to the free variables in a function,
thereby “closing” it. Therefore, in order to create closures, we need to know the free vari-
ables contained in a function. We do this via a lazy-delegation method, free-variables,
that, when called on an AST node, returns an object of class arg-set. An arg-set repre-
sents an unordered collection of funargs, and has the usual set operations, arg-set-union,
arg-set-remove, and so forth, defined as generic functions.
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For the base assembler types, the implementation of free-variables is trivial. For
asm-let and asm-letrec, free-variables merely calls itself recursively on the sub-
forms.

(define-method asm-let free-variables

(λ (this)

(arg-set-union

(foldl arg-set-union (object arg-set ’())

(map free-variables stms))

(free-variables stm))))

For all other base forms, free-variables merely returns the empty set.

(define-method asm-jmp free-variables

(λ (this) (object arg-set ’())))

It’s up to the higher language level to actually generate free variables. Both funcall

and arg2reg introduce free variables.

(define-method arg2reg free-variables

(λ (this) (object arg-set ‘(,src))))

(define-method funcall free-variables

(λ (this)

(arg-set-union (object arg-set ‘(,funref))

(foldl arg-set-union (object arg-set ’())

(map (λ (x) (object arg-set ‘(,x)))

actuals)))))

Function definitions can bind variables, and thus remove free variables from a statement.

(define-method fundef free-variables

(λ (this)

(arg-set-subtract (free-variables stm)

(object arg-set formals))))

Mutually recursive function definitions via let-fun are a little more complicated. Since
such a definition binds a set of funargs to function definitions, it removes those funargs
from the set of free variables inside those functions.

(define-method let-fun free-variables

(λ (this)

(arg-set-subtract (arg-set-union

(free-variables stm)

(foldl arg-set-union (arg-set ’())

(map free-variables fundefs)))

(object arg-set

(map fundef-arg-reg fundefs)))))
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Now that we know the free variables found in a function, we can build closures. At the
closure-language level, references to functions as values are closures, rather than simple
code pointers. A closure is a block in memory, containing first the pointer to the function
code, followed by the value of each of the free variables of that function. In addition,
all functions will take an additional argument, the closure of the function being called.
Because of that, we will need new definitions for let-fun, funcall and fundef.

At this language level, funcall merely extracts the code pointer and calls it, with the
additional argument.

(define-class cl-funcall (funref actuals)

(λ ()

(let ((temp-reg (generate-temp-register-object)))

(parse-template-with-variables top-level-asm-env source

((’temp-reg temp-reg)

(’funref funref)

(’fcall (object funcall source temp-reg

(cons funref actuals))))

‘(seq (ld temp-reg funref)

fcall)))))

The job of a closure is to bind all of the free variables of a function. Thus, when a
function is called, the first thing it does is to take all of the values from the closure and put
them back into their respective values.

(define-class cl-fundef (name label first-formal

formals body)

(λ ()

(object fundef source label

(cons first-formal formals)

(let loop ((closure-vars

(arg-set->list

(arg-set-subtract

(free-variables body)

(object register-set formals))))

(num 1))

(if (pair? closure-vars)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr closure-vars) (+ num 1)))

(’free-reg (car closure-vars))

(’first-formal first-formal))

‘(seq (add temp-reg first-formal ,num)

(ld free-reg temp-reg)

fnext))

body)))))
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Closures are generated when the function is declared. Closures are blocks of memory
that contain the free variables of a function.

(define-method cl-fundef cl-fundef-make-closure

(λ (this)

(let ((interior

(let loop ((closure-vars (arg-fun-set->list

(free-variables this)))

(num 1))

(if (pair? closure-vars)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr closure-vars)

(+ num 1)))

(’free-reg (car closure-vars))

(’reg name))

‘(seq (add temp-reg reg ,num)

(st temp-reg free-reg)

fnext))

(parse-template-with-variables

top-level-asm-env source ()

’(jmp (star next)))))))

(closure-size (+ 1

(length (register-set->list

(free-variables body)))))

(parse-template-with-variables top-level-asm-env source

((’interior interior)

(’register name)

(’label label))

‘(seq (malloc register ,closure-size)

(st name label)

interior)))))

(define-class cl-let-fun (fundefs stm)

(λ ()

(object let-fun fundefs

(let loop ((fundefs fundefs))

(if (pair? fundefs)

(parse-template-with-variables

top-level-asm-env source

((’fnext (loop (cdr fundefs)))

(’build-closure

(cl-fundef-make-closure (car fundefs))))

‘(seq build-closure fnext))

stm)))))
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g ∈ Segment ::= (cps c)
c ∈ CPS ::= (cont s c)

| (let-fun (f . . .) c)
| (app a (a a . . .) c)
| (if a c c)
| (return a)

f ∈ FunDef ::= (a (a . . .) c)

Fig. 20. Extending the assembler syntax to provide CPS functions

One side-effect of this structure is that, since we use funargs that are available at lower
language levels, we do not need to alter our control-flow algorithm at all to incorporate this
new functionality.

15 Full function calls via CPS conversion

Up until now, the functions we use never return. In order to have a true conventional high-
level language, we need to rectify this. We do this by using our one-way functions to
represent continuations, which package up the computation that needs to take place after
a function call completes as a functional value that may be passed as an extra argument to
the call.

In order to do this, we can not use the control primitives presented above, but we can use
basic assembly language. Our function language thus resembles a function-call wrapper on
top of assembly language, as seen in Figure 20.

The CPS language has a small set of primitives that perform all of the control manipu-
lation we need.

• let-fun defines one or more functions, similar to let-fun in the closure language.
Similarly to the closure language, we use funargs as arguments, not ordinary regis-
ters.

• cont sequences instructions. The CPS form (cont s c) executes the statement s
followed by the CPS expression c. This is the only way to use an assembly-language
instruction directly in the CPS language.

• app calls a function. The form (app ad (af a1 . . .) c) calls the function af with
the arguments a1, . . ., and puts the result in ad before continuing to c.

• return returns from a function. The form (return a) returns the value a from the
current function.

• if performs branching. The form (if a ct cf) evaluates a; if its value is 0, control
moves to ct, otherwise, to cf .

These control primitives can be directly expressed in the closure language. The major
change that we make is that we add an argument to every function, to represent the return
continuation.



Building Language Towers with Ziggurat 59

(define-class cps-cont (stm cont)

(λ ()

(parse-template-with-variables top-level-asm-env

‘((stm ,stm)

(cont ,cont))

(let ((*next cont)) stm))))

(define-class cps-app (dst fun args cont)

(λ ()

(parse-template-with-variables top-level-asm-env

‘((dst ,dst)

(fun ,fun)

(args ,args)

(cont ,cont)

(cont-var ,(generate-temp-register)))

(let-fun ((cont-var (dst) cont))

(funcall fun cont-var . args)))))

(define-class cps-fundef (name args exp return-funarg)

(λ () (object cl-fundef name (cons return-funarg args) stm)))

(define-class cps-let-fun (fundefs stm)

(λ () (object cl-let-fun fundefs stm)))

(define-class cps-return (val return-funarg)

(λ () (object cl-funcall return-funarg val)))

Note that cps-fundef and cps-return have an extra field: return-funarg. This field
contains the funarg with the current return continuation. We determine this when the CPS
expression is parsed; therefore, we need a new sort of static environment, to contain the
current return-funarg.

(define-class return-funarg-env (return-funarg super)

(λ () super))

(define-generic (current-return-funarg env))

(define-method return-funarg-env current-return-funarg

(λ (this) return-funarg))

The parsing functions thus need a minor change, in order to incorporate the current
return-funarg. The function definition needs to build a new return-funarg-env in
order to introduce a new return-funarg.
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c ∈ CPS ::= . . .
| (let-syntax ((n t) . . .) c)

g ∈ Seg ::= . . .
| (define-syntax n t)

t ∈ Transformer ::= (syntax-rules (n . . .) ((p c) . . .))
p ∈ Pattern ::= (n (n u) . . . [...]) ; Optional “...” is literal keyword.
u ∈ Parser ::= c

Fig. 21. Extending the assembler syntax to provided CPS macros

(define (parse-cps-fundef env form)

(let ((return-funarg (object funarg (gensym)))) ; fresh var

((parse-pattern-variables

‘(,parse-funarg ,(parse-list-pattern parse-funarg)

parse-cps-exp)

(name args exp)

(object cps-fundef name args exp return-funarg))

(object return-funarg-env return-funarg env) form)))

(define parse-cps-return

(parse-pattern-variables env

‘(return ,parse-funarg)

(_ val)

(object cps-return val (current-return-funarg env))))

Thus, we have built a compiler for functions out of macro primitives.

16 Macros on a higher-level language

Now that we have closures and continuations, we have something that at least resembles a
higher-level language. But just because we’ve reached the top of the tower is no excuse to
stop building! We can very easily put a new macro system on our language, and permit a
whole new breed of semantic conveniences. But what do we do with these macros? What
do they look like?

We can add high-level macros with the same facility as at lower-level languages. We
start by creating a new control primitive.

(define-syntax seq

(syntax-rules ()

((seq (x cps-exp)) x)

((seq (x asm-stm) (y asm-stm) ...)

(cont x (seq y ...)))))

We should note here that we have two definitions of seq: one for an assembler context,
and one for a CPS context. It is perfectly allowable to use them both at the same time; since
we have different parsers for different syntax types, we will parse the keyword seq as an
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assembler statement when in an assembly context, and a CPS expression when in a CPS
context.

Now that we have higher-order functions, we can build more advanced macros, such as
macros that take functions as arguments.

(define-syntax box-function

(syntax-rules ()

((box-function (f funarg))

(seq (arg2reg v f)

(malloc mem 1)

(st mem v)

(exp2arg ret v)

(return ret)))))

This takes a funarg, allocates it in its own cell in memory, and returns the location of that
cell.

17 Variations on the design of Ziggurat

It’s worthwhile to consider variations on the specifics of Ziggurat’s design. Two such vari-
ations are (1) extending the system to work with more general grammars, and (2) providing
the Ziggurat meta-language with a static type system to guarantee Ziggurat code constructs
well-formed source terms.

17.1 From S-expressions to general grammars

The current Ziggurat technology commits to representing all languages within the general
framework of S-expressions. This is a reasonably universal framework: any context-free
grammar (CFG) can be mapped to an S-expression grammar in a straightforward way.4

It’s possible to think of S-expression grammars as the ultimate LL(1) “predictive” syntax:
a form is introduced by left-parenthesis/keyword. Once we’ve seen this prefix, we know
what production of our grammar has been selected. Predictive, or LL, grammars have the
pleasant property that they are easy for humans to read in sequential, left-to-right order:
the reader never has to read and “buffer up” an arbitrary amount of text before being able
to determine its grammatical structure.

However, while S-expression notations may have universal scope, they are not univer-
sally adored. It’s reasonable to wonder if we could adapt Ziggurat to work with notations
based on more general context-free grammars, e.g., LL(k) or LALR(k) grammars. If we
were to attempt to do so, there would be a new set of technical challenges to be overcome,
distinct from the ones we have addressed in this article.

First, note that LL(k) and LR(k) grammars do not compose. Suppose, for example, we
have an LALR(1) grammar for Java, and we design a second LALR(1) grammar for regular
expressions. If we mix these two grammars together to produce an extended Java that has

4 To see this, simply assign each production in the original grammar a unique keyword for its S-expression
analog.
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a regexp form, the union of the two grammars is not necessarily LALR(1). Suppose we
abandon modularity and tune our regexp grammar so that, when added to the core Java
grammar, the result remains LALR(1). Now suppose that some other programmer does the
same for an SQL grammar, intended to extend Java for database queries. Even given that
these two language extensions are LALR(1), we still have no guarantee that the union of
the two will preserve LALR(1).

Second, recall that a lexically-scoped macro facility requires parsing and static analy-
sis to be intertwined (as discussed in Section 4.3). An attractive feature of S-expressions
is that they are a form of “pre-grammar” (in the same sense that the XML community
refers to XML terms as “semi-structured” data). S-expressions have a limited amount of
structure—the tree structure of the sexp—that has an important interaction with our inter-
leaved parsing/analysis task. Consider, for example, what happens when a Scheme com-
piler encounters a form such as

(q (a b) 3 "dog")

Even before the compiler has determined what the form is (e.g., is it a macro? a function
call? a core-language special form?), it is able to bound the form’s syntactic extent: it ends
at the right parenthesis that matches the “(q” introduction. So, if q is a macro keyword,
the compiler knows exactly how much source text (or, more accurately, how much of the
pre-grammar tree) to pass to its transformer: the material within the parentheses.

One possible avenue one could explore in order to move beyond S-expression syntax is
to employ parsers capable of parsing general context-free grammars, such as Packrat (Ford,
2002) or other GLR techniques. We lose the ability to parse input with linear time and
memory, but this is not of critical importance for many applications. While general CFGs
compose, of course, this does not resolve the issue of ambiguous parses, so this avenue
does not provide the kind of modularity we really want.

The ambiguity issue of GLR parsing carries with it a design message. GLR parsers work,
roughly, by carrying forward multiple parses in a nondeterministic fashion; hopefully, later
information encountered during the parse will winnow the multiple possibilities down to a
single unambiguous parse. The fact that GLR parsing requires super-linear computational
resources is a sign that we are asking too much of the parser—in particular, when the
parsing engine happens to be a human. Notations should be easy to read. Asking a human to
hunt around a large string playing detective to resolve local syntactic ambiguity is forcing
the human to burn time and effort on the wrong task. One is jerked from the semantic
level of processing the text up to shallow issues of syntax; the interruption of one’s train of
thought is annoying and counterproductive. This is bad design.5

5 An illuminating design case is the syntax of APL. Because the language has so many primitive operators, one
would expect APL’s precedence rules to be a nightmare—significantly worse than the rules for C’s modest set
of operators (which are already too complex for most programmers to remember and use correctly). However,
APL’s solution to this Gordian knot is elegant and simple: APL resolves operator application right to left. At
first, it seems odd that “a × b + c” means “add b and c, then multiply this sum times a,” but after a week
of programming, it becomes a great relief that the programmer never has to interrupt his train of thought to
resolve operator precedence: a single universal rule handles every situation.
Note that S-expression frameworks, like APL syntax, have no precedence issues, for a similar reason: they are
too simple to have problems. Scheme programmers never, ever spend time wondering about the precedence of
operations in the string “(* a (+ b c)).”
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A more promising approach is to restrict our grammars instead of enriching them, rel-
ative to LR(k). The “parsing expression grammars” of Grimm’s Rats! system (Grimm,
2006) for syntax extension are truly composable. It might be possible to attach a Rats!-like
parser-generator to a Ziggurat-like macro system, such that language extensions consist
of additions to the concrete syntax of the language, to form a composite syntax for each
extension. Coming from a Scheme-macro background, however, we still would like a tech-
nology that permits syntax, itself, to be bound with lexical scope, as described above.

Again, could one figure out some way to beat these problems in a setting that permits
more general grammars? Perhaps. However, we do not believe that this is the deep prob-
lem with the large payoff. The expressiveness gained when moving from an S-expression
framework to a general CFG framework is, to our way of thinking, simply a “constant
factor” in notational overhead. An aphorism of the Lisp/Scheme community states that af-
ter a few weeks of programming in these languages, “the parentheses disappear.” That is,
programmers no longer perceive the program in terms of the pre-grammar; they perceive,
rather, the actual syntactic structure of the terms, which is as rich in the S-expression world
as it is in the general CFG world. The true payoff comes in having a general framework in
which we can express different notations with distinct static and dynamic semantics. This
is the theme we have explored with our work here.

Scheme programmers can, and do, routinely write code where they shift between mul-
tiple languages in the space of a few lines of code. In the space of ten lines of code, a
Scheme program can shift between core Scheme syntax, specialised process notation for
executing Unix processes, regular expressions for searching strings, and an HTML nota-
tion for scripting web interactions. The syntactic cost to shifting between these languages
is nothing more than a left parenthesis and a single keyword; the specialised-language
term extends to the matching right parenthesis. Until we can see how one could achieve
this kind of syntactic modularity and composability in a more general CFG framework, we
will have a difficult time working up much interest in this larger setting. As programmers,
we are being too richly rewarded for staying within the S-expression paradigm.

17.2 Static semantics in Ziggurat

Ziggurat provides no form of static constraint (at the Ziggurat, or meta, level) to guarantee
that source terms constructed by Ziggurat code are even syntactically well-formed trees.
Ziggurat code is able to build a syntax tree that has, e.g., a “declaration” or “statement”
node where an “expression” node should go. It is up to the designer of a given language
to implement code that walks syntax trees to check them for correctness. Could we ex-

A second design heuristic that is related here is the notational mantra, “Always use a tool small enough for
the job.” We believe that the clarity of a notation (to a human) and the degree to which terms in that notation
can be analysed (by a computer algorithm) are related: if a term is difficult for a computer to understand, it
is quite likely going to be difficult for a human to understand. Thus, expressing a computation with a regular
expression (when we can do so) is likely clearer than expressing that computation in C code.
This applies to parsing, as well: ceteris paribus, it seems reasonable to suppose that a notation that can be
expressed with an LL(1) grammar, which can be parsed with a linear-time/linear-space algorithm, is going
to be easier for a human to read and parse than a notation whose grammar requires a super-linear parsing
algorithm.
Notations are designed artifacts; there is benefit to lightweight designs.
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tend Ziggurat with, say, a static type system that would guarantee that the syntax trees it
constructs are correct?

We believe it would be possible to do so, and that such a type system would provide a
useful capability to language designers working in Ziggurat. The recent work of Herman
and Wand (2008), for example, is one promising approach towards addressing this issue.
We did not explore such a type system simply in order to simplify the task of designing
and implementing Ziggurat; it would have delayed or halted development and evaluation
of the system we currently have.

Note, also, that syntactic correctness is just the beginning. Simply guaranteeing that a
term is grammatically well-formed (which is what a type system would provide, at the
Ziggurat, abstract-syntax meta-level) does not guarantee that the term will pass more so-
phisticated tests associated with its language’s static semantics. So having a type system in
the meta language does not save us from the necessity of doing static correctness checks
with Ziggurat code.

18 Related work

The subject of language extension has recently been of interest to a number of projects,
due in part to the proliferation of domain-specific languages for Web services. Ziggurat’s
design has been influenced by several of these related projects.

18.1 Metaprogramming

Some recent work in domain-specific macros has been in “metaprogramming,” the devel-
opment of tools related to source-to-source program translation. A successful metapro-
gramming tool in wide use today is Stratego (Visser, 2004), a program-to-program source
code translation toolkit based on term-rewriting systems.

Stratego allows one to design a domain-specific language, and specify its dynamic se-
mantics by rewriting programs into an underlying language, such as Java. Thus, Stratego
makes it easy to write source-to-source compilers, which is similar to the functionality
presented by macro systems. An advantage of Stratego over Ziggurat and other Scheme-
like macro systems is that Stratego allows for non S-expression-based grammars. However,
Stratego does not provide tools for semantic extension. In order to implement a type sys-
tem for a domain-specific language designed with Stratego, the source-to-source compiler
would first check the types of the source program, translate the program text, and then
allow the compiler of the underlying language to perform its own type checking. It is not
possible to link the static semantics of the domain-specific language to that of the underly-
ing language, as in Ziggurat. This complete separation of language semantics is good for
translating languages that have dissimilar semantics, such as translating from a database-
query language to a high-level language, but does not work as well for finer-grain language
extension, such as the seq and kons language extensions presented earlier in this paper.

Another difference between Stratego and Ziggurat is that Stratego is a tool for full-
program transformation, and does not allow languages to be embedded, as in macro sys-
tems. However, the MetaBorg tool (Bravenboer & Visser, 2004), which is built on top
of Stratego, does allow languages to be embedded. For example, one could implement a
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regular-expression language or a GUI-specification language inside of Java in MetaBorg—
tasks one might accomplish with a macro system. However, language embedding is still
coarser-grained than syntactic extensions such as seq and kons, which are possible with
macro systems. In MetaBorg, it is not possible for source-language terms to appear in
the same syntactic context as embedded terms. Ziggurat aims to augment the syntactic
extensions provided by macro systems with corresponding semantic extensions, whereas
MetaBorg aims to allow languages with dissimilar static semantics to be embedded.

A system with a similar approach to Stratego’s is Metafront (Brabrand et al., 2003), a
tool for specifying languages with the goal of making them extensible. Metafront allows a
language extension to specify how it adds to the grammar of a language, and then to provide
rules to transform programs in the extended language to the base language. Metafront, like
Stratego, is a full-program transformation toolkit, without semantic extensibility. In addi-
tion, the transformation rules are not Turing-complete, which guarantees that the compiler
will terminate, but does not allow the power of full low-level macros.

An alternate approach to metaprogramming is multi-stage programming, implemented
in MetaML (Taha & Sheard, 1997). MetaML takes many ideas from macro technology. In
MetaML, syntax is manipulatable data, similar to the way macros translate syntax. Pro-
grams thus can output programs, which, in turn, can output other programs, providing
staged compilation similar to macros. Semantic analysis is possible through a form of re-
flection: variables defined in one compilation stage are available in later stages. However,
as in Stratego, the focus is on full-program transformation, unlike the local syntactic ex-
tensions available with macro systems.

Nanavati (2000) also provides a system for extensible analysis. However, Nanavati does
not provide an object-oriented interface to his syntax. In order to implement significant
syntactic extensions in his system, the programmer is forced essentially to simulate an
object-oriented architecture programmatically, which makes for a fairly awkward, tortured
coding style. Ziggurat captures this structure directly in the linguistic mechanisms of the
meta-language.

18.2 Macro systems

The implementation of syntax as objects, first introduced by Dybvig, Hieb and Brugge-
man (Dybvig et al., 1992), opens up numerous possibilities.

The analysis of macros themselves is an important related topic. Programs containing
macros can complicate tasks that are simple in languages that do not contain them. For
example, macros complicate separate compilation: if one module depends on another mod-
ule, it may depend on macros found within that module, meaning that compilation of the
first module will require including the source of the second. Flatt (2002) has developed a
method of mixing the specification of macros with the specification of modules, allowing
modules to be partially imported at compile-time, as necessary for macros, and thus allow-
ing for separate compilation. The analysis of the interaction of macros and modules is an
important step in applying macro technology to a language with a module system, one that
is not covered by this work.

These compilable macros are implemented in the macro system currently employed in
MzScheme. MzScheme uses syntax objects; an earlier version of the macro system, called
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McMicMac (Krishnamurthi et al., 1999), performed semantic analyses on syntax. Ziggurat
draws many ideas from McMicMac. However, while Ziggurat attempts to be a general-
purpose language toolkit, McMicMac is designed exclusively for Scheme, only dealing
with the limited static semantics available in Scheme.

Others have mixed hygienic macros with languages with static semantics, without pro-
viding an explicit method of accessing those semantics. The language Dylan (Shalit, 1996)
contains a hygienic macro facility, without such a mechanism. The Java Syntax Exten-
der (Bachrach & Playford, 2001) adds a hygienic macro mechanism to Java, again with
no means to access the static semantics of the language. Even without such a mechanism,
these systems are adequate for many sorts of language extensions.

The Maya macro system (Baker & Hsieh, 2002), on the other hand, allows macros to
access the types of subexpressions. It does this by performing macro expansion in stages,
delaying expansion until the types of subexpressions are available. This is similar to the
laziness of lazy delegation, but it does not allow macro writers to specify their own static
semantics.

18.3 Attribute-grammar approaches

A popular method of specifying static semantics is via attribute grammars. Another ap-
proach to mixing language extension and static semantics is to augment semantics specified
via attribute grammars with metaprogramming facilities.

The JastAdd extensible Java compiler (Ekman & Hedin, 2004; Ekman & Hedin, 2007)
uses attribute grammars to enable tree rewriting, similar to the Stratego language-extension
tool. Like Stratego and other metaprogramming tools, JastAdd is based on rewriting one
full language to another, making it ideal for incrementally building a compiler.

Silver AG (van Wyk et al., 2007) is a language for describing programming-language
grammars and their associated static semantics with the goal of making these languages
extensible. An application of this system is the Java Language Extender framework, a tool
for writing extensions to the Java language, both fine-grained, such as new loop constructs,
and coarse-grained, such as embedding domain-specific languages.

Silver is based on an attribute-grammar framework. A language is described as a number
of syntax productions. Each production defines a number of attributes, compile-time values
which are calculated from the attributes of its ancestors in the abstract syntax tree (“inher-
ited” attributes) and its children (“synthesized” attributes). Each non-terminal defines a
fixed set of attributes to be calculated for each production of that non-terminal.

In Silver AG, the language extender is only required to provide definitions for a subset of
the attributes defined on a production. This is enabled by a feature called forwarding (van
Wyk et al., 2002). Productions can have a special attribute, called its forwards-to attribute,
which is similar to the delegate in Ziggurat. To calculate the value of any attribute not de-
fined on a production, Silver AG calculates the production’s forwards-to attribute, which
should return a syntactic node, and then delegates to this node, similar to how lazy delega-
tion deals with generic functions on objects with undefined methods.

The difference between Silver and Ziggurat involves how they deal with the interleaving
of parsing and analysis. Both allow this, quite explicitly. In Silver, the forwards-to attribute
is an attribute like any other, and thus can be calculated from the attributes of the node’s
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ancestors and descendants. Since attributes are calculated based on the values of other
attributes, the order of evaluation of attributes is very important, and is determined via
data dependence; the attribute specification is purely functional, and thus expansion can
be delayed until it is required. Thus, if the forwards-to attribute depends on other attribute
values, Silver will perform expansion after other semantic analyses.

Ziggurat allows this behavior by means of the laziness in lazy delegation. Ziggurat uses
only simple data-flow to order the computations defined in the meta-language: it does not
perform expansion until it is needed by a generic function being applied to a syntactic
node lacking a method for that function. This puts the burden on the language designer to
prevent expansion from taking place until the information necessary for it is available, but
allows expansion in cases where it may be difficult to automatically determine the order
in which things should be evaluated. We have found this linguistic on-demand mechanism
fairly natural and intuitive to use.

Ziggurat’s ability to delay expansion using lazy delegation is an important design ele-
ment of the system. Sophisticated macros that mediate shifts between language levels can
be written to exploit static-semantics computations performed at the higher language level
to drive the rewrite into the lower language level. For example, the expander (i.e., the dele-
gation method) can perform type-dependent translation, or use the results of a flow analysis
to select between translation strategies.

Consider implementing named, static memory locations in our assembly language. We
would like to allocate a block of memory at an early point in the program, and then refer
to offsets into this block of memory. We would like to write:

(with-static-data

...

(ld-static x speed)

(ld-static y speed-increment)

(+ z x y)

(st-static speed z))

and have this expand into:

(seq

...

(malloc global-table-location 2) ;number of data slots = 2

(+ tmp global-table-location 1) ;speed offset = 1

(ld x tmp)

(+ tmp global-table-location 2) ;speed-increment offset = 2

(ld y tmp)

(+ z x y)

(+ tmp global-table-location 1) ;speed offset = 1

(st tmp z))

Here, malloc is a macro that expands into a branch to a system routine. There are two
pieces of data that must be calculated in order to allow expansion to take place:

• The expansion of with-static-data needs to know how many static locations are
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being used by the program, in order to calculate how large a block of memory to
allocate.
• Each use of a static location must know what numerical offset into the static block

is associated with that variable name.

In Ziggurat, we implement this information as a field in the with-static-data node.
Each time the parser encounters a ld-static or st-static node, it finds the offset asso-
ciated with the variable name. If there is no offset yet defined, it defines it, and adds it to
the mapping. If this mapping were implemented as an attribute, it would create a circular
dependency: calculating the offsets requires the table, and the table is generated by calcu-
lating the offsets. This would be difficult to implement in Silver AG in such a way that it
did not result in a set of attributes without a valid ordering.

Forwarding is based on an earlier language-extension tool, called XL (Maddox, 1989). In
XL, syntax nodes are parsed into records containing the attributes of that node. New static
semantics are defined by extending these records, using a subtype-based extensible record
facility built into the language. However, these records are not composable, limiting the
macro designer to a linear tower of languages; macro packages cannot be combined in the
same program. These extensible records have associated with them a subtyping relation on
sets of attributes, similar to the attribute-grammar inheritance systems found in the LISA
tool (Mernik et al., 1999).

18.4 Semantic extension

An important related field of research is projects that have looked into semantic extension
of languages, independent of macros. The JavaCOP project (Andreae et al., 2006), for ex-
ample, looks at extending Java’s type system with type constraints. However, JavaCOP’s
syntactic mechanism only allows programmers to annotate their programs, instead of pro-
viding new type constructs. An interesting piece of future work for Ziggurat would be to
see if lazy delegation could provide better syntax for JavaCOP’s type annotations.

The J& project (Nystrom et al., 2006) establishes a language feature called “nested in-
tersection.” Not only is nested intersection an interesting language feature to implement
via macros, but an application of their work is in providing fine-grain compiler extensi-
bility through method inheritance. It is a possible future direction for Ziggurat research to
explore combining nested intersection with lazy delegation to provide better, more terse
descriptions of static semantics.

19 Future work

The potential scope of Ziggurat is wide, and there are many possible avenues one could
explore going forward. Our focus is currently on the following.

• Certification. Ziggurat permits syntax implementors to intercept and override anal-
ysis requests with their own methods. This is a key source of power for the system,
but it is a two-edged sword: overloaded analyses, if they are buggy or malicious,
can give wrong results, possibly leading to unsafe compilation. Since Ziggurat is
intended as a general language-extension toolkit, this is unavoidable in the general
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case. A possible solution, though, is to require that certain analyses provide a certifi-
cate that their result obeys certain properties, e.g., that they give a correct answer (of
possibly varying precision), or that they do not violate safety rules. Certification in
this scheme becomes just another analysis.
In general, if a lower-level language includes checkably sound annotations express-
ing the support for a given assertion, then an analysis performed at a higher level
in the tower can be expressed by expanding into annotated code in the lower-level
language. Since these annotations will be checked by the static-semantics elements
of the lower-level language implementation, there is no possibility of a buggy or
malicious macro asserting a false claim undetected.

• Further analyses. The basic analyses presented here show the feasibility of Ziggurat
for implementing important code analyses. We intend to implement more in Ziggu-
rat. For example, we have implemented only a constraint-based version of 0CFA. We
intend to implement a CFA based on abstract interpretation, allowing for more pre-
cise higher-order flow analyses, such as 1CFA and ΓCFA (Might & Shivers, 2006).

• Further languages We do not have enough experience with Ziggurat to understand
the limits to its general “language tower” approach to design. A better sense of the
technology’s strengths and weaknesses will only come with time.
The most ambitious example we are attempting is a LALR parser generator, whose
exported language is a notation for writing down a context-free grammar with asso-
ciated semantic actions. Parser generators are an interesting application of Ziggurat
technology. First, they have a great deal of static semantics that is completely in-
dependent of the underlying target language to which the parser is compiled. The
vocabulary of grammar analysis—first and follow sets, LALR(k), SLR, and so on—
constitute a static semantics, one where the language’s identifiers are not variables,
but non-terminals, which are defined and referenced by the various productions of
the grammar.
This leads to the second interesting issue: how will it affect the parser-definition task
to permit grammar macros, that is, macros that occur in production right-hand sides,
and expand into terminal/non-terminal sequences?
Third, the translation between a context-free grammar and the source code that
parses strings from that grammar is a sophisticated and complex one: the Deremer-
Pennello algorithm (DeRemer & Pennello, 1982) is not simple code. Thus, we push
the boundaries of what has traditionally been accomplished via macros—it makes a
good example of an arena where there is no hope of statically analysing macro-using
code unless the macro itself explicitly provides static semantics, as in Ziggurat.
Fourth, a parser tool is naturally defined by means of multiple layers in a language
tower: a context-free grammar is translated (e.g., by the Deremer-Pennello algo-
rithm) to a specification of a push-down automaton (PDA). Given a language for
describing PDAs (e.g., one with “shift,” “reduce” and “goto” as basic forms), we
can then provide multiple translations from the PDA language to implementing lan-
guages: we can compile the PDA directly to control constructs in the lower language
(Pennello, 1986), or translate the PDA to a data structure which is then fed to an
interpreter (as the tools Yacc and Bison do (Johnson, 1979)); additionally, we can
consider performing analysis and source-to-source translations on the PDA program
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to improve the performance of the parser. The PDA language has its own interesting
static semantics: for example, Pottier has recently shown how important safety in-
variants on the PDA’s stack useage can be statically captured by type systems (Pottier
& Régis-Gianas, 2005).
We are basing our Ziggurat implementation on an existing LALR tool we have pre-
viously designed and implemented in Scheme (Flatt et al., 2004).

• Analysis-driven translation. One of the benefits of lazy delegation is that it allows
translation to be delayed until after analysis takes place. Currently, this is used in
register allocation, although the framework would allow type-directed translation,
for example.
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