
Useless-Variable Elimination

Olin Shivers
Carnegie Mellon University

Pittsburgh, Penn. 15213-3890
shivers@cs.cmu.edu

1 Introduction

Useless-variable elimination (UVE) is a technique for removing unnecessary com-
putations and variables from Scheme programs. In my 1988 SIGPLAN paper
“Control-Flow Analysis in Scheme,” [CFlow] I demonstrated the optimisation
without explaining how to perform it. In this note, I will describe the optimisation
in detail, and describe an algorithm for performing it. This technique is generally
applicable to other higher-order languages, such as ML.

2 Useless-variable elimination

A useless variable is one whose value contributes nothing to the final outcome of
the computation. We can remove a useless variable and the computation producing
its value from our program. For example, consider the following code fragment:

(let ((sum (+ a b))

(prod (* a b)))

(f sum a))

)

(let ((sum (+ a b)))

(f sum a))

Prod is never used in the program, so we can remove it and its binding computation
(* a b). This example is fairly easy to detect; most Scheme compilers would
find and optimise it.



On the other hand, some useless variables involve circular dependencies or
multiple (join) dependencies. The simple lexical analysis that suffices for the
above example won’t spot these cases. For example, consider the factorial loop:

(letrec ((lp (� (ans j bogus)

(if (= 0 j) ans

(lp (* ans j)

(- j 1)

(sqrt bogus))))))

(lp 1 n n))

Although the variable bogus doesn’t contribute anything at all to the final result,
it appears to be used in the loop. Useless-variable elimination is used to spot these
cases.

UVE is often useful to clean up after applying other code transformations,
such as copy propagation or induction-variable elimination. When we introduce a
new variable to track an induction function on some basic induction variable, the
basic variable frequently becomes useless. For an example produced by a working
implementation, compare parts (d) and (e) of figure 4 in “Control-Flow Analysis
in Scheme” [CFlow].

In continuation-passing style (CPS) intermediate representations, continuation
variables are frequently passed around loops needlessly. Copy propagation [Diss]
plus useless-variable elimination can transform these cases. An example is the
following series of transformations on a loop:

;;; Original loop -- c refs can be replaced by k refs.

(� (k)

(letrec ((lp (� (sum n c)

(if (= 0 n) (c sum)

(lp (+ sum n) (- n 1) c)))))

(lp 0 m k)))

;;; After copy propagation -- c is now useless.

(� (k)

(letrec ((lp (� (sum n c)

(if (= n 0) (k sum)

(lp (+ sum n) (- n 1) k)))))

(lp 0 m k)))



;;; After UVE

(� (k)

(letrec ((lp (� (sum n)

(if (= n 0) (k sum)

(lp (+ sum n) (- n 1))))))

(lp 0 m)))

3 Finding useless variables

Detecting these cases requires a simple backwards flow analysis on the CPS inter-
mediate form. (I use a CPS representation essentially identical to the one used in
the ORBIT Scheme compiler [Orbit].) We actually compute a conservative approx-
imation to the inverse problem — finding the set of all useful variables. We start
with variables that must be assumed useful (e.g., a variable whose value is returned
as the value of the procedure being analysed). Then we trace backwards through
the control-flow structure of the program. If a variable’s value contributes to the
computation of a useful variable, then it, too, is marked useful. When we’re done,
all unmarked variables are useless. This gives us a mark-and-sweep algorithm for
a sort of “computational gc.”

To be specific, in the implementation of UVE that I have written, a variable is
useful if it appears

� in the function position of a call:
(f 5 0)

� as the predicate in a conditional primop:
(if p (� () . . . ) (� () . . . ))

� as the continuation of a primop:
(+ 3 5 c)

� as an argument in a call to

– a side-effecting operation (output or store):
(print a), (set-car! x y)

– an external procedure, or a primop whose continuation
is an external procedure.

– a primop whose continuation binds a useful variable:
(+ metoo 3 (� (used) . . . ))



– a lambda whose corresponding parameter is useful:
((� (x used y) . . . ) 3 metoo 7)

The first three conditions spot variables used for control flow. The next two mark
variables whose value escapes, and must therefore be assumed useful. The final two
recursive conditions are the ones that cause the analysis to chain backwards through
the control-flow graph: if a variable is useful, then all the variables used to compute
its value are useful. The control-flow graph needed for the backward chaining can
be recovered with a preliminary control-flow analysis [CFlow, CFASem, Diss].

4 Optimising useless variables

Once we have found the useless variables in a program, we can optimise the
program in two steps. In the first step, we remove all references to useless variables
and eliminate all useless computations (primop calls). In the second step, we
remove useless variables from their lambda lists where possible.

4.1 Removing useless variables from calls

In this phase, we globally remove all references to useless variables in our program.
If a useless variable appears as an argument to a primop call, we remove the
entire primop computation. For instance, suppose the useless variable x appears
as an argument in the primop call (+ x y k). By the definition of a useless
variable, we know that the continuation k must bind the result of the addition
to a useless variable, as well (if it didn’t, we’d have marked x as useful). This
renders the addition operation useless, so we can remove it, replacing (+ x y k)

with (k #f). The actual value passed to the continuation (we used #f here) is
not important — remember that we are globally deleting all references to useless
variables. Since the continuation k must bind the value #f to a useless variable,
the value is guaranteed never to be referenced.

If a reference to a useless variable appears in a non-primop call, we simply
replace it with some constant. If x is useless, we convert (f x y) to (f #f y).
Similar reasoning applies in this case: if x is useless, it must be the case that f’s
corresponding parameter is useless as well. All references to this parameter will
be deleted, so we can pass any value we like to it.



4.2 Removing useless variables from lambda lists

Suppose we have determined that x is useless in lambda ` = (� (x y) . . . ).
After applying the transformation of the previous subsection, we can be sure that `
contains no references to x. The only remaining appearance of x is in `’s parameter
list. Consider the places this lambda is called from, e.g., (f a 7). We can delete
both the formal parameter x from its lambda list and the corresponding argument
a from its call:

(� (x y) . . . )) (� (y) . . . ) and (f a 7)) (f 7).

However, we can’t apply this optimisation in all cases. Suppose ` is called
from two places, the external call and (f a 7). We can’t simply delete x from `’s
parameter list, because the external call, which we have no control over, is going to
pass a value to ` for x. Or, suppose that our lambda is only called from one place,
(f a 7), but that call site calls two possible lambdas. Again, we can’t delete the
argument a from the call, because the other procedure is expecting it (unless it, as
well, binds a useless variable).

We have a circular set of dependencies determining when it is safe to remove
a useless variable from its lambda list and its corresponding arguments from the
lambda’s call sites:

� We can delete a variable from a lambda list only if we can delete its corre-
sponding argument in all the calls that could branch to that lambda.

� We can delete an argument from a call only if we can delete the corresponding
formal parameter from every lambda we could branch to from that call.

It is not hard to compute a maximal solution to these constraints given control-flow
information. We use a simple algorithm that iterates to a fixed point. We compute
two sets: the set RV of removable useless variables, and the set RA of removable
call arguments. Initialise RV to be the set of all useless variables. For each useless
variable v , find all the call sites that could branch to v’s lambda, and put the call’s
corresponding argument into RA. Then iterate over these sets until we converge:



ITERATE until no change

FOR each argument a in RA

IF a's call could branch to a lambda whose

corresponding parameter is not in RV

THEN remove a from RA

FOR each variable v in RV

IF v's lambda can be called from a call site whose

corresponding argument is not in RA

THEN remove v from RV

For the purposes of the first loop, the external lambda counts as a disqualifying
branch target; for the purposes of the second loop, the external call counts as a
disqualifying branch source. When we’re done, we’re left with RV and RA sets
that satisfy the circular criteria above. We can safely remove all the arguments in
RA from their calls and all the variables in RV from their lambda lists.

5 Results

Applying these two phases of optimisation will eliminate useless variables and
their associated computations wherever possible. For example, we can remove the
useless bogus variable and its square-root calculation from the factorial loop of
section 2, leaving only the necessary computations:

(letrec ((lp (� (ans j)

(if (= 0 j) ans

(lp (* ans j)

(- j 1))))))

(lp 1 n))

Note that as a special case of UVE, all unreferenced variables in a program are
useless. The second phase of the UVE optimisation will remove these variables
when possible.

References

[CFlow] Olin Shivers. Control-flow analysis in Scheme. In Proceedings of
the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, June 1988. Also available as Technical Report ERGO-
88-60, CMU School of Computer Science, Pittsburgh, Penn.



[CFASem] Olin Shivers. The semantics of Scheme control-flow analysis. In Pro-
ceedings of the First ACM SIGPLAN and IFIP Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, June 1991.
Published as SIGPLAN Notices 26(9):190–198, Association for Com-
puting Machinery, September 1991. Also available as Technical Re-
port CMU-CS-91-119, CMU School of Computer Science, Pittsburgh,
Penn. An early version was available as Technical Report ERGO-90-
090.

[Diss] Olin Shivers. Control-Flow Analysis of Higher-Order Languages.
Ph.D. dissertation, Carnegie Mellon University, May 1991. Technical
Report CMU-CS-91-145, School of Computer Science.

[Orbit] David Kranz. ORBIT: An Optimizing Compiler for Scheme. Ph.D. dis-
sertation, Yale University, February 1988. Research Report 632, De-
partment of Computer Science. A conference-length version of this
dissertation appears in SIGPLAN 86.

[TRec] Olin Shivers. Data-flow analysis and type recovery in Scheme. Tech-
nical Report CMU-CS-90-115. CMU School of Computer Science,
Pittsburgh, Penn., March 1990. Also to appear in Topics in Advanced
Language Implementation, Peter Lee (editor), MIT Press.

Note: This note and all of the above-cited papers authored by myself can be
retrieved by anonymous ftp from CMU in Postscript and .dvi format. Ftp
to any CMU host with access to the /afs network file system (almost any
host will do; some possibilities are a.gp.cs.cmu.edu and cs.cmu.edu).
Login as anonymous. Cd to

/afs/cs.cmu.edu/user/shivers/lib/papers

and retrieve files from this directory. Note that anonymous ftp at CMU
has access only to certain specific directories, so you must cd straight to
. . . /lib/papers.


