
Bottom-upβ-reduction:
uplinks andλ-DAGs∗

(extended version)

Olin Shivers†

Georgia Institute of Technology
shivers@cc.gatech.edu

Mitchell Wand
Northeastern University
wand@ccs.neu.edu

December 31, 2004

Abstract

If we represent aλ-calculus term as a DAG rather than a tree, we can efficiently
represent the sharing that arises fromβ-reduction, thus avoiding combinatorial ex-
plosion in space. By adding uplinks from a child to its parents, we can efficiently
implementβ-reduction in a bottom-up manner, thus avoiding combinatorial ex-
plosion in time required to search the term in a top-down fashion. We present an
algorithm for performingβ-reduction onλ-terms represented as uplinked DAGs;
describe its proof of correctness; discuss its relation to alternate techniques such
as Lamping graphs, explicit-substitution calculi and director strings; and present
some timings of an implementation. Besides being both fast and parsimonious
of space, the algorithm is particularly suited to applications such as compilers,
theorem provers, and type-manipulation systems that may need to examine terms
in-between reductions—i.e., the “readback” problem for our representation is triv-
ial. Like Lamping graphs, and unlike director strings or the suspensionλ calculus,
the algorithm functions by side-effecting the term containing the redex; the rep-
resentation isnot a “persistent” one. The algorithm additionally has the charm of
being quite simple; a complete implementation of the data structure and algorithm
is 180 lines of SML.

∗This document is the text of BRICS technical report RS-04-38 reformatted for 8.5”×11” “letter size”
paper, for the convenience of Americans who may not have A4 paper available for printing. Please regard this
as a secondary document. In particular, when citing this report, please refer to the original BRICS report—
especially with respect to page numbers. The original document can be found athttp://www.brics.dk;
its full citation is “Technical Report BRICS RS-04-38, DAIMI, Department of Computer Science, University
of Århus,Århus, Denmark, December 2004.”
†Visiting faculty at BRICS, Department of Computer Science, University ofÅrhus.

ii

Contents

1 Introduction 1

2 Guided tree substitution 2

3 Guiding tree search with uplinks 3

4 Upcopy with DAGs 4

5 Reduction onλ-DAGs 5

6 Fine points 8

7 Extended example 9

8 Formal specification and correctness 12

9 Experiments 17

10 Related work 20
10.1 Explicit-substitution calculi . 20
10.2 Director strings . 22
10.3 Optimalλ reduction . 22
10.4 Two key issues: persistence and readback 23

11 Other operations: cloning, equality and hashing 24

12 Possible variants and applications 25
12.1 Cyclic graph structure . 25
12.2 Integrating with orthogonal implementation techniques 25
12.3 DAG-based compiler . 26
12.4 Graph-based compiler . 26

13 Conclusion 27

14 Acknowledgements 27

References 27

A BetaSub.sml 29

iii

iv

1 Introduction

Theλ calculus [2, 5] is a simple language with far-reaching use in the programming-
languages and formal-methods communities, where it is frequently employed to repre-
sent, among other objects, functional programs, formal proofs, and types drawn from
sophisticated type systems. Here, our particular interest is in the needs of client appli-
cations such as compilers, which may useλ-terms to represent both program terms as
well as complex types. We are somewhat less focussed on the needs of graph-reduction
engines, where there is greater representational license—a graph reducer can represent
a particularλ-term as a chunk of machine code (e.g., by means of supercombinator
extraction), because its sole focus is onexecutingthe term. A compiler, in contrast,
needs to examine, analyse and transform the term in-between operations on it, which
requires the actual syntactic form of the term be available at the intermediate steps.

There are only three forms in the basic language:λ expressions, variable refer-
ences, and applications of a function to an argument:

t ∈ Term ::= λx.t | x | tf ta

wherex stands for a member of some infinite set of variables. (We’ll also allow our-
selves parenthesisation of terms to indicate precedence in the parsing of concrete ex-
amples.)

Of the three basic operations on terms in theλ calculus—α-conversion,β-reduction,
andη-reduction—it isβ-reduction that accomplishes the “heavy lifting” of term ma-
nipulation. (The other two operations are simple to implement.) Unfortunately, naı̈ve
implementations ofβ-reduction can lead to exponential time and space blowup.β-
reduction is the operation of taking an application term whose function subterm is
a λ-expression, and substituting the argument term for occurrences of theλ’s bound
variable in the function body. The result, called thecontractum,can be used in place
of the original application, called theredex. We write

(λx.b) a ⇒ [x 7→a]b

to express the idea that the redex applying functionλx.b to argumenta reduces to the
contractum[x 7→ a]b, by which we mean termb, with free occurrences ofx replaced
with terma.

We can define the core substitution function with a simple recursion:

[y 7→ t][[x]] = t x = y
[y 7→ t][[x]] = x x 6= y
[x 7→ t][[tf ta]] = ([x 7→ t]tf)([x 7→ t]ta)
[x 7→ t][[λy.b]] = λy′.([x 7→ t][y 7→y′]b) y′ fresh inb andt.

Note that, in the final case above, when we substitute a termt under aλ-expression
λy.b, we must first replace theλ-expression’s variabley with a fresh, unused variable
y′ to ensure that any occurrence ofy in t isn’t “captured” by the[x 7→ t] substitution. If
we know that there are no free occurrences ofy in t, this step is unnecessary—which
is the case if we adopt the convention that everyλ-expression binds a unique variable.

1

Procedure addItem(node, i)
if node = nil then

new := NewNode()
new.val := i
new.left := nil
new.right := nil

else if node.val < i then
new := NewNode()
new.right := addItem(node.right,i)
new.left := node.left
new.val := node.val

else if node.val > i then
new := NewNode()
new.left := addItem(node.left,i)
new.right := node.right
new.val := node.val

else new := node
return new

Figure 1: Make a copy of ordered binary treenode, with added entryi. The original
tree is not altered.

It is a straightforward matter to translate the recursive substitution function defined
above into a recursive procedure. Consider the case of performing a substitution[y 7→ t]
on an applicationtf ta. Our procedure will recurse on both subterms of the applica-
tion. . . but we could also use a less positive term in place of “recurse” to indicate the
trouble with the algorithmic handling of this case: search. In the case of an application,
the procedure will blindly searchbothsubterms, even though one or both may have no
occurrences of the variable for which we search. Suppose, for example, that the func-
tion subtermtf is very large—perhaps millions of nodes—but contains no occurrences
of the substituted variabley. The recursive substitution will needlessly search out the
entire subterm, constructing an identical copy oftf . What we want is some way to
direct our recursion so that we don’t waste time searching into subterms that do not
contain occurrences of the variable being replaced.

2 Guided tree substitution

Let’s turn to a simpler task to develop some intuition. Consider inserting an integer into
a set kept as an ordered binary tree (Fig. 1). There are three things about this simple
algorithm worth noting:

• No search
The pleasant property of ordered binary trees is that we have enough informa-
tion as we recurse down into the tree to proceed only into subtrees that require
copying.

2

while old 6= root do
newparent := NewNode()
if old is left-child of parent then

newparent.left := new
newparent.right := old.right

else
newparent.right := new
newparent.left := old.left

old := old.parent
new := newparent d fe hgba c x

Figure 2: The algorithm copies a tree with child→parent uplinks, replacing leafold
with new. The example shows the algorithm making a copy of the original tree, replac-
ing leafc with x. Arrows show the path of the algorithm as it copies up the spine of the
tree fromc to the root; dotted lines show new structure.

• Steer down; build up
The algorithm’s recursive control structure splits decision-making and the actual
work of tree construction: the downward recursion makes the decisions about
which nodes need to be copied, and the upward return path assembles the new
tree.

• Shared structure
We copy only nodes along the spine leading from the targeted node to the root;
the result tree shares as much structure as possible with the original tree.

3 Guiding tree search with uplinks

Unfortunately, in the case ofβ-reduction, there’s no simple, compact way of determin-
ing, as we recurse downwards into a tree, which way to go at application nodes—an
application has two children, and we might need to recurse into one, the other, both, or
neither. Suppose, however, that we represent our tree using not only down-links that
allow us to go from a parent to its children, but also with redundant up-links that allow
us to go from a child to its parent. If we can (easily) find the leaf node in the original
tree we wish to replace, we can chase uplinks along the spine from the old leaf to the
tree root, copying as we go. This gives us the algorithm of Fig. 2, presented somewhat
abstractly for simple binary trees. The core iteration of this algorithm is thec 7→ c′

upcopy:

�� AA
p

c c’ o
⇒ �� AA,,

p

c c’ o

p’

We take a childc and its intended replacementc′, and replicate the parentp of c,
making thec 7→ c′ substitution. This produces freshly-created nodep′; we can now
iterate, doing ap 7→ p′ upcopy into the parent ofp at the next step, and so on, moving
up through the original tree until we reach the root.

3

Note the similar properties this upcopy algorithm has with the previous algorithm:
no search required; we build as we move upwards; we share as much structure as
possible with the old tree, copying only the nodes along the “spine” leading from the
leaf up to the root. For a balanced tree, the amount of copying is logarithmic in the
total number of nodes. By starting at the leaf node to be replaced in the old tree, the
construction phase just follows uplinks to the root, instead of using a path saved in the
recursion stack by the downwards search.

4 Upcopy with DAGs

We can avoid space blowup when performingβ-reduction onλ-calculus terms if we
can represent them as directed acyclic graphs (DAGs), not trees. Allowing sharing
means that when we substitute a large term for a variable that has five or six references
inside its bindingλ-expression, we don’t have to create five or six distinct copies of the
term (that is, one for each place it occurs in the result). We can just have five or six
references to the same term. This has the potential to provide logarithmic compression
on the simple representation ofλ-calculus terms as trees. These term DAGs can be
thought of as essentially a space-saving way to represent term trees, so we can require
them, like trees, to have a single top or root node, from which all other nodes can be
reached.

When we shift from trees to DAGs, however, our simple functional upcopy algo-
rithm no longer suffices: we have to deal with the fact that there may be multiple paths
from a leaf node (a variable reference) of our DAG up to the root of the DAG. That
is, any term can have multiple parents. However, we can modify our upwards-copying
algorithm in the standard way one operates on DAGs: we search upwards along all
possible paths, marking nodes as we encounter them. The first time we copy up into
a noden, we replicate it, as in the previous tree algorithm, and continue propagating
the copy operation up the tree to the (possibly multiple) parents ofn. However, before
we move upwards fromn, we first store the copyn′ away in a “cache” field ofn. If
we later copy up inton via its other child, the presence of the copyn′ in the cache slot
of n will signal the algorithm that it should not make a second copy ofn, and should
not proceed upwards fromn—that has already been handled. Instead, it mutates the
existing copyn′ and returns immediately.

The code to copy a binary DAG, replacing a single leaf, is shown in Fig. 3.
Every node in the DAG maintains a set of its uplinks; each uplink is represented as
a 〈parent, relation〉 pair. For example, if nodec is the left child of nodep, then the pair
〈p, left-child〉 will be one of the elements inc’s uplink set.

The upcopy algorithm explores each edge on all the paths between the root of the
DAG and the replaced leaf exactly once; marking parent nodes by depositing copies in
their cache slots prevents the algorithm from redundant exploration. Hence this graph-
marking algorithm runs in time proportional to the number of edges,not the number
of paths (which can be exponential in the number of edges). Were we to “unfold” the
DAG into its equivalent tree, we would realise this exponential blowup in the size of
the tree, and, consequently, also in the time to operate upon it. Note that, analogously
to the tree-copying algorithm, the new DAG shares as much structure as possible with

4

Procedure upcopy(childcopy, parent, relation)
if parent.cache is empty then

parcopy := NewNode()
if relation is "left child" then

parcopy.left := childcopy
parcopy.right := parent.right

else
parcopy.right := childcopy
parcopy.left := parent.left

parent.cache := parcopy
for-each <grandp,gprel> in parent.uplinks do

upcopy(parcopy, grandp, gprel)
else

parcopy := parent.cache
if relation is "left child"
then parcopy.left := childcopy
else parcopy.right := childcopy

Figure 3: Procedureupcopy makes a copy of a binary DAG, replacing therelation
child (left or right) ofparentwith childcopy.

the old DAG, only copying nodes along the spine (in the DAG case, spines) from the
replaced leaf to the root.

After an upcopy has been performed, we can fetch the result DAG from the cache
slot of the original DAG’s root. We must then do another upwards search along the
same paths to clear out the cache fields of the original nodes that were copied, thus
resetting the DAG for future upcopy operations. (Alternatively, we can keep counter
fields on the nodes to discriminate distinct upcopy operations, and perform a global
reset on the term when the current-counter value overflows.) This cache-clearing pass,
again, takes time linear in the number of edges occurring on the paths from the copied
leaf to the root:

Procedure clear(node)
if node.cache = nil then return
node.cache := nil
for-each <par,rel> ∈ node.uplinks do

clear(par)

5 Reduction onλ-DAGs

We now have the core idea of our DAG-basedβ-reduction algorithm in place, and can
fill in the details specific to ourλ-expression domain.

Basic representation We will represent aλ-calculus term as a rooted DAG.

5

Sharing Sharing will be generally allowed, and sharing will berequiredof variable-
reference terms. That is, any given variable will have no more than one node in the
DAG representing it. If one variable is referenced by (is the child of) multiple par-
ent nodes in the graph, these nodes simply will all contain pointers to the same data
structure.

Bound-variable short-cuts Every λ-expression node will, in addition to having a
reference to its body node, also have a reference to the variable node that it binds.
This, of course, is how we navigate directly to the leaf node to replace when we begin
the upcopy for aβ-reduction operation. Note that this amounts to anα-uniqueness
condition—we require that everyλ-expression bind a unique variable.

Cache fields Every application node has a cache field that may either be empty or
contain another application node.λ-expression nodes do not need cache fields—they
only have one child (the body of theλ-expression), so the upcopy algorithm can only
copy up through aλ-expression once during aβ-reduction.

Uplinks Uplinks are represented by〈parent, relation〉 pairs, where the three possi-
ble relations are “λ body,” “application function,” and “application argument.” For
example, if a noden has an uplink〈l, λ-body〉, thenl is a λ-expression, andn is its
body.

Copying λ-expressions With all the above structure in place, the algorithm takes
shape. To perform aβ-reduction of redex(λx.b) a, whereb anda are arbitrary sub-
terms, we simply initiate anx 7→ a upcopy. This will copy up through all the paths
connecting top nodeb and leaf nodex, building a copy of the DAG witha in place of
x, just as we desire.

Application nodes, having two children, are handled just as binary-tree nodes in
the general DAG-copy algorithm discussed earlier: copy, cache & continue on the first
visit; mutate the cached copy on a second visit.λ-expression nodes, however, require
different treatment. Suppose, while we are in the midst of performing the reduction
above, we find ourselves performing ac 7→ c′ upcopy, for some internal nodec, into a
λ parent ofc: λy.c. The general structure of the algorithm calls for us to make a copy
of theλ-expression, with bodyc′. But we must also allocate a fresh variabley′ for our
newλ-expression, since we require allλ-expressions to bind distinct variables. This
gives usλy′.c′. Unfortunately, if old bodyc contains references toy, these will also
occur inc′—noty′. We can be surec′ contains no references toy′, sincey′ was created
afterc′! We need to fix up bodyc′ by replacing all its references toy with references
to y′.

Luckily, we already have the mechanism to do this: before progressing upwards to
the parents ofλy.c, we simply initiate ay 7→y′ upcopy through the existing DAG. This
upcopy will proceed along the paths leading from they reference, up through the DAG,
to theλy.c node. If there are such paths, theymustterminate on a previously-copied
application node, at which point the upcopy algorithm will mutate the cached copy and
return.

6

Why must these paths all terminate on some previously copied application node?
Because we have already traversed a path fromx up to λy.c, copying and caching
as we went. Any path upwards from they reference must eventually encounterλy.c,
as well—this is guaranteed by lexical scope. The two paths must, then, converge on
a common application node—the only nodes that have two children. That node was
copied and cached by the originalx-to-λy.c traversal.

When they 7→y′ upcopy finishes updating the new DAG structure and returns, the
algorithm resumes processing the originalc 7→c′ upcopy, whose next step is to proceed
upwards with a(λy.c) 7→ (λy′.c′) upcopy to all of the parents ofλy.c, secure that the
c′ sub-DAG is now correct.

The single-DAG requirement We’ve glossed over a limitation of the uplink repre-
sentation, which is that a certain kind of sharing is not allowed: after aβ-reduction, the
original redex must die. That is, the model we have is that we start with aλ-calculus
term, represented as a DAG. We choose a redex node somewhere within this DAG,
reduce it, andalter the original DAG to replace the redex with the contractum. When
done, the original term has been changed: where the redex used to be, we now find
the contractum. What wecan’t do is choose a redex, reduce it, and then continue to
refer to the redex or maintain an original, unreduced copy of the DAG. Contracting a
redex kills the redex; the term data structure is not “pure functional” or “persistent” in
the sense of the old values being unchanged. (As we discuss later, we can, however,
“clone” a multiply-referenced redex, splitting the parents between the original and the
clone, and then contract only one of the redexes.)

This limitation is due to the presence of the uplinks. They mean that a subterm
can belong to only one rooted DAG, in much the same way that the backpointers in
a doubly-linked list mean that a list element can belong to only one list (unlike a
singly-linked list, where multiple lists can share a common tail). The upcopy algo-
rithm assumes that the uplinks exactly mirror the parent→child downlinks, and traces
up through all of them. This rules out the possibility of having a node belong to multi-
ple distinct rooted DAGs, such as a “before” and “after” pair related by theβ-reduction
of some redex occurring within the “before” term.

Hence the algorithm, once it has finished the copying phase, takes the final step
of disconnecting the redex from its parents, and replacing it with the contractum. The
redex application node is now considered dead, since it has no parents, and can be
removed from the parent/uplink sets of its children and deallocated. Should one of its
two children thus have its parent set become empty, it, too, can be removed from the
parent sets of its children and deallocated, and so forth. Thus we follow our upwards-
recursive construction phase with a downwards-recursive deallocation phase.

It’s important to note that this deallocation phase is not optional. A dead node
must be removed from the parent sets of its children, lest we subsequently waste time
doing an upcopy from a child up into a dead parent during a later reduction. Failing
to deallocate dead nodes would also break the invariants of the data structure, such as
the requirement that uplinks mirror the downlink structure, or the fact that every path
upwards from a variable reference must encounter that variable’s bindingλ-node.

7

Termination and the top application Another detail we’ve not yet treated is termi-
nation of the upcopy phase. One way to handle this is simply to check as we move up
through the DAG to see if we’ve arrived at theλ-expression being reduced, at which
point we could save away the new term in some location and return without further
upward copying. But there is an alternate way to handle this. Suppose we are contract-
ing redex(λx.b)n, for arbitrary sub-termsb andn. At the beginning of the reduction
operation, we first check to see ifx has no references (an easy check: is its uplink set
empty?). If so, the answer isb; we are done.

Otherwise, we begin at theλ-expression being reduced and scan downwards from
λ-expression to body, until we encounter a non-λ-expression node—that is, a variable
or an application. If we halt at a variable, itmustbex—otherwisex would have no
references, and we’ve already ruled that out. This case can also be handled easily:
we simply scan back through this chain of nestedλ-expressions, wrapping freshλ-
expressions aroundn as we go.

Finally, we arrive at the general case: the downward scan halts at the topmost
application nodea of sub-termb. We make an identical copya′ of a, i.e. one that
shares both the function and argument children, and installa′ in the cache slot ofa.

Now we can initiate anx 7→ n upcopy, knowing that all upwards copying must
terminate on a previously-copied application node. This is guaranteed by the critical,
key invariant of the DAG: all paths from a variable reference upward to the rootmust
encounter theλ-node binding that variable—this is simply lexical scoping in the DAG
context. The presence ofa′ in the cache slot ofa will prevent upward copying from
proceeding abovea. Nodea acts as a sentinel for the algorithm; we can eliminate the
root check from the upcopy code, for time savings.

When the upcopy phase finishes, we passa′ back up through the nested chain of
λ-expressions leading froma back to the topλx.b term. As we pass back up through
eachλ-expressionλy.t, we allocate a freshλ-expression term and a fresh variabley′

to wrap around the valuet′ passed up, then perform ay 7→ y′ upcopy to fix up any
variable references in the new body, and then pass the freshly-createdλy′.t′ term on
up the chain.

(Note that the extended example shown in Sec. 7 omits this technique to simplify
the presentation.)

6 Fine points

These fine points of the algorithm can be skipped on a first reading.

Representing uplinks A node keeps its uplinks chained together in a doubly-linked
list, which allows us to remove an uplink from a node’s uplink set in constant time.
We will need to do this, for example, when we mutate a previously copied noden to
change one of its children—the old child’s uplink ton must be removed from its uplink
set.

We simplify the allocation of uplinks by observing that each parent node has a fixed
number of uplinks pointing to it: two in the case of an application and one in the case

8

of a λ-expression. Therefore, we allocate the uplink nodes along with the parent, and
thread the doubly-linked uplink lists through these pre-allocated nodes.

An uplink doubly-linked list elementappearsin the uplink list of the child, but
the elementbelongsto the parent. For example, when we allocate a new application
node, we simultaneously allocate two uplink items: one for the function-child uplink
to the application, and one for the argument-child uplink to the application. These
three data structures have identical lifetimes; the uplinks live as long as the parent
node they reference. We stash them in fields of the application node for convenient
retrieval as needed. When we mutate the application node to change one of its children,
we also shift the corresponding uplink structure from the old child’s uplink list to the
new child’s uplink list, thus keeping the uplink pointer information consistent with the
downlink pointer information.

The single-reference fast path Consider a redex(λx.b) n, where theλ-expression
being reduced has exactly one parent. We know what that parent must be: the redex
application itself. This application node is about to die, when all references to it in the
term DAG are replaced by references to the contractum. So theλ-expression itself is
about to become completely parentless—i.e., it, too, is about to die. This means that
any node on a path fromx up to theλ-expression will also die. Again, this is the key
invariant provided by lexical scope: all paths from a variable reference upward to the
root mustencounter theλ-expression binding that variable. So if theλ-expression has
no parents, then all paths upwards from its variable must terminate at theλ-expression
itself.

This opens up the possibility of an alternate, fast way to produce the contractum:
when theλ-expression being reduced has only one parent, mutate theλ-expression’s
body, altering all ofx’s parents to refer instead ton. We do no copying at all, and may
immediately take theλ-expression’s body as our answer, discarding theλ-expression
and its variablex (in general, aλ-expression and its variable are always allocated and
deallocated together).

Opportunistic iteration The algorithm can be implemented so that when a node is
sequencing through its list of uplinks, performing a recursive upcopy on each one, the
final upcopy can be done with a tail recursion (or, if coded in a language like C, as a
straight iteration). This means that when there is no sharing of nodes by parents, the
algorithm tends to iteratively zip up chains of single-parent links without pushing stack
frames.

7 Extended example

We can see the sequences of steps taken by the algorithm on a complete example in
Fig. 4. Part 4(a) shows the initial redex, which is(λx.(x(λy.x(uy)))(λy.x(uy))) t,
where the(λy.x(uy)) subterm is shared, andt andu are arbitrary, unspecified sub-
terms with no free occurrences ofx or y. To help motivate the point of the algorithm,
imagine that the sub-termst andu are enormous—things we’d like to avoid copying or
searching—and that theλx node has other parents besides application1, so we cannot

9

@1

λx

x

y

3

@

4

λy

@5

2

@

@

u

t

(a)

t

x

y

3

@

4

λy

@5

2

@

@

u

@3’

(b)

t

@2
@2’

x

y

3

4

λy

@5

@

@

u

@3’

(c)

t

@2
@2’

4@4’@

x

y

3

λy

@5

@

u

@3’

(d)

t

@2
@2’

4@4’@

λyλy’

x

y

3

@5

@

u

@3’

(e)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3@

u

@3’

y’

(f)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3@

u

@3’

y’

(g)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3@

u

@3’

y’

(h)

t

@2
@2’

4@4’@

λyλy’

@5@5’
x

y

3@

u

@3’

y’

(i)

t

@2’

4’@

@5’

λy’

u

@3’

y’

(j)

Figure 4: A trace of a bottom-up reduction of term(λx.(x(λy.x(uy)))(λy.x(uy)))t,
where the(λy.x(uy)) term is shared, and sub-termst andu are not specified.

blindly mutate it without corrupting what the other parents see. (If theλx nodedoesn’t
have other parents, then the single-reference fast-path described in the previous section
applies, and weareallowed to mutate the term, for a very fast reduction.)

In the following subfigure, 4(b), we focus in on the body of theλ-expression being
reduced. We iterate over the parents of its variable referencex, doing anx 7→ t up-
copy; this is the redex-mandated substitution that kicks off the entire reduction. The
first parent ofx is application 3, which is copied, producing application3′, which has
function childt instead of the variable referencex, but has the same argument child as
the original application 3, namely theλy term. Dotted lines show new DAG structure;
arrowheads on old structure indicate the recursive control flow of the algorithm’s up-
copy steps. The copy3′ is saved away in the cache slot of application 3, in case we
upcopy into 3 from its argument child in the future.

Once we’ve made a copy of a parent node, we must recursively perform an upcopy
for it. That is, we propagate a3 7→ 3′ upcopy to the parents of application3. There is
only one such parent, application 2. In subfigure 4(c), we see the result of this upcopy:
the application2′ is created, with function child3′ instead of3; the argument child,λy,

10

is carried over from the original application2. Again, application2′ is saved away in
the cache slot of application2.

Application 2 is the root of the upcopy DAG, so once it has been copied, control
returns to application3 and its3 7→ 3′ upcopy. Application 3 has only one parent, so
it is done. Control returns tox and itsx 7→ t upcopy, which proceeds to propagate
upwards to the second parent ofx, application 4.

We see the result of copying application 4 in subfigure 4(d). The new node is4′,
which has function childt where4 hasx; 4′ shares its argument child, application
5, with application4. Once again, the copy4′ is saved away in the cache slot of
application4.

Having copied application4, we recursively trigger a4 7→ 4′ upcopy, which pro-
ceeds upwards to the sole parent of application 4. We make a copy ofλy, allocating a
fresh variabley′, with the new body4′. This is shown in subfigure 4(e).

Since the newλy′ term binds a fresh variable, while processing theλy term we
must recursively trigger ay 7→ y′ upcopy, which begins in subfigure 4(f). We iterate
through the parents of variable referencey, of which there is only one: application5.
This is copied, mapping childy to replacementy′ and sharing function childu. The
result,5′, is saved away in the cache slot of application5.

We then recursively trigger a5 7→ 5′ upcopy through the parents of application
5; there is only one, application4. Upon examining this parent (subfigure 4(g)), we
discover that4 already has a copy,4′, occupying its cache slot. Rather than create a
second, new copy of4, we simply mutate the existing copy so that its argument child
is the new term5′. Mutating rather than freshly allocating means the upcopy proceeds
no further; responsibility for proceeding upwards from4 was handled by the thread of
computation that first encountered it and created4′. So control returns to application
5, which has no more parents, and then toy, who also has no more parents, so control
finally returns to theλy term that kicked off they 7→y′ copy back in subfigure 4(f).

In subfigure 4(h), theλy term, having produced its copyλy′, continues the upcopy
by iterating across its parents, recursively doing aλy 7→ λy′ upcopy. The first such
parent is application3, which has already been copied, so it simply mutates its copy to
have argument childλy′ and returns immediately.

The second parent is application2, which is handled in exactly the same way in
subfigure 4(i). Theλy term has no more parents, so it returns control to application
4, who has no more parents, and so returns control to variable referencex. Sincex
has no more parents, we are done. The answer is application2′, which is shown in
subfigure 4(j). We can change all references to application1 in the DAG to point,
instead, to application2′, and then deallocate1. Depending on whether or not the
children of application1 have other parents in the DAG, they may also be eligible for
deallocation. This is easily performed with a downwards deallocation pass, removing
dead nodes from the parent lists of their children, and then recursing if any child thus
becomes completely parentless.

11

8 Formal specification and correctness

In this section, we will more formally specify the core of the bottom-up reduction
algorithm. A precise, fully-detailed argument establishing its correctness is beyond
the scope of this paper; we provide only the structural skeleton, eliding details and
simplifying the formalisations, and rely on the reader to interpolate where necessary.

We proceed by defining the essential core of the algorithm as a pair of math
functions, about which we can reason; this definition strips away details of the data-
structures (such as the use of doubly-linked lists,etc.) in favor of using simple mathe-
matical structures such as sets, graphs and partial functions. We will takeλ-terms to be
graphs: a term is a finite DAG with labelled edges and nodes. Every vertex is labelled
as either aλ, an application, or a variable-reference vertex. We will frequently usel
for λ vertices,a for applications,x, y for variable vertices, andn for general vertices.
Edges are labelled with one of{body, fun, arg,bvar}. We will frequently use a “dot-
ted accessor” notation,e.g., writing l.body for the vertex at the end of the (presumed
unique)body edge beginning at nodel. A λ-node is connected to its body by abody
edge; and to its bound variable by abvar edge. An application node is connected to
its function by afun edge; and to its argument by anarg edge. We assume enough
constraints on labelling and graph structure to preserve the syntactic structure of theλ
calculus,e.g., the out-degree of a variable-reference node is zero. We also assume a
lexical-scoping resolution of variable reference,i.e., that binding dominates reference:
any path from the root to a variable vertex must go through theλ vertex binding that
variable.

DefineΛdag to be the set of DAGs satisfying these constraints. The classicλ cal-
culus is defined in terms of trees; defineΛtree to be the standard realisation ofλ-terms
as abstract-grammar trees, with variables drawn from the variable-labelled vertices of
Λdag. The idea behind our DAGs is that they are simply a compact representation for
these trees, so we should define the “meaning” of a DAG simply to be the tree to which
it “unfolds.” We specify this by defining a DAG-to-tree conversion function, unfold:

unfold(g, x) = x
unfold(g, a) = unfold(g, a.fun) @ unfold(g, a.arg)
unfold(g, l) = λx . unfold(g, l.body)

wherex = l.bvar

(Here, we take “n1 @ n2” to mean the tree whose root is an application node with
function childn1 and argument childn2.) This recursively-defined function is well-
defined, as unfold’s domain of finite DAGS is well ordered.

The unfold function helps makes precise the correctness requirement for our al-
gorithm: reducing a subterm in a DAG, and then unfolding the result, should be the
same as unfolding the original DAG and then reducing the corresponding subterms in
the tree. Notice that if a redex in a DAG has multiple parents (or, generally, multiple
paths to the root), then there will be multiple corresponding redexes in the unfolded
tree; reducing this redex in the DAG is equivalent to reducing all of the corresponding
redexes in the tree.

12

In order to connect the state of the graph at intermediate points in the algorithm to
the hoped-for final result, we also need to define a “predictive unfold” function:

Punfold(g,n,σ) =
if new?(n) then
case n of

x => x
l => λ x . (Punfold(g,l.body,σ))

where x = l.bvar
a => (Punfold(g,a.fun,σ)) @ (Punfold(g,a.arg,σ))

else σ(unfold(g,n))

Punfold takes a graph, a root vertexn, and a substitutionσ. We model a substitution as
a partial function from (variable) nodes toΛtree terms:

σ ∈ Subst= Node ⇀ Λtree.

Punfold has two “modes,” depending on whether it is givenold graph structure (that
is, pre-reduction), ornewgraph structure (that is, created as part of the possibly on-
going reduction process). Punfold recursively unfolds new structure, but when it traces
into old structure, it unfoldsand then appliesσ to the old sub-DAG—that is, Punfold
“predicts” what the algorithm will do when it gets to that sub-DAG. We can answer
Punfold’s old/new question by assuming the original, pre-reduction graph is available;
we’ll refer to this graph asg0. (Note that Punfold passesσ down past binding oc-
currences as it recurses. This is safe to do, as we will restrict the domain ofσ to be
old structure, so that passing these substitutions into the scope of forms that bind new
variables cannot cause capture.)

With these descriptive tools in place, we can now analyse the algorithm’s execution.
Punfold(g0, b, [x 7→ n]) produces the contractum for DAG-redex(λx.b)n. Further,
the key algorithmic invariant involves Punfold, which will produce the same result
throughout the processing of the reduction—the predictive part of Punfold covers parts
of the DAG the algorithm has not yet processed. But as the algorithm progresses,
Punfold will do less and less prediction, and more and more simple unfolding. By the
end of the algorithm, Punfold will do no prediction at all (that is, no element of old
structure will lay within the domain of the initial substitution), so that Punfold will be
equivalent to unfold on the final result. So, we may conclude that unfolding the final
result is what we wanted.

This, coupled with a progress result to guarantee termination on a finite DAG, pro-
vides us a correctness claim for the algorithm.

Fig. 5 presents the core algorithm as a pair of mathematical functions: Sub, which
implements substitution, and uc, which implements the upcopy operation; they are
defined in the same sort of “pseudo functional programming language” style we used
for Punfold. (Note that the auxiliary function, iter, to be well-defined, must remove
elements fromS in some determined order.) We writeparlinks(old, g0) to mean the
set of parent/edge-label pairs describingold’s uplinks in the original graphg0. We use
the expression “freshnodelabel” to mean the selection of a fresh vertex, labelledlabel,
that is not occurring in the implied current graph.

13

Sub(g,old ,new ,top ,σ,ip) =
iter λ(par,rel) g . uc(new,par,rel, top,σ,ip ′,g)

g
parlinks(old,g0)

where ip ′ = ip ∪ {old }
iter f g ∅ = g
iter f g ({x}∪S) = iter f (f x g) S

uc(new,l,body,top,σ,ip ,g) =
(* Upcopy into λ node l along body edge *)

b = l.body be = l
body−→ b

y = l.bvar y’ = freshnode var
g += ({y′}, ∅, {(y, y′)}, {be})
g = Sub(g, y, y’, b, [y 7→y′]σ, ip)
l’ = freshnode λ

g += ({l′}, {l′ bvar−→y′, l′
body−→ new }, {(l, l′)}, ∅)

return Sub(g, l, l’, top, σ, ip)

uc(new, a, fun, top, σ, ip , g) =
(* Upcopy into app node a along fun edge *)

g.T += {a fun−→a.fun}
if (a,a’) ∈ g.ρ then

replace a′ fun−→n edge

with a′ fun−→new edge
in g

return g
else

a’ = freshnode app
g += ({a′}, {a′ fun−→new , a′

arg−→a.arg}, {(a, a′)}, ∅)
return Sub(g, a, a’, top , σ, ip)

uc(new, a, arg, top, σ, ip , g) =
(* Upcopy into app node a along arg edge *)
analogous tofun-edge case

Figure 5: The core substitution algorithm, in abstract form.

14

The algorithm operates on graphsg that are represented by a quadruple(N, E, ρ, T)
of labelled nodes, labelled edges, cacheρ, and visited-edge setT ; the cache stores the
mapping from old, copied nodes to their new nodes, as they are created by the upcopy
steps. The cache represents the collective behaviour of the cache slot in the algorithm.
We model these with finite, partial functions from nodes to nodes:

ρ ∈ Cache = Node ⇀ Node.

Where the algorithm stores an itemn′ in the cache field of some noden, the mathemat-
ical function adds an(n, n′) entry to the current cacheρ. (Note that the cache always
maps old nodes, fromg0, to new nodes.) To aid the statement of invariants, the abstract
algorithm caches theold 7→ newtranslations forall copied nodes, not just application
nodes (as the actual algorithm does). We use dotted-accessor notation,g.ρ, to write the
cache of a given graphg.

The functions modelling the algorithm track extra values (σ, ip, andg.T) that are
not present in the algorithm. These extra values are needed to state the key pre- and
post-conditions of the functions; they do not contribute to the functions’ final value,
and so can be omitted from an actual implementation. The important pre- and post-
conditions for Sub and uc are:

• CG[σ, g]
“Cache is good.” Entries in the cache are related by Punfold: if we see an(n, n′)
entry in the cacheg.ρ, thenn′ represents a substitution that has been, or is in
the midst of being, performed onn. That is, Punfold(g, n′, σ) α= σ unfold(g, n).
Because the substitution may not be complete, we must unfoldn′ with thepre-
dictiveunfolder, which will interpolate the uncompleted parts of the substitution
into the result tree for us. The reason this relation needs a general substitution
is because of the extra copying cascades triggered when the algorithm copies up
through aλ-expression, as described in Sec. 5. The extray 7→y′ variable substi-
tutions we must perform get lumped into the substitution underneath the copied
λ-expression (but are not neededabovethe copiedλ-expression). Again, the
substitutions are passed around the functions primarily as bookkeeping device
that allows us to assert the necessary invariants at different points in the function
definition. CG is an invariant across both Sub and uc.

• CMS[g]
“Cache mirrors structure.” That is, new graph structure “mirrors” old graph

structure. If two connected nodesn
lbl−→ m are both in the domain of the

cache, then their images in the cache are connected by the same kind of edge:

(g.ρ n) lbl−→ (g.ρm). This means that if we start at a node ing0 and trace out a
path downwards, always confining ourselves to nodes in the domain of the cur-
rent cache, then the image of this path in the cache traces out an identical path
through new structure ing. CMS is an invariant across both Sub and uc.

• CPET[g, ip]
“Cached-node parent edges traced.” If we have visited (hence cached) a node
n, then all parent edgesp → n have been traced (that is, are ing.T), unless (1)
n is currently “in-process (n ∈ ip), or (2) n = top0, the top value passed to

15

the initial Sub call.CPET is an invariant across both Sub and uc. Theip set is
how we handle the fact that an upcopy triggered by aλ cascade can terminate
on an in-process node, who is in the cache, but whose processing is currently
unfinished.

• TPC[g, ip]
“Traced parents cached.” Furthermore, if we have traced up through ap → n
edge (that is, if the edge is in the graph’s traced setg.T), then the parentp is in
the cache.TPC is an invariant across both Sub and uc.

• ANV[g, t, b, ip]
“All nodes visited.” Any noden on a patht−→∗ b from top nodet to bottom
nodeb in g0 must be in the cache, where we require that then−→∗ b suffix of the
path beip-free. (Note that whenip is empty, this simply says that all nodes on all
paths fromt to b are in the cache.)ANV[g, top, old, ip] andANV[g, top, par, ip]
are post-conditions of Sub and uc, respectively.

• Monotonicity
For both Sub and uc, all components of the input graph are preserved in the
output graph, except for the edge set:g.N ⊂ g′.N ∧ g.ρ ⊂ g′.ρ ∧ g.T ⊂ g′.T ,
whereg′ is the output graph. Also, we have the invariant that the graph always
contains the original graph:g0 ⊂ g.

These are not all the necessary pre- and post-conditions, but they are the major ones.
The main “entry point” for the reduction algorithm is the Sub(g, old, new, top, σ, ip)

function, which performs an[old 7→ new] substitution ing, returning the augmented
graph. Consider the initial call to Sub, in response to a desire to reduce some redex
(λx.n)m. Let m̂ be the unfoldedΛtree term for m. Assume thattop is the topmost
application undern—if there is no such node, then simple special-cases apply, as dis-
cussed in Sec. 5. Let

top′ = a fresh node not ing0,

ρ′ = ρ ∪ {(x,m), (top, top′)}, and

e′ = {top′ fun−→ top.fun, top′
arg−→ top.arg}

g1 = g0 ∪ ({top′}, e′, ρ′, ∅).

Then Sub(g1, x,m, top, [x 7→m̂], ∅) satisfies the preconditions.
To see the rough picture of how the post-conditions give us the proper substitution,

consider that after Sub returns,ANV tells us that all nodes on the paths betweentop
andx are in the cache; this, together with the “cache mirrors structure” post-condition
and the fact thatg.ρ x = m, tells us the new term is what we wanted.

Sub is a fairly simple function; it just uses the uc function to initiateold 7→ new
upcopies through every link fromold up to some parent. The presence oftop in the
cache causes all of these upcopies to terminate; the new graph structure they create
is entered into the cache. While the upcopies are being performed,old is kept in the
in-process setip.

16

The uc function is defined in Fig. 5 in three cases: upcopying into aλ-expression,
upcopying through afun link into an application node, and upcopying through anarg
link into an application node (this last case is not given; it is entirely similar to thearg-
link case). Note how, in theλ case, the pre-Sub code sets up the preconditions for the
first Sub call, which triggers they 7→ y′ variable-substitution cascade—in particular,
the [y 7→ y′] mapping must be added to the prediction substitutionσ. This step sets
up the pre-conditions for the upward continuation of the algorithm, which substitutes
λy′.newfor λy.old, completing the upcopy.

9 Experiments

To gain experience with the algorithm, a pair of Georgia Tech undergraduates imple-
mented threeβ-reduction algorithms in SML: the bottom-up algorithm (BUBS), a re-
ducer based on the suspensionλ calculus (SLC, see Sec. 10.1), and a simple, base-line
reducer, based on the simple top-down, blind-search recursive procedure described in
Sec. 1. They also built a tool-chain that allowed us to convert between a concrete s-
expression form for terms and the particular representations required for the various
algorithms. This allowed us to test the algorithms by running all three on randomly
constructed trees, and comparing the results for discrepancies.

We then implemented two normalisers for each algorithm, one evaluating to normal
form; the other, to weak-head normal form. The normalisers are called with an integer
“reduction budget”—after performing that many reductions, they give up.

We first ran a few tests designed to show the bottom-up algorithm at its best and
worst. The first test reduced a “chain of pearls” stack of applications, 20 deep, with
full sharing and the identity combinatorI = λx.x at the leaf:

@

@

I

::

@

This set up the bottom-up algorithm to do very well, since it can exploit the sharing to
achieve exponential speedup. (Note, in particular, that the bottom-up algorithm is what
the graph-reduction community calls “fully lazy.” That is, reductions on dynamically-
created shared structure are seen by all parents of that structure.)

Second, we normalised a 40,000-long chain of the form(λy.λx.λx . . . λx.y) λz.z.
This is an example where even the naı̈ve algorithm can do well, as there is no search
involved—the branch factor of a chain of nestedλ-expressions is one. So this shows
off the “constant factors” of the algorithm.

Third, we normalised a full binary tree, 20 deep, of applications, with identity
combinators at the leaves. This is the same term as the one in the first test, but with no
sharing of structure. This is designed to show the algorithm at its worst, since there is
no sharing at all during the entire normalisation process.

All normalisations were executed with a budget of 1,000 reductions. Here are the
timings from these runs:

17

20pearls 40kλ tree20
BU 0+0 15+0 9+84
BU-nocheck 0+0 318+1433 10+80
SLC N/A 70+73 16+72
Simple N/A 364+1536 1+3

The “BU-nocheck” entries are for the bottom-up algorithm with the fast-path single-
parent optimisation (described in Sec. 6) turned off. The tests were run using SML/NJ
110.42 on a 667Mhz G4 Powerbook with 512MB of PC133 RAM under Mac OS X
10.2.2. The 20-length chain-of-pearls entry could not be run for SLC or the simple
algorithm, as it requires a representation that can handle DAGs; the numbers for these
algorithms are essentially those for the equivalent, unfolded 20-deep full application
tree in the third column. Each pair of numberse + g is the time in millisecondse to
execute the algorithm, and the timeg spent in garbage collection. Note that the bottom-
up algorithm is able to polish off the 40,000-element chain of nestedλ-expressions
easily, as this can be handled by the single-parent fast path in constant time.

Experience with these runs, and others, led us to implement a tightly coded C im-
plementation of the same three algorithms to get more accurate measurements. The
SML version had several issues that affected measurement. The implementation con-
tains some redundant safety tests that the type system is unable to eliminate. SML also
limits our ability to do detailed layout of the data structures. For example, by allocating
the uplink structure in the same block of storage as the parent node to which it refers,
we can move from the uplink to the referenced parent node with pointer arithmetic (i.e.,
on-processor), instead of needing to do a slower memory load. Similarly, if we allocate
aλ-expression and its bound variable together, in a single memory block, we can move
between these two structures without doing memory traffic. Finally, C eliminated our
dependence on the garbage collector. The bottom-up algorithm intrinsically does its
own storage management, so we don’t need a GC. We get a fair amount of GC over-
head in our SML implementation, SML/NJ, as it allocates even procedure call frames
in the heap.

The SLC and simple reducers written in C managed storage with the Boehm-
Demers-Weiser garbage collector, version 6.2. We compiled the code with gcc 2.95.4
-g -O2 -Wall and performed the test runs on an 800 MHz PIII (256 KB cache), 128
MB RAM, Debian GNU/Linux 3.0 system. The timings for these runs are shown in
Fig. 6. The system gave us a measurement precision of 10 ms; an entry of 0ms means
below the resolution of the timer—i.e., less than 10ms; a measurement of∞ means
the measurement was halted at 10 cpu-minutes (or, in one case, at 2min 20sec due to
severe page thrashing).

Fact entries are factorial terms, with Church-numeral encodings. Nasty-I is a com-
plex, hand-generated, tree of K and S combinators that reduces to I; the tree contains
20,152 nodes. The “pearli” and “treei” terms are as described for the SML timings.

We caution the reader from drawing too much from these timings. They are fairly
preliminary. We are undertaking to perform a larger series of tests, in order to get a
better understanding of the algorithm’s performance.

We also do not wish to claim that the bottom-up algorithm is a competitive stand-
alone graph-reduction system. Modern graph-reducers are highly-engineered systems

18

CPU time (ms) # reductions
BUBS SLC Simple BUBS Tree

(fact 2) 0 10 10 123 180
(fact 3) 0 20 20 188 388
(fact 4) 0 40 ∞ 286 827
(fact 5) 0 160 ∞ 509 2045
(fact 6) 10 860 ∞ 1439 7082
(fact 7) 20 5620 ∞ 7300 36180
(fact 8) 190 48600 ∞ 52772 245469
nasty-I 30 740 ∞ 7300 8664
pearl10 0 N/A N/A 10 N/A
pearl18 0 N/A N/A 18 N/A
tree10 0 0 0 1023 1023
tree18 740 2530 1980 262143 262143

Figure 6: Timings for C implementations.

that employ a battery of static analyses and run-time optimisations to gain performance.
The bottom-up reducer, in contrast, embodies a single idea. Perhaps this idea could be
applied to the production of a competitive graph-reducer; we chose term normalisation
simply as a generic task that would thoroughly exercise the reduction engines. We
are also quite willing to believe that a complex algorithm such as the read phase of
the suspensionλ calculus has opportunities for clever speedups that our simple imple-
mentation did not implement. Further, the experiments we performed do not show the
SLC algorithm at its best—it is specifically tuned to provide an extra capability that,
for applications such as theorem provers, can provide tremendous “application-level”
speedups: laziness. Normalisation examines the entire final term, thus eliminating
some of the benefit of SLC’s laziness.

That all said, the bottom-up algorithm is obviously very fast. Part of this speed
comes from “full laziness:” a reduction of a shared redex is shared by all the parents of
the redex. But this is not the whole story—the (fact 8) case does 1/5 of the reductions,
but gets a speedup of 256x, and the tree18 case has no sharing at all, but still manages a
speedup of 3.4x (over SLC, that is; the speedups over the simple reducer are different,
but the general picture is similar). This is primarily due to the elimination of blind
search, and consequent ability to share structureacrossa reduction step (as opposed to
within a term).

One of the striking characteristics of the bottom-up algorithm is not only how fast
it is, but how well-behaved it seems to be. The other algorithms we’ve tried have
fast cases, but also other cases that cause them to blow up fairly badly. The bottom-up
algorithm reliably turns in good numbers. We conjecture this is the benefit of being able
to exploit both sharing and non-sharing as they arise in the DAG. If there’s sharing,
we benefit from re-using work. If there’s no sharing, we can exploit the single-parent
fast path. These complementary techniques may combine to help protect the algorithm
from being susceptible to particular inputs.

19

10 Related work

A tremendous amount of prior work has been carried out exploring different ways to
implementβ-reduction efficiently. In large part, this is due toβ-reduction lying at the
heart of the graph-reduction engines that are used to execute lazy functional languages.
The text by Peyton Joneset al. [13] summarises this whole area very well.

However, the focus of the lazy-language community is on representations tuned for
execution, and the technology they have developed is cleverly specialised to serve this
need. This means, for example, that it’s fair game to fix on a particular reduction order.
For example, graph reducers that overwrite nodes rely on their normalisation order
to keep the necessary indirection nodes from stacking up pathologically. A compiler,
in contrast, is aλ-calculus client that makes reductions in a less predictable order, as
analyses reveal opportunities for transformation.

Also, an implementation tuned for execution has license to encode terms, or parts
of terms, in a form not available for examination, but, rather, purely for execution. This
is precisely what the technique of supercombinator compilation does. Our primary
interest at the beginning of this whole effort was instead to work in a setting where the
term being reduced is always directly available for examination—again, serving the
needs of a compiler, which wants to manipulate and examine terms, not execute them.

10.1 Explicit-substitution calculi

One approach to constructing efficientλ-term manipulators is to shift to a language
that syntactically encodes environments. The “suspensionλ calculus” developed by
Nadathuret al. [12] is one such example that has been used with success in theorem
provers and compilers. Being able to syntactically represent environments allow us
to syntactically encode term/environment pairs to represent closures. This meansβ-
reduction can be done in constant time, by simply producing a closure over theλ-
expression’s body in an environment mapping its variable to the redex’s argument term.

The point of doing so is laziness, of two particular forms. First, we can reduce a
closure term incrementally, doing only enough work to resolve whether its top-level is
a variable reference, an application or aλ-expression, while leaving any child terms
(such as the body of aλ-expression) suspended,i.e., explicit closures. Thus the work
of completely resolving a closure created by a reduction into a tree composed of simple
variable/application/λ-expression terms can be done on a pay-as-you-go basis. For ex-
ample, a theorem prover that wishes to compare two terms for equality can recursively
explore the terms, resolving on the fly, but abandon the recursive comparison as soon
as two subterms fail to match. By lazily resolving the tree, no work is done to resolve
parts that are not needed.

Second, the reduction system for the expanded language includes rules for merging
two substitution environments together before applying the single compound substitu-
tion to a term. This converts a double pass over the term into a single pass.

The great payoff for using a term-manipulation engine based on the SLC comes for
systems that can exploit laziness. A program that examines the entire tree produced
by a given reduction, however, is not going to benefit as much from the laziness. A

20

compiler, for example, is a program that typically “walks” the entire program structure
given to it, performing analyses and transforms on the structure.

SLC reduction, in the terms we’ve defined, uses “blind search” to find the variables
being substituted. This cost is mitigated by its ability to merge environments—it in-
creases the odds that searching down a particular link will turn up some variable that
needs to be replaced. On the other hand, this is, to some degree, just shifting work back
to the environment-merging calculations, which are not trivial.

The SLC also has strong barriers to sharing internal structure as a DAG. This is a
consequence of its representation of terms using de Bruijn indices, which are context-
dependent: a term with free variable references will have two distinct forms at two
different places in the tree. Again, this is somewhat mitigated by the SLC’s ability to
place a term in an environment and then produce a simple closure (which might contain
multiple references to the bound term) with that environment. However, by the time a
final, base term has been completely produced, all environments must be removed, and
so the replication has to be performed at some point.

On the other hand, if SLC terms are not resolved but instead left suspended, then a
different space issue arises: redundantly bound and unreferenced variable bindings can
persist in suspensions, causing space leaks. Eliminating these leaks requires trimming
environments, which is a time cost of its own.

The uplinkedλ-DAG representation explicitly provides for sharing, and does so in
a way that allows clients of the data structure to operate on the entire structurewithout
having to unfold it into its equivalent tree, an operation that could induce exponential
blowup in space. The issue of leaks due to unreferenced or redundant bindings does
not arise at all.

Finally, the SLC is a quite sophisticated algorithm. The fine details of its reduction
rules are fairly subtle and non-obvious. It requires transforming the term structure into
a related, but very distinct form: nameless terms, with new and complex non-terminals
expressing suspended reductions and their environments, in various states of merging.

SLC has been successfully employed inside a compiler to represent Shao’sFLINT

typed intermediate language, but the report on this work [15] makes clear the impres-
sive, if not heroic, degree of engineering required to exploit this technology for com-
piler internals—the path to good performance couples the core SLC representation with
hash consing as well as memoisation of term reductions.

The charm of the bottom-up technique presented here is its simplicity. The data
structure is essentially just a simple description of the basic syntax as a datatype, with
the single addition of child→parent backpointers. It generalises easily to the richer
languages used by real compilers and other language-manipulation systems. It’s very
simple to examine this data structure during processing; very easy to debug the reduc-
tion engine itself. In contrast to more sophisticated and complex representations such
as SLC, there are really only two important invariants on the structure: (1) all variables
are in scope (any path upwards from a variable reference to the root must go through
the variable’s bindingλ-expression), and (2) uplink backpointers mirror downlink ref-
erences.

21

10.2 Director strings

Director strings [7] are a representation driven by the same core issue that motivates our
uplinked-DAG representation: they provide a way to guide search when we perform a
β-reduction. In the case of director strings, however, one can do the search top-down.

At each application node, the term’s free variables are sorted by lexical height.
Then, each application node is annotated with a string of symbols drawn from the set
{/, \,∧, 0}, one symbol for each free variable. The symbol used for a given variable
tells if the variable occurs in the left child only, the right child only, both children, or
neither child, respectively. (The0 symbol is only used in degenerate cases.) These
strings provide the information needed to do top-down guided search, in a fashion
similar to the binary-tree insertion algorithm of Sec. 2.

Director strings, however, can impose a quadratic space penalty on our trees. The
standard example showing this is the termλx1 . . . λxn.(xn . . . x1). Uplinkedλ-DAGs
are guaranteed to have linear space requirements. Whether or not the space require-
ments for a director-strings representation will blow up in practice depends, of course,
on the terms being manipulated. But the attraction of a linear-space representation is
knowing that blow-up is completely impossible.

Like the suspensionλ calculus, director strings have the disadvantage of not be-
ing a direct representation of the original term; there is some translation involved in
converting aλ-calculus term into a director-strings form.

Director strings can be an excellent representation choice for graph-reducing nor-
malising engines. Again, we are instead primarily focussed on applications that require
fine-grained inter-reduction access to the term structure, such as compilers.

10.3 Optimal λ reduction

The theory of “optimalλ reduction” [10, 9, 6] (or, OLR), originated by Lévy and
Lamping, and developed by Abadi, Asperti, Gonthier, Guerrini, Lawall, Mairsonet al.,
is a body of work that shares much with bottom-upβ-reduction. Both representλ-terms
using graph structure, and the key idea of connecting variable-binders directly to value-
consumers of the bound variable is present in both frameworks—and for the same
reason, namely, from a desire that substitution should be proportional to the number of
references to the bound variable, removing the need to blindly search a term looking
for these references.

However, the two systems are quite different in their details, in fairly deep ways.
The “Lamping graphs” of optimalλ reduction add extra structure to the graph, in the
form of “croissants,” “brackets,” and “fan” nodes, to allow a novel capability:incre-
mentalβ-reduction. Reduction is not an atomic operation in OLR. It can be performed
in multiple steps; intermediate stages of the reduction are valid graphs. (The croissant
and bracket marks delimit the boundaries of a reduction step as they propagate through
the graph.) This is an enormous difference with our simple bottom-upβ-reduction
system—it is, essentially, an exciting and different model of computation from the one
based on the classicalλ calculus. However, it comes with a cost: the greatly increased
complexity of the graph structure and its associated operations. As Gonthier, Abadi
and Ĺevy state [6], “it seems fair to say that Lamping’s algorithm is rather complicated
and obscure.”

22

The details of this complexity have prevented OLR-based systems from being used
in practice. We note that it has been fourteen years since the original innovation of
Lamping graphs, and no compiler or theorem prover has adopted the technology, de-
spite the lure of guaranteed optimality and the very real need [15] of these systems for
efficient representations. (The OLR researchers themselves have implemented a graph-
reduction engine using the OLR algorithm, but, as we’ve stated, this application is not
our main concern, here.) In particular, in actual use, the croissant and bracket marks
can frequently pile up uselessly along an edge, tying up storage and processing steps.
It also makes it difficult to “read” information from the graph structure. In this respect,
OLR remains the province of theoreticians, not implementors.

Optimalλ reduction comes with a great deal of theoretical underpinnings. Of par-
ticular note is that it makes a claim to optimality, in terms of using sharing to guar-
antee the minimal number of reductions. We make no such claim; it is clear that the
bottom-up algorithm isnot optimal, in the narrow technical sense that it will repli-
cate someλ-terms that would not be replicated by an OLR reducer. Again, the OLR
reducer would achieve this sharing by inserting fan, bracket and croissant nodes into
the graph—greatly complicating the graph structure and readback problem. Asperti
and Guerrini’s comprehensive text [1] devotes fifty pages to the topic of readback; it
is not a trivial issue. Further, the accumulation of croissant and bracket nodes during
reduction is not currently well understood or characterised, so OLR’s optimality of
reductions must be offset by this accompanying cost.

OLR work may yet well lead to the development of practical reduction techniques
that exploit the sharing of Lamping graphs, but we are not there yet. A weaker engi-
neering goal is to relax notions of sharing, and develop functionally correct algorithms
that still have good performance behavior, more in the pragmatic style of the classic
graph-reduction community [13, 17]. Our research is better appreciated in that context.

10.4 Two key issues: persistence and readback

Our comparisons with other techniques have repeatedly invoked the key issues of per-
sistence and readback. Our data structure is not a “persistent” one—performing a re-
duction inside a term changes the term. If an application needs to keep the old term
around, then our algorithm is not a candidate (or, at least, not without some serious
surgery). So perhaps it is unfair to compare our algorithm’s run times to those of per-
sistent algorithms, such as SLC or director strings.

However, we can turn this around, and claim that the interesting feature of our
algorithm is that itexploitslack of persistence. Applications that need persistence are
rare in practice—and if an application doesn’t need persistence, it shouldn’t have to pay
for it. The standard set of technology choices are invariably persistent; our algorithm
provides an alternative design point. (Note that reduction on Lamping graphs is also
not persistent, which is, again, either a limitation or a source of efficiency, depending
on your point of view.)

The other key, cross-cutting issue is readback. An application that doesn’t need to
examine term structure in-between reductions has greater flexibility in its requirements.
If readback is a requirement, however, then Lamping graphs and the SLC are much less

23

attractive. Readback with our representation is free: one of the pleasant properties of a
DAG is that it can be viewed just as easily as a tree; there is no need to convert it.

Thus, bottom-upβ-reduction is a technology which is well suited to applications
which (1) don’t need persistence, but (2) do need fine-grained readback.

11 Other operations: cloning, equality and hashing

β-reduction is, of course, not the only operation one might wish to perform on terms
of theλ calculus. In a DAG representation, we also might wish to provide a parent-
splitting operation, to unshare a node that has multiple parents. This means cloning the
child node, and dividing the parents between the original child and its copy as indicated
by some partition. This operation, which is easy to implement, would be useful for a
compiler that made reduction (aka “inlining”) decisions based on context. If we want
to contract a redex in one context, but leave it as-is in another, we must first replicate
the node, so the two contexts have distinct redexes. Note that only the top of the redex
needs to be replicated; the two redex copies can share children, so this operation is
fast. (Cloning aλ-expression is more work than cloning an application, however: the
λ’s bound variable must also be replicated to preserveα-uniqueness. This kicks off an
up-copy along the paths from the variable up to theλ-expression being cloned, just as
in theβ-reduction case. However, applications, notλ-expressions, are the nodes one
typically wishes to clone in order to perform context-sensitive reductions.)

Comparing terms for equality brings up the question of which definition of equality
we mean. The spectrum runs from complete textual equality, to tree equality modulo
α-conversion, to extensional equality in the model of a denotational semantics. The
presence of sharing in our DAG representation raises new distinctions, as well. One
useful definition of equality for DAGs is: if we expanded term DAGst1 andt2 into
their equivalent trees, would these trees be structurally equal, that is, equal modulo
α-conversion? Implementing this efficiently is a nice puzzle. Note that wecan’t use
the usual trick of converting to de Bruijn indices and comparing the results—the DAG
representation completely rules out the use of de Bruijn indices, as there may be two
paths from a variable up to its bindingλ-expression that run through different numbers
of intermediateλ-expressions!

We have designed and implemented an algorithm for this equality test that is “al-
most linear” (in the sense of the inverse Ackermann function) in the sizes of the DAGs;
the algorithm uses the fast amortised union-find algorithm for its speed. A detailed dis-
cussion of theα-DAG equality algorithm is beyond the scope of this article; we expect
to describe it fully in another report.

It is also important for many potential uses ofλ-terms to have a hash function that is
insensitive to sharing andα-conversion,i.e., one that respects the equality test outlined
above. Such a facility has, in fact, been universally requested by colleagues who are
beginning to use our technology for their own projects. In particular, it enables “hash
cons” construction ofλ-terms, reducing the cost ofα-equivalence tests to a single
pointer comparison. A further criteria for a good hash function is that it should be
“incrementally” computable, that is, we would like to be able to compute efficiently
the hash value for aλ or application node from the hash values for its children. Similar

24

considerations of incrementality apply to rehashing term structure as needed across a
β-reduction.

We have designed and implemented three different hash functions for bubs terms,
and are currently engaged in evaluating them in support of hash-consing terms in a
compiler based on a three-level/kinded typed-intermediate language. We should note
that, despite our colleague’s entreaties, it is not a given that hash-consing will provide
much improvement in our setting. Hash-consing provides a fast-path forα-equality,
but our equality function is already fairly fast. When we say that it is almost linear, we
mean almost linear in the size of the DAGs, not their unfolded trees, so the structure-
sharing enabled by the representation can potentially provide tremendous speedups—
and it is only linear when the terms turn out to be equal; it can quit lazily as soon as it
encounters a structural difference between the terms. Hash consing also provides for
space savings due to sharing; again, our basic representation already picks up sharing
that occurs due to reduction. We await tests on real data to see how things will measure.

12 Possible variants and applications

12.1 Cyclic graph structure

It would be interesting to see if the algorithm could be adapted to operate on general
graph structure, as opposed to DAGs. This would permit recursion to be captured
with circular structure, as opposed to encoding it using syntactic devices such as the Y
combinator.

The basic marking-based search© technique is one that works on general
graphs with no trouble. However, one complication in such a framework is that a re-
duction that unrolls a recursion can cause uplinks to become downlinks. This perturbs
some of the fundamental invariants on which the algorithm is based, and so affects
much of the code. Altering the algorithm to properly account for this behavior would
require careful thought.

12.2 Integrating with orthogonal implementation techniques

As we’ve noted already, there is a tremendous body of work on the high-performance
graph reduction ofλ-calculus terms. The uplinkedλ-DAG representation is not mu-
tually exclusive with many of these techniques. It would be worth investigating to
discover how much of the “classical” graph-reduction technology could be applied in
this DAG framework. For example, could supercombinators be compiled into native
code to operate on uplinkedλ-DAG representations?

We have claimed in the past that every interesting programming language comes
from an interesting model of computation. One of our colleagues has suggested the
possibility that the model of computation embodied by theβ-reduction of uplinked
λ-DAGs might make for an interesting interpreted programming language.

25

12.3 DAG-based compiler

We are very interested in trying to put the bottom-up representation to use in a real
compiler, to represent both program terms and sophisticated types. Type-based com-
pilers [16, 14], in particular, are notorious for term explosion in the intermediate type
terms; the sharing introduced by the bottom-up algorithm has potential to help here.

A compiler is an application that typically produces output proportional to the size
of the intermediate code tree, which, in our case, is really theunfoldedintermediate
code tree. So perhaps there is less sharing payoff in representing program terms with
a λ-DAG (as opposed to the type terms). However, this is only true of thefinal pro-
gram term—program transforms and analyses could well benefit from sharing-based
compression of the program term, avoiding term explosion in the intermediate stages.
Further, even if the target language (i.e., assembler) doesn’t allow sharing, we can still
benefit from generating code from a DAG by caching the program-term-to-assembler
translations. Finally, as we’ve described earlier, the bottom-up reduction algorithm gets
time and space savings not only from sharingwithin aλ-term, but also from the elimi-
nation of blind search and the associated sharing of structureacrossa reduction—i.e.,
the reduction algorithm tries to copy as little graph structure as possible when reducing.

It is intriguing to consider what a compiler would be like that was more funda-
mentally based on representing program structure as a DAG (as opposed to using the
bottom-up representation essentially as a short-hand for a tree). Costs and benefits are
not always what they seem in this setting. For example, inlining a procedure definition
by replacing the procedure’s name with itsλ-expression has no space cost in a DAG
representation, even if the procedure is invoked at multiple call sites. Specialising such
an application by subsequently contracting theλ-expression’s application to a particu-
lar set of arguments is what causes code replication—although, even in this case, the
bottom-up reduction algorithm attempts to share common structure.

12.4 Graph-based compiler

Even more intriguing and exotic is the possibility of allowing general graph structure
for our compiler’s internal structures. The question of variable scope (a tree notion),
for example, becomes the more general question of binders dominating references (a
graph-theoretic notion). We begin to verge, at this point, from the realm ofλ calculus
to the realm of “flat” SSA representations [8]. The challenge is to do so, and yet retain
the ideas—in their suitably generalised form—of scope and closure and higher-order
functional values from theλ-calculus setting. At least one such compiler has been
written, by Bawden [3], though the effort was never written up and published.

We do not claim that some sort of general-graph/circular-structure variant of the
λ calculus is a better way to build compilers. We do think it is an interesting idea to
consider.

26

13 Conclusion

We certainly are not the first to consider using graph structure to represent terms of the
λ calculus; the ideas go back at least to 1954 [4, 17]. The key point we are making is
that two of these ideas work together:

• representingλ-terms as DAGS to allow sharing induced byβ-reduction, and

• introducing child→parent backpointers andλ→variable links to efficiently direct
search and construction.

The first idea allows sharingwithin a term, while the second allows sharingacrossa
reduction, but they are, in fact, mutually enabling: in order to exploit the backpointers,
we need the DAG representation to allow us to build terms without having to replicate
the subterm being substituted for the variable. This is the source of speed and space
efficiency.

The algorithm is simple and directly represents the term without any obscuring
transform, such as combinators, de Bruijn indices or suspensions, a pleasant feature
for λ-calculus clients who need to examine the terms. It is also, in the parlance of the
graph-reduction community, fully lazy.

14 Acknowledgements

Bryan Kennedy and Stephen Strickland, undergraduates at Georgia Tech, did the entire
implementation and evaluation reported in Sec. 9. Anonymous reviewers lent their ex-
pertise to the improvement of the paper. Zhong Shao provided helpful discussions on
the suspensionλ calculus. Chris Okasaki and Simon Peyton Jones tutored us on direc-
tor strings. Harry Mairson and Alan Bawden provided lengthy and patient instruction
on the subtleties of optimalλ reduction and Lamping graphs. Andrew Appel suggested
to us the possibility of basing a programming-language semantics and implementation
on the BUBS algorithm. Jean-Jacques Lévy also provided us with illuminating dis-
cussions on models of computation and theλ calculus. We thank, of course, Olivier
Danvy.

References

[1] Andrea Asperti and Stefano Guerrini.The Optimal Implementation of Functional
Programming Languages.Cambridge University Press, 1999.

[2] Henk Barendregt.The Lambda Calculus.North Holland, revised edition, 1984.

[3] Alan Bawden. Personal communication, November 2002. Alan wrote the com-
piler, a toy exercise for Scheme, sometime in the late 1980’s.

[4] N. Bourbaki.Théorie des ensembles.Hermann & C. Editeurs, 1954.

[5] Alonzo Church.The Calculi of Lambda Conversion.Princeton University Press,
1941.

27

[6] Georges Gonthier, Martı́n Abadi and Jean-Jacques Lévy. The geometry of op-
timal lambda reduction. InConference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
15–26, January 1992.

[7] J. R. Kennaway and M. R. Sleep. Director strings as combinators. ACM Trans-
actions on Programming Languages and Systems, 10, pages 602–626, (October
1988).

[8] Richard A. Kelsey. A correspondence between continuation-passing style and
static single assignment form. InACM SIGPLAN Workshop on Intermediate Rep-
resentations, SIGPLAN Notices, vol. 30, no. 3, pages 13–22, January 1995.

[9] John Lamping. An algorithm for optimal lambda-calculus reduction. InProceed-
ings of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, pages 16–30, January 1990.

[10] Jean-Jacques Lévy. Réductions Correctes et Optimales dans le Lambda-calcul.
Thèse d’́Etat, Universit́e de ParisVII , Paris, France, 1978.

[11] R. Milner, M. Tofte, R. Harper, D. MacQueen.The Definition of Standard ML
(Revised).MIT Press, 1997.

[12] Gopalan Nadathur and Debra Sue Wilson. A notation for lambda terms: A gener-
alization of environments.Theoretical Computer Science198(1–2):49–98, May
1998.

[13] Simon L. Peyton Jones.The Implementation of Functional Programming Lan-
guages.Prentice-Hall, 1987.

[14] Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML.
In Proceedings of the ACM SIGPLAN’95 Conference on Programming Language
Design and Implementation (PLDI), SIGPLAN Notices 30(6), pages 116–129,
June 1995.

[15] Zhong Shao, Christopher League, and Stefan Monnier. Implementing typed in-
termediate languages. InProceedings of the 1998 ACM SIGPLAN International
Conference on Functional Programming Languages, September 1998.

[16] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper and P. Lee. TIL: A type-
directed optimizing compiler for ML. InProceedings of the ACM SIGPLAN’96
Conference on Programming Language Design and Implementation (PLDI), SIG-
PLAN Notices 31(5), pages 181–192, May 1996.

[17] C. P. Wadsworth.Semantics and pragmatics of the lambda-calculus.PhD disser-
tation, Oxford University, 1971.

28

A BetaSub.sml

Not including comments, blank lines, or a simple doubly-linked list library, the source
code for the core data structures andβ-reduction algorithm is 180 lines of SML code;
this includes the full set of optimisations discussed in Sections 5 and 6. Here is a
complete listing, liberally commented.

(* Bottom-up Beta Substitution *)

structure DL = DoubleLists

(* Core datatype definitions

**

* There are three kinds of nodes: lambdas, var refs and applications.

* Each kind gets its own ML datatype, instead of having a single,

* three-constructor datatype. Why? It allows us to encode more structure

* in the ML type system. E.g., the *parent* of a node can only be a lambda

* or an app; not a var-ref. So we can define a two-constructor node-parent

* type, ruling out the var-ref possibility. And so forth.

*

* Note, also, that some of these "foo option ref" record fields are because we

* are constructing circular structure. Backpointers are initialised to

* "ref NONE," then we slam in "SOME <node>" after we have later created <node>.

*)

(* bodyRef is the parent record belonging to our child node (our body) that

* points back to us. I.e., suppose our body node N has three parents, of

* which we are one. Then N has a three-element doubly-linked list (DLL)

* of parent records, one for each parent. The one that points back to us

* is the record sitting in *our* "bodyRef" field. This allows us to delink

* ourselves from the child’s parent list & detach the child in constant time

* when copying up through the lambda node.

*)

datatype LambdaType = Lambda of {var: VarType, body: Term option ref,

bodyRef: ChildCell DL.dl option ref,

parents: ChildCell DL.dl ref,

uniq: int}

(* funcRef and argRef are similar to the bodyRef field

* of the LambdaType record above.

*)

and AppType = App of {func: Term option ref, arg: Term option ref,

funcRef : ChildCell DL.dl option ref,

argRef : ChildCell DL.dl option ref,

copy: AppType option ref,

parents: ChildCell DL.dl ref,

uniq:int}

and VarType = Var of {name: string,

29

parents: ChildCell DL.dl ref,

uniq:int}

and Term = LambdaT of LambdaType (* Type of a general LC node. *)

| AppT of AppType

| VarT of VarType

(* This tells us what our relationship to our parents is. *)

and ChildCell = AppFunc of AppType

| AppArg of AppType

| LambdaBody of LambdaType

(* Get the parents of a Term. *)

fun termParRef(LambdaT(Lambda{parents, ...})) = parents

| termParRef(AppT(App{parents, ...})) = parents

| termParRef(VarT(Var{parents, ...})) = parents

(* A rather subtle point:

* When we do upsearch/copying, we chase uplinks/backpointers, copying old tree

* structure, creating new tree structure as we go. But we don’t want to search

* up through *new* structure by accident -- that might induce an infinite

* search/copy. Now, the the only way we can have a link from an old node up to

* a new parent is by cloning an app node -- when we create a new app, it has

* one new child NC and one old child OC. So our new app node will be added to

* the parent list of the old child -- and if we should later copy up through

* the old child, OC, we’d copy up through the new app node -- that is, we’d

* copy the copy. This could get us into an infinite loop. (Consider reducing

* (\x. x x) y

* for example. Infinite-loop city.)

*

* We eliminate this problem in the following way: we don’t install *up* links

* to app nodes when we copy. We just make the downlinks from the new app node

* to its two children. So the upcopy search won’t ever chase links from old

* structure up to new structure; it will only see old structure.

*

* We *do* install uplinks from a lambda’s body to a newly created lambda node,

* but this link always goes from new structure up to new structure, so it will

* never affect the our search through old structure. The only way we can have a

* new parent with an old child is when the parent is an app node.

*

* When we are done, we then make a pass over the new structure, installing the

* func->app-node or arg->app-node uplinks. We do this in the copy-clearing

* pass -- as we wander the old app nodes, clearing their cache slots, we take

* the corresponding new app node and install backpointers from its children

* up to it.

*

* In other words, for app nodes, we only create downlinks, and later bring the

* backpointer uplinks into sync with them.

30

*)

(* Given a term and a ChildCell, add the childcell to term’s parents. *)

fun addToParents(node, cclink) = let val p = termParRef node

in p := DL.add_before(!p, cclink)

end

(* Is dll exactly one elt in length? *)

(* ML pattern matching rules. *)

fun len1 (DL.Node(_,_,ref DL.NIL)) = true

| len1 _ = false

(* clearCopies(redlam, topapp)

**

* When we’re finished constructing the contractum, we must clean out the

* app nodes’ copy slots (reset them to NONE) to reset everything for the next

* reduction.

* - REDLAM is the lambda we reduced.

*

* - TOPAPP is the highest app node under the reduced lambda -- it holds

* the highest copy slot we have to clear out. If we clear it first, then

* we are guaranteed that any upwards copy-clearing search started below it

* will terminate upon finding an app w/an empty copy slot.

*

* Every lambda from REDLAM down to TOPAPP had its var as the origin of an

* upcopy:

* - For REDLAM, the upcopy mapped its var to the redex’s argument term.

* - The other, intermediate lambdas *between* REDLAM & TOPAPP (might be zero

* of these) were copied to fresh lambdas, so their vars were mapped to

* fresh vars, too.

* So, now, for each lambda, we must search upwards from the lambda’s var,

* clearing cached copies at app nodes, stopping when we run into an

* already-cleared app node.

*

* This cache-clearing upsearch is performed by the internal proc cleanUp.

* (Get it?)

*

* When we created fresh app nodes during the upcopy phase, we *didn’t*

* install uplinks from their children up to the app nodes -- this ensures

* the upcopy doesn’t copy copies. So we do it now.

*)

fun clearCopies(redlam, topapp) =

let val App{copy=topcopy,...} = topapp (* Clear out top*)

val ref(SOME(App{arg,argRef, func, funcRef,...})) = topcopy

val _ = topcopy := NONE (* app & install*)

val _ = addToParents(valOf(!arg), valOf(!argRef)); (* uplinks to *)

val _ = addToParents(valOf(!func), valOf(!funcRef)); (* its copy. *)

31

fun cleanUp(AppFunc(App{copy=ref NONE,...})) = ()

| cleanUp(AppFunc(App{copy as ref(SOME(App{arg, argRef,

func, funcRef,...})),

parents,...})) =

(copy := NONE;

addToParents(valOf(!arg), valOf(!argRef)); (* Add uplinks *)

addToParents(valOf(!func), valOf(!funcRef)); (* to copy. *)

DL.app cleanUp (!parents))

| cleanUp(AppArg(App{copy=ref NONE,...})) = ()

| cleanUp(AppArg(App{copy as ref(SOME(App{arg, argRef,

func, funcRef,...})),

parents,...})) =

(copy := NONE;

addToParents(valOf(!arg), valOf(!argRef)); (* Add uplinks *)

addToParents(valOf(!func), valOf(!funcRef)); (* to copy. *)

DL.app cleanUp (!parents))

| cleanUp(LambdaBody(Lambda{parents,var,...})) =

(varClean var; DL.app cleanUp (!parents))

and varClean(Var{parents=varpars,...}) = DL.app cleanUp (!varpars)

fun lambdascan(Lambda{var, body=ref(SOME b),...}) =

(varClean var;

case b of LambdaT l => lambdascan l | _ => ())

in lambdascan redlam

end

(* freeDeadNode term -> unit

* Precondition: (termParents term) is empty -- term has no parents.

*

* A node with no parents can be freed. Furthermore, freeing a node

* means we can remove it from the parent list of its children... and

* should such a child thus become parentless, it, too can be freed.

* So we have a recursive/DAG-walking/ref-counting sort of GC algo here.

*

* IMPORTANT: In this SML implementation, we don’t actually *do* anything

* with the freed nodes -- we don’t, for instance, put them onto a free

* list for later re-allocation. We just drop them on the floor and let

* SML’s GC collect them. But it doesn’t matter -- this GC algo is *not

* optional*. We *must* (recursively) delink dead nodes. Why? Because

* we don’t want subsequent up-copies to spend time copying up into dead

* node subtrees. So we remove them as soon as a beta-reduction makes

* them dead.

*

32

* So this procedure keeps the upwards back-pointer picture consistent with

* the "ground truth" down-pointer picture.

*)

fun freeDeadNode node =

let

fun free(AppT(App{func=ref(SOME functerm), funcRef,

arg=ref(SOME argterm), argRef,

parents, ...})) =

(delPar(functerm, valOf(!funcRef)); (* Node no longer parent *)

delPar(argterm, valOf(!argRef))) (* of func or arg children. *)

| free(LambdaT(Lambda{body=ref(SOME bodyterm), (* Lambda no longer *)

bodyRef, parents, ...})) = (* parent of body. *)

delPar(bodyterm, valOf(!bodyRef))

(* We wouldn’t actually want to dealloc a parentless var node, because

* its binding lambda still retains a ref to it. Responsibility for

* freeing a var node should be given to the code (just above) that

* freed its lambda.

*)

| free(VarT _) = ()

(* Remove CCLINK from TERM’s parent’s dll.

* If TERM’s parent list becomes empty, it’s dead, too, so free it.

*)

and delPar(term, cclink) =

case DL.remove cclink of (* Returns the dll elts before & after cclink. *)

(DL.NIL, after) => let val parref = termParRef term

in parref := after;

case after of DL.NIL => free term

| DL.Node _ => ()

end

| _ => ()

in free node

end

(* Replace one child w/another in the tree.

* - OLDPREF is the parent dll for some term -- the old term.

* - NEW is the replacement term.

* Add each element of the dll !OLDPREF to NEW’s parent list. Each such

* element indicates some parental downlink; install NEW in the right slot

* of the indicated parent. When done, set OLDPREF := NIL.

*

* Actually, we don’t move the dll elements over to NEW’s parent list one at

* a time -- that involves redundant writes. E.g., if !OLDPREF is 23 elements

* long, don’t move the elements over one at a time -- they are already nicely

* linked up. Just connect the last elt of !OLDPREF & the first element of

* NEW’s existing parent list, saving 22*2=44 writes. Because it physically

* hurts to waste cycles.

33

*)

fun replaceChild(oldpref, new) =

let val cclinks = !oldpref

val newparref = termParRef new

fun installChild(LambdaBody(Lambda{body,...})) = body := SOME new

| installChild(AppFunc(App{func,...})) = func := SOME new

| installChild(AppArg(App{arg,...})) = arg := SOME new

fun lp(prev, prevnext, DL.NIL) =

(prevnext := !newparref ;

case !newparref of DL.NIL => ()

| DL.Node(p, _, _) => p := prev)

| lp(prev, prevnext, node as DL.Node(_,cc, n as ref next)) =

(installChild cc; lp(node, n, next))

in case cclinks of DL.NIL => ()

| node as DL.Node(_,cc,n as ref next) =>

(oldpref := DL.NIL; installChild cc;

lp(node, n,next); newparref := cclinks)

end

(* Allocate a fresh lambda L and a fresh var V. Install BODY as the body of

* the lambda -- L points down to BODY, and L is added to BODY’s parent list.

* The fresh var’s name (semantically irrelevant, but handy for humans) is

* copied from oldvar’s name.

*

* Once this is done, kick off an OLDVAR->V upcopy to fix up BODY should it

* contain any OLDVAR refs.

*)

fun newLambda(oldvar, body) =

let val Var{name, parents = varparents, ...} = oldvar

val var = Var{name = name,

uniq = newUniq(),

parents = ref DL.NIL}

val bodyRefCell = ref NONE

val ans = Lambda{var = var,

body = ref(SOME body),

bodyRef = bodyRefCell,

uniq = newUniq(),

parents = ref DL.NIL}

val cclink = DL.new(LambdaBody ans)

in bodyRefCell := SOME cclink;

addToParents(body, cclink);

(* Propagate the new var up through the lambda’s body. *)

DL.app (upcopy (VarT var)) (!varparents);

LambdaT ans

end

34

(* Allocate a fresh app node, with the two given params as its children.

* DON’T install this node on the children’s parent lists -- see "a subtle

* point" above for the reason this would get us into trouble.

*)

and newApp(func, arg) =

let val funcRef = ref NONE

val argRef = ref NONE

val app = App{func = ref(SOME func),

arg = ref(SOME arg),

funcRef = funcRef,

argRef = argRef,

copy = ref NONE,

parents = ref DL.NIL,

uniq = newUniq()}

in funcRef := SOME(DL.new(AppFunc app));

argRef := SOME(DL.new(AppArg app));

app

end

(* upcopy newChild parRef -> unit

**

* The core up-copy function.

* parRef represents a downlink dangling from some parent node.

* - If the parent node is a previously-copied app node, mutate the

* copy to connect it to newChild via the indicated downlink, and quit

* - If the parent is an app node that hasn’t been copied yet, then

* make a copy of it, identical to parent except that the indicated downlink

* points to newChild. Stash the new copy away inside the parent. Then take

* the new copy and recursively upcopy it to all the parents of the parent.

* - If the parent is a lambda node L (and, hence, the downlink is the

* "body-of-a-lambda" connection), make a new lambda with newChild as

* its body and a fresh var for its var. Then kick off an upcopy from

* L’s var’s parents upwards, replacing L’s var with the fresh var.

* (These upcopies will guaranteed terminate on a previously-replicated

* app node somewhere below L.) Then continue upwards, upcopying the fresh

* lambda to all the parents of L.

*)

and upcopy newChild (LambdaBody(Lambda{var, parents,...})) =

DL.app (upcopy (newLambda(var, newChild))) (!parents)

(* Cloning an app from the func side *)

| upcopy new_child (AppFunc(App{copy as ref NONE, arg, parents, ...})) =

let val new_app = newApp(new_child, valOf(!arg))

in copy := SOME new_app;

DL.app (upcopy (AppT new_app)) (!parents)

end

(* Copied up into an already-copied app node. Mutate the existing copy & quit. *)

| upcopy newChild (AppFunc(App{copy = ref(SOME(App{func,...})), ...})) =

35

func := SOME newChild

(* Cloning an app from the arg side *)

| upcopy new_child (AppArg(App{copy as ref NONE, func, parents, ...})) =

let val new_app = newApp(valOf(!func), new_child)

in copy := SOME new_app;

DL.app (upcopy (AppT new_app)) (!parents)

end

(* Copied up into an already-copied app node. Mutate the existing copy & quit. *)

| upcopy newChild (AppArg(App{copy = ref(SOME(App{arg,...})),...})) =

arg := SOME newChild

(* Contract a redex; raise an exception if the term isn’t a redex. *)

fun reduce(a as App{funcRef, func = ref(SOME(LambdaT l)),

argRef, arg = ref(SOME argterm),

parents, ...}) =

let val Lambda {var, body, bodyRef, parents = lampars, ...} = l

val Var{parents = vpars as ref varpars, ...} = var

val ans = if len1(!lampars)

(* The lambda has only one parent -- the app node we’re

* reducing, which is about to die. So we can mutate the

* lambda. Just alter all parents of the lambda’s vars to

* point to ARGTERM instead of the var, and we’re done!

*)

then (replaceChild(vpars, argterm);

valOf(!body))

(* Fast path: If lambda’s var has no refs,

* the answer is just the lambda’s body, as-is.

*)

else if varpars = DL.NIL then valOf(!body)

(* The standard case. We know two things:

* 1. The lambda has multiple pars, so it will survive the

* reduction, and so its body be copied, not altered.

* 2. The var has refs, so we’ll have to do some substitution.

* First, start at BODY, and recursively search down

* through as many lambdas as possible.

*

* - If we terminate on a var, the var is our lambda’s var,

* for sure. (OTW, #2 wouldn’t be true.) So just return

* BODY back up through all these down-search lambda-

* skipping calls, copying the initial lambdas as we go.

* - If we terminate on an app, clone the app & stick the

* clone in the app’s copy slot. Now we can do our VAR->ARG

* up-copy stuff knowing that all upcopying will guaranteed

36

* terminate on a cached app node.

*

* When we return up through the initial-lambda-skipping

* recursion, we add on copies of the lambdas through

* which we are returning, *and* we also pass up that top

* app node we discovered. We will need it in the

* subsequent copy-clearing phase.

*)

else let fun scandown(v as VarT _) = (argterm,NONE) (* No app! *)

| scandown(l as LambdaT(Lambda{body,var,...})) =

let val (body’,topapp) = scandown(valOf(!body))

val l’ = newLambda(var, body’)

in (l’, topapp)

end

| scandown(AppT(a as App{arg,func,copy,...})) =

(* Found it -- the top app. *)

(* Clone & cache it, then kick off a *)

(* var->arg upcopy. *)

let val a’ = newApp(valOf(!func), valOf(!arg))

in copy := SOME a’;

DL.app (upcopy argterm) varpars;

(AppT a’, SOME a)

end

val (ans, maybeTopApp) = scandown (valOf(!body))

(* Clear out the copy slots of the app nodes. *)

in case maybeTopApp of

NONE => ()

| SOME app => clearCopies(l,app);

ans

end

(* We’ve constructed the contractum & reset all the copy slots. *)

in replaceChild(parents, ans); (* Replace redex w/the contractrum. *)

freeDeadNode (AppT a); (* Dealloc the redex. *)

ans (* Done. *)

end

(* Call-by-name reduction to weak head-normal form. *)

fun normaliseWeakHead(AppT(app as App{func, arg, ...})) =

(normaliseWeakHead(valOf(!func));

case valOf(!func) of LambdaT _ => normaliseWeakHead(reduce app)

| _ => ())

| normaliseWeakHead _ = ()

37

(* Normal-order reduction to normal form. *)

fun normalise(AppT(app as App{func, arg, uniq,...})) =

(normaliseWeakHead(valOf(!func));

case valOf(!func) of LambdaT _ => normalise(reduce app)

| VarT _ => normalise(valOf(!arg))

| app’ => (normalise app’;

normalise(valOf(!arg))))

| normalise(LambdaT(Lambda{body,...})) = normalise(valOf(!body))

| normalise _ = ()

38

