
From Fairness to Full Security
in Multiparty Computation

Ran Cohen (MIT & NEU)
Iftach Haitner (TAU)

Eran Omri (Ariel University)
Lior Rotem (HUJI)

Information Sharing

ÅA terrorist threat over the world

ÅSeveral intelligence agencies try to stop it

ÅEach agency has secret data –can’t stop attack alone

ÅIf the agencies join forces–they can stop the attack

ÅThe terrorists have double agents in some agencies

Can the attack be stopped in time?

Secure Multiparty Computation

Ideal World

Security Definition

no output

no output

no output

no output

Notions of Security

output

ÅSecurity with abort: abort after obtaining output

no output

no output

no output

no output

no output

Notions of Security

ÅSecurity with abort: abort after obtaining output

ÅFairness: abort beforeobtaining output

Notions of Security

ÅSecurity with abort: abort after obtaining output

ÅFairness: abort beforeobtaining output

ÅFull security (guaranteed output delivery):
no abort

output

output output

output

output

Identifiable Abort

ÅSecurity with id-abort: honest parties identify
a corrupted party in case of abort

output

no output

no output

no output

no output ὖ is
cheating

ὖ is
cheating

ὖ is
cheating

ὖ is
cheating

no output

Identifiable Abort

ÅSecurity with id-abort: honest parties identify
a corrupted party in case of abort

ÅFairness with id-abort

no output

no output

no output

no output ὖ is
cheating

ὖ is
cheating

ὖ is
cheating

ὖ is
cheating

Known Results (w/o setup)
Broadcast Point-to-Point

ᶻ
assuming OT

ὸ ὲȾσ

ὸ ὲȾς

ὸ ὲ

Ὢᶅfull security
[RB’89, CDDHR’99]

Ὢɱwithout fairness
[Cleve’86]

Ὢᶅid-abort [GMW’87]

Ὢɱwith full security
[Gordon,Katz’09]

Ὢᶅfull security
[BGW’88, CCD’88]

Ὢɱwithout full security
[PSL’80,CL’14]

Ὢᶅfairness [FGMR’02]

Ὢᶅsecurity with abort
[FGHHS’02]

Ὢɱwith full security
[CL’14, CHOR’16]

Ὢɱwithout id-abort [CL’14]

Ὢɱwithout fairness
[Cleve’86]

Ὢɱfair without full [CL’14]

Known Results (w/o setup)
Broadcast Point-to-Point

ᶻ
assuming OT

ὸ ὲȾσ

ὸ ὲȾς

ὸ ὲ

Ὢᶅfull security
[RB’89, CDDHR’99]

Ὢɱwithout fairness
[Cleve’86]

Ὢᶅid-abort [GMW’87]

Ὢɱwith full security
[Gordon,Katz’09]

Ὢᶅfull security
[BGW’88, CCD’88]

Ὢɱwithout full security
[PSL’80,CL’14]

Ὢᶅfairness [FGMR’02]

Ὢɱwithout id-abort [CL’14]

Ὢᶅsecurity with abort
[FGHHS’02]

Ὢɱwith full security
[CL’14, CHOR’16]

Ὢɱwithout fairness
[Cleve’86]

Ὢɱfair without full [CL’14]

Security Hierarchy

abort

id-abort fair

full

id-fair

Security Hierarchy

abort

id-abort fair

full

id-fair

ὸ ὲ
ὸ ρcalls

Id-Fair to Full Security (ὸ ὲ)

Player-Elimination Technique

ÅExecute ὸ ρtimes

ïCompute Ὢwith fairness & id-abort

ïIf obtained output, halt

ïOtherwise, eliminate identified corrupted party

Security Hierarchy

abort

id-abort fair

full

id-fair

ὸ ὲ
ὸ ρcalls

ὸ ὲ
[GMW, Pass, IOZ]

ὸ ὲ
[CL’14]

Abort to Id-Abort (ὸ ὲ)

GMW Paradigm

ïGenerate committed randomness (augmented CF)

ïCommit to input

ïProve honest behavior in zero knowledge

[GMW’87] [Pass’04] [Ishai,Ostrovsky,Zikas’14]

OWF

ὕὲ rounds

TDP & CRH

ὕρ rounds

Information theoretic
(correlated randomness)

ὕρ rounds

[C,Lindell’14] fair to id-fair

Abort to Id-Abort (ὸ ὲ)

GMW Paradigm

ïGenerate committed randomness (augmented CF)

ïCommit to input

ïProve honest behavior in zero knowledge

[GMW’87] [Pass’04] [Ishai,Ostrovsky,Zikas’14]

OWF

ὕὲ rounds

TDP & CRH

ὕρ rounds

Information theoretic
(correlated randomness)

ὕρ rounds

[C,Lindell’14] fair to id-fair

Security Hierarchy

abort

id-abort fair

id-fair

full

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲ
[GMW, Pass, IOZ]

ὸ ὲ
[CL’14]

ὸ ὲ
ὸ ρcalls

Abort to Fairness (ὸ ὲȾς)
ÅMain tool: Error-Correcting Secret Sharing

ïίȟȣȟί ᴺ3ÈÁÒÅί

ïAny set of ὸshares is independent of ί

ïίN 2ÅÃÏÎίȟȣȟί , even if ὸshares are incorrect

ÅSecurity with abort of ὛὛ ὪᵼFairness of Ὢ

Ὢὼȟȣȟὼώ

ί ί ίȣ
ὲȾςȟὲ ECSS

ὛὛ Ὢ

Security Hierarchy

abort

id-abort fair

id-fair

full

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲ
[GMW, Pass, IOZ]

ὸ ὲ
[CL’14]

ὸ ὲ
ὸ ρcalls

High overhead for
large-scale MPC

Can we do better?

Main Question

The setting:

ïLarge-scale MPC

ïConstant fraction of honest parties
ὸ ὲfor π ρ

What is the cost (rounds) of transforming
fair computation to fully securecomputation?

Main Results

abort

id-abort fair

id-fair

full

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲȾς
call ὛὛ Ὢ

ὸ ὲ

ὸ ὲ

ὸ ὲ
ὸ ρcalls

restricted
id-fair

ὸ ρ ‐ὲ
ὛὛ Ὢ

ὸ ρ ‐ὲ
ÌÏÇὲ calls (no input)
ρ calls (deter.) or ὸ ρȾς ‐ὲ

ὸ ρȾς ‐ὲ
ὛὛ Ὢ

ὸ ὕ ὲ
ὸ ρcalls

restricted
abort

ὸ ὲȾς
ὛὛ Ὢ

ὕρ

Rest of the talk
ÅRandomized functionalities without inputs

ïFair to full in ÌÏÇὲ rounds

ïApplication: coin-flipping protocols

ÅFunctionalities with inputs

ïFair to full in ρ rounds

ïApplication: multiparty Boolean OR

ÅLower bound

ïNo fair to full in ὕρ rounds

Randomized Functionalities
Without Input

Thm1: Fairness to Fullsecurity (No Input)

ÅLet Ὢbe a no-input function

ÁὪ is the ὲ-party version(ὲcopies of the output)

Áὲ ÌÏÇὲ

Áὸ ὲand ὸ ᴂὲwhere π ᴂ ρ

ÅIf Ὢ is ὸ-comp. w/ fairnessin ὶᴂrounds, then
Ὢ is ὸ-comp. w/ full security in /ὸẗὶᴂrounds

“comp. Ὢ
ὶ /ὸẗὶᴂ-round
Fully secure for ὸcorrupt

“ comp. Ὢ
ὶᴂ-round
Fair for ὸȭcorrupt

Application: Coin Flipping

♯-bias coin flipping: the common output is -close
to uniformly random bit, facingὸcorruptions

[Cleve’86] -bias CF requires ɱρȾ rounds

[ABCGM’85] ὸ ὲ /ὸȾ rounds

[MNS’09]
[BOO’10] [HT’14]
[AO’16] [BHLT’17]

ὲ ÌÏÇÌÏÇρȾ /ρȾ rounds

[BOO’10] ὸ ὲ, ρȾς ρ ὕὸ ρȾ rounds

This work ὸ ὲ, ρȾς ρ ὕἴἷἯ▪ἴἷἯz▪ ρȾ

Application: Coin Flipping

♯-bias coin flipping: the common output is -close
to uniformly random bit, facingὸcorruptions

[Cleve’86] -bias CF requires ɱρȾ rounds

[ABCGM’85] ὸ ὲ /ὸȾ rounds

[MNS’09]
[BOO’10] [HT’14]
[AO’16] [BHLT’17]

ὲ ÌÏÇÌÏÇρȾ /ρȾ rounds

[BOO’10] ὸ ὲ, ρȾς ρ ὕὸ ρȾ rounds

This work ὸ ὲ, ρȾς ρ ὕἴἷἯ▪ἴἷἯz▪ ρȾ

Application: Coin Flipping

♯-bias coin flipping: the common output is -close
to uniformly random bit, facingὸcorruptions

[Cleve’86] -bias CF requires ɱρȾ rounds

[ABCGM’85] ὸ ὲ /ὸȾ rounds

[MNS’09]
[BOO’10] [HT’14]
[AO’16] [BHLT’17]

ὲ ÌÏÇÌÏÇρȾ /ρȾ rounds

[BOO’10] ὸ ὲ, ρȾς ρ ὕὸ ρȾ rounds

This work ὸ ὲ, ρȾς ρ ὕἴἷἯ▪ἴἷἯz▪ ρȾ

Application: Coin Flipping

♯-bias coin flipping: the common output is -close
to uniformly random bit, facingὸcorruptions

[Cleve’86] -bias CF requires ɱρȾ rounds

[ABCGM’85] ὸ ὲ /ὸȾ rounds

[MNS’09]
[BOO’10] [HT’14]
[AO’16] [BHLT’17]

ὲ ÌÏÇÌÏÇρȾ /ρȾ rounds

[BOO’10] ὸ ὲ, ρȾς ρ ὕὲ ρȾ rounds

This work ὸ ὲ, ρȾς ρ ὕἴἷἯ▪ἴἷἯz▪ ρȾ

Application: Coin Flipping

♯-bias coin flipping: the common output is -close
to uniformly random bit, facingὸcorruptions

[Cleve’86] -bias CF requires ɱρȾ rounds

[ABCGM’85] ὸ ὲ /ὸȾ rounds

[MNS’09]
[BOO’10] [HT’14]
[AO’16] [BHLT’17]

ὲ ÌÏÇÌÏÇρȾ /ρȾ rounds

[BOO’10] ὸ ὲ, ρȾς ρ ὕὲ ρȾ rounds

This work ὸ ὲ, ρȾς ρ ὕἴἷἯ▪ἴἷἯz▪ ρȾ

Main Idea

Restricting the adversary’s ability to abort

1) Define restricted id-abort

2) Fairness & restricted id-abort ᵼ full security

3) Fairness ᵼ fairness & restricted id-abort

“comp. Ὢ
ὶ /ὸẗὶᴂ-round
Fully secure for ὸcorrupt

“ comp. Ὢ
ὶᴂ-round
Fair for ὸȭcorrupt

Restricted Id-Abort
A designated subset of the parties (ꜟcommittee)

ÅIf ꜟ is fully honest: no abort

Restricted Id-Abort
A designated subset of the parties (ꜟcommittee)

ÅIf ꜟ is fully honest: no abort

ÅIf ꜟ has corrupted party: id-abort in ꜟ

Restricted Id-Abort
A designated subset of the parties (ꜟcommittee)

ÅIf ꜟ is fully honest: no abort

ÅIf ꜟ has corrupted party: id-abort in ꜟ

Restricted Id-Abort
A designated subset of the parties (ꜟcommittee)

ÅIf ꜟ is fully honest: no abort

ÅIf ꜟ has corrupted party: id-abort in ꜟ

ÅIf ꜟ is fully corrupted: adversary determines the output

Restricted Id-Fair to Full
1) Committee election [Feige’s lightest-bin protocol]

Elect committee ꜟ of size ὲ ÌÏÇὲ

hꜟas at most ‐ὲᴂcorrupted parties, except neglprob

1 2 3 4 5 6 7 8 9 10 11 12

Restricted Id-Fair to Full

1

2

3

4

5

6

7

8

9

10

11

12

1) Committee election [Feige’s lightest-bin protocol]

Elect committee ꜟ of size ὲ ÌÏÇὲ

hꜟas at most ‐ὲᴂcorrupted parties, except neglprob

2) Player elimination

♫ Ⱡ▪ iterations of Ὢwith fairness & ꜟ -id-abort

Obtaining Restricted Id-Fair

Committee members compute over broadcast:

1) Augmented coin flipping, security with id-abort

2) The function Ὢ , fairness with id-abort

3) Broadcast output and prove correctness
[Pass’04]

Functions With Input

Thm 2: Functions With Input

Let Ὢbe a ὲ-party function, let ὸ ὲ,
and let ὲ ÌÏÇὲ

If ὛὛὪ is ὲ ρ-computed w/ fairness
in parallel in ὶrounds, then Ὢis ὸ-computed
w/ full security in /ὶẗÌÏÇᶻὲ rounds

any ρ funtion

Application: Boolean OR

Ὢὼȟȣȟὼ ὼ Ễ᷉ ὼ᷉

Å[Gordon,Katz’09] Fully secure Boolean OR
facing ὸ ὲwith /ὲ rounds

ÅThis work: Fully secure Boolean OR
facing ὸ ὲwith /ἴἷἯᶻ▪ rounds

Restricted Id-Abort (With Input)
Multiple committees ꜟ ȟȣȟꜟЉ

ÅIf ɱ fully corrupted ꜟ : ꜝ lerans all inputs & determines output

Restricted Id-Abort (With Input)
Multiple committees ꜟ ȟȣȟꜟЉ

ÅIf ɱ fully corrupted ꜟ : ꜝ lerans all inputs & determines output

ÅIf ɱ fully honest ꜟ : no abort

Restricted Id-Abort (With Input)
Multiple committees ꜟ ȟȣȟꜟЉ

ÅIf ɱ fully corrupted ꜟ : ꜝ lerans all inputs & determines output

ÅIf ɱ fully honest ꜟ : no abort

ÅOtherwise : abort by identifying corrupted party in everyꜟ

Restricted Id-Abort (With Input)
Multiple committees ꜟ ȟȣȟꜟЉ

ÅIf ɱ fully corrupted ꜟ : ꜝ lerans all inputs & determines output

ÅIf ɱ fully honest ꜟ : no abort

ÅOtherwise : abort by identifying corrupted party in everyꜟ

Restricted Id-Fair to Full in ρ
1) Committee election

Elect committee ꜟ of size ά ÌÏÇὲ

2) Fix sub-committees
All subsets ꜟ ȟȣȟꜟЉṖ oꜟf size ὲ ά ὲᴂᴂ

3) Player elimination
Compute Ὢwith fairness & ꜟȟȣȟꜟЉ -id-abort

Lemma:Let •ὲᶰρ
For ά ÌÏÇὲẗ•ὲ and ὲᴂᴂÌÏÇὲȾ•ὲ

ï No ꜟ is fully corrupted (except negl. probability)

ï There are poly-many ꜟ ’s

ï if ꜝaborts, ὲᴂᴂparties are identified

ᵼFull security in άȾὲᴂᴂ•ὲ iterations

Obtaining Restricted Id-Fair
Problem:

How to send inputs to committee

Solution:

Each party ὲ-out-of-ὲᴂsecret shares its input

Another Problem:

Bad committee members might change shares

Solution:

Functionality ὛὛ Ὢwill verify shares

More Problems:

ÅIdentify corrupted members beforelearning output

ÅCorrupted committee members don’t blame honest

Doesn’t follow
from fairness

Computing Over Shared Inputs

Each party ὖ:

1) Compute ὼ ίṥỄṥί

2) Ὦᶅɴ ὲ broadcast ὧ #ÏÍίȠὶ

3) Ὦᶅɴ ὲ broadcast %ÎÃ ίȟὶ

4) Prove honest behavior

Each committee member ὖ:

1) Obtain relevant decommitments

2) Use the decommitmentsas inputs to ὛὛ Ὢ

Perfectly binding

The Functionality ὛὛ Ὢ

Parameters:commitments sent by the parties

Input: Ὦᶅɴ ὲ , ὲ-vector of decommitments

Verify all commitments open properly

ïIf ɱ Ὦɴ ὲ that doesn’t open the commitment

ÅOutput ṶȟὮ

ïIf all commitments open

ÅReconstruct ὼȟȣȟὼ

ÅOutput ώ Ὢὼȟȣȟὼ

Lower Bound

The Setting (1)

Fully secure coin-flipping protocol
Hybrid:a TTP computes CF withfairness and
restricted id-abort, for any ꜟ Ṗ ὲ

The Setting (2)

Parallel calls: parties can invoke TTP in parallel
for different committees ꜟ ȟȣȟꜟЉṖ ὲ at the
samefunctionality round

The Setting (3)

Rushing:if ᶬꜟ that is fully corrupted,
ꜝdecides to abort ꜟ after seeing the output
of all other computations in the round

Thm 3: The Lower Bound

Let “be a coin-flipping with a constant number of
functionality rounds, and let ρȾς ρ

Then, ɱ PPT fail-stop adversary that by corrupting
ẗὲparties, can bias the output of “

Thm1: CɱF in this model (using ÌÏÇὲ rounds)

Proof Idea

ὲ-party CF “in
hybrid model ς-party CF in

standard model

Attack on Attack on “

Cleve

Small committees
ὕÌÏÇὲ

Proof Idea

ὲ-party CF “in
hybrid model ς-party CF in

standard model

Attack on Attack on “

Cleve

Large committees
ὕρ func. rounds

Case I : No Large Committees

All committees have size at most ὧẗÌÏÇὲ

Case I : 2-Party Coin Flipping

ὲ ρ ὲ

ÅSplit the parties to ςsets

ÅSplit the parties to 2 sets
ÅAlice controls one set, Bob the other

Case I : 2-Party Coin Flipping

Alice Bobὲ ρ ὲ

Case I : 2-Party Coin Flipping

ÅSplit the parties to 2 sets
ÅAlice controls one set, Bob the other
ÅBob controls trusted party

Alice Bobὲ ρ ὲ

Case I : Dealing with Abort

Alice Bobὲ ρ ὲ

If Bob aborts in TTP call by ,ꜟ Alice:

ꜟ

Case I : Dealing with Abort

Alice Bobὲ ρ ὲ

If Bob aborts in TTP call by ,ꜟ Alice:
ÅSimulates remaining TTP calls on its own
ÅChooses random subset כof ρ ὲ
ÅSimulates the output of כwhen

everyone else abort

כ

ꜟ

Case I : Dealing with Abort

Alice Bobὲ ρ ὲ

כ

ꜟ

If Bob aborts in TTP call by ,ꜟ Alice:
ÅSimulates remaining TTP calls on its own
ÅChooses random subset כof ρ ὲ
ÅSimulates the output of כwhen

everyone else abort

Case I : Dealing with Abort

Alice Bobὲ ρ ὲ

iꜟs small
ᵼ for a random linear ᷊כ ,כꜟ ᶮ
ᵼ in “committee ꜟ is fully corrupted

כ

ꜟ

Case II : Arbitrary Committees

Main idea:

ÅThe adversary aborts all large committees

ÅReduces to the no-large committees case

ÅFor random disjoint linear subsets ꞌȟȣȟꞌ,
all large committees in round Ὥintersect ꞌ (whp)

ÅThe adversary has “budget” only for a constant
number of rounds

Case II : 2-Party Coin Flipping

ÅBob controls the subsets ꞌȟȣȟꞌ
ÅEmulates TTP in the Ὥ’th round only

for committees ꜟ s.t. ꜟ ᷊ꞌ ᶮ

Alice Bob

ꞌ ꞌꞌ

Summary
What did we see

Å Fair to Full, ὸ ὲ, no input, ÌÏÇὲ

Å Fair to Full, ὸ ὲ, with input, ρ

Å No Fair to Full coin flipping, ὸ ὲ, ὕρ

What didnΩt we see

Å Fair to Full, ὸ ὲ, HM, ρ - BB & info-theoretic

Å Abort to Full, ὸ ὕ ὲ, no identifiability

WhatΩs open

Å No input, gap between feasibility ÌÏÇὲ and
lower bound ὕρ

