Broadcast-Optimal 2-Round MPC

Ran Cohen Juan Garay Vassilis Zikas
Correctness
Privacy
Fairness
Guaranteed output delivery

Impossible in general for $t \geq n/2$ [Cleve’86]
This work: $t < n$
Security with Abort

Identifiable abort

All honest parties either get output or abort & identify corrupted parties

Unanimous abort

All honest parties either get output or abort

Selective abort

Each honest party either gets output or aborts
How many rounds needed for MPC?

1 round isn’t enough:
Residual-function attacks [Halevi-Lindell-Pinkas’11]

2 broadcast rounds suffice:
[Asharov-Jain-LópezAlt-Tromer-Vaikuntanathan-Wichs’12]
[Garg-Gentry-Halevi-Raykova’14] [Gordon-Liu-Shi’15] [Mukherjee-Wichs’16]

Even from minimal assumptions (2-round OT):
[Garg-Srinivasan’18] [Benhamouda-Lin’18]

Optimal ???

Optimal !!!
Main Question

Broadcast is an expensive resource

Do we really need it??
2-Round MPC w/o Broadcast

Lower bound in plain model (no setup):
2-round MPC with unanimous abort \implies 2$^\text{nd}$ round must be broadcast
For $n = 3, t = 1$ [Patra-Ravi’18]

OWF \implies 2-round MPC with selective abort over P2P
For $t < n/3$ [Ishai-Kushilevitz-Paskin’10]
For $t < n/2$ [Ananth-Choudhuri-Goel-Jain’19] [Applebaum-Brakerski-Tsabary’19]
Our Results ($t < n$)

<table>
<thead>
<tr>
<th>1<sup>st</sup> round</th>
<th>2<sup>nd</sup> round</th>
<th>Selective abort</th>
<th>Unanimous abort</th>
<th>Identifiable abort</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>BC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>P2P</td>
<td>BC</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>BC</td>
<td>P2P</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>P2P</td>
<td>P2P</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

LB: any correlated randomness
UB: 2-round OT + CRS
Part 1: Impossibility Results
Our Results: Lower Bounds

Given any correlated randomness:

• MPC with **identifiable** abort \(\implies\) Both rounds BC
• MPC with **unanimous** abort \(\implies\) 2\(^{\text{nd}}\) round is BC
The function for the lower bound

Consider the function

\[f(x_1, x_2, x_3) = \begin{cases} \left((x_{1,1} \oplus x_2)^\kappa \right) \oplus x_{3,1} & \text{if } x_{1,2} = x_2 \\ \left((x_{1,1} \oplus x_2)^\kappa \right) \oplus x_{3,2} & \text{if } x_{1,2} \neq x_2 \end{cases} \]

In ideal computation of \(f \):

Property 1: Cheating \(P_2 \) and \(P_3 \) cannot force the output to be \(0^\kappa \)

Property 2: Cheating \(P_1 \) and \(P_2 \) cannot learn both \(x_{3,1} \) and \(x_{3,2} \)
1) Unanimous abort \implies 2nd round is BC

Round 1

Round 2

Honest run: all get output

P_2, P_3 get output

P_2, P_3 get output

P_2, P_3 get output
1) Unanimous abort \Rightarrow 2nd round is BC

P_2, P_3 learn output from P_1's 1st message

$\Rightarrow P_2, P_3$ can choose their input afterwards

$\Rightarrow P_2, P_3$ can force P_1's output to 0^κ
2) Identifiable abort \Rightarrow both rounds are BC

Round 1

P_1 can’t abort \Rightarrow honest parties get output
2) Identifiable abort \Rightarrow both rounds are BC

Round 1

$\mathbf{P_1}$\hspace{1cm}$\mathbf{P_2}$\hspace{1cm}$\mathbf{P_3}$

- Attack 1

Round 2

$\mathbf{P_1}$\hspace{1cm}$\mathbf{P_2}$\hspace{1cm}$\mathbf{P_3}$

- Attack 2

- Attack 3

- Adv gets P_3’s messages w/o playing P_2

\Rightarrow Can play P_2 on different inputs

\Rightarrow Can learn both P_3’s inputs

P_1 can’t abort \Rightarrow honest parties get output

(*) See the paper for many missing details
Part 2: Feasibility Results
Our Results: Feasibility

Given 2-round OT (in CRS model):

• Both rounds BC \implies MPC with identifiable abort
• 2^{nd} round is BC \implies MPC with unanimous abort
• Both rounds P2P \implies MPC with selective abort
Structure of 2-round protocols

Send $m_i^1 = \text{firstmsg}(x_i, r_i)$
Receive $\vec{m}_1 = (m_1^1, ..., m_n^1)$

Send $m_i^2 = \text{secondmsg}(x_i, r_i, \vec{m}_1)$
Receive $\vec{m}_2 = (m_1^2, ..., m_n^2)$

Output $y = \text{output}(x_i, r_i, \vec{m}_1, \vec{m}_2)$
Inconsistency-detection compiler [ACGJ’19]

Round 1 (over P2P):
• Party P_i sends $m_i^1 = \text{firstmsg}(x_i, r_i)$ to everyone
• Compute $(GC_i,LBL_i) \leftarrow \text{Garble} \left(\text{secondmsg}_{x_i,r_i}(\overline{m}_1) \right)$
• \forall input wire w, share $lb_{l_i}^{w,b} = lb_{l_i\rightarrow 1}^{w,b} \oplus \cdots \oplus lb_{l_i\rightarrow n}^{w,b}$
• \forall input wire w, send $lb_{l_i\rightarrow j}^{w,b}$ to P_j

Round 2 (over BC):
• Party P_i receives $\overline{m}_1 = (m_1^1, \ldots, m_n^1)$
• Broadcast GC_i and shares of labels corresponding to \overline{m}_1

Output:
• $\forall j$ party P_i reconstructs labels $LBL_{j}^{\overline{m}_1}$
• $\forall j$ party P_i evaluates $GC_j \left(LBL_{j}^{\overline{m}_1} \right)$ to obtain m_j^2
• Output $y = \text{output}(x_i, r_i, \overline{m}_1, \overline{m}_2)$
Proof idea

• If every P_i sends the same m^1_i to all parties
 \implies All parties can reconstruct the same labels for each GC
 \implies Security reduces to the original protocol

• If some P_i sent different messages $m^1_i \neq \tilde{m}^1_i$ to different parties
 \implies No party can reconstruct the labels for GC_i
 \implies All parties abort

• Similar compiler used by [ACGJ’19] (for $t < n/2$) and [GIS’18] (for semi-honest)
 Simulation used specific properties of the original broadcast-model protocol

• We prove for any broadcast-model protocol (black-box simulation)
 New receiver-specific simulation technique (see the paper)

• Two P2P rounds \implies selective abort
Summary

<table>
<thead>
<tr>
<th>1st round</th>
<th>2nd round</th>
<th>Selective abort</th>
<th>Unanimous abort</th>
<th>Identifiable abort</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>BC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>P2P</td>
<td>BC</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>BC</td>
<td>P2P</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>P2P</td>
<td>P2P</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>