
Track-based Translation Layers for Interlaced Magnetic Recording

Mohammad Hossein Hajkazemi?, Ajay Narayan Kulkarni†, Peter Desnoyers?, Timothy R Feldman†

Northeastern University?, Seagate Technology†

Abstract
Interlaced magnetic recording (IMR) is a state-of-the-art
recording technology for hard drives that makes use of
heat-assisted magnetic recording (HAMR) and track overlap
to offer higher capacity than conventional and shingled
magnetic recording (CMR and SMR). It carries a set of write
constraints that differ from those in SMR: “bottom” (e.g.
even-numbered) tracks cannot be written without data loss
on the adjoining “top” (e.g. odd-numbered) ones. Previously
described algorithms for writing arbitrary (i.e. bottom) sectors
on IMR are in some cases poorly characterized, and are either
slow or require more memory than is available within the
constrained disk controller environment.

We provide the first accurate performance analysis of the
simple read-modify-write (RMW) approach to IMR bottom
track writes, noting several inaccuracies in earlier descriptions
of its performance, and evaluate it for latency, throughput and
I/O amplification on real-world traces. In addition we propose
three novel memory-efficient, track-based translation layers
for IMR—track flipping, selective track caching and dynamic
track mapping, which reduce bottom track writes by moving
hot data to top tracks and cold data to bottom ones in different
ways. We again provide a detailed performance analysis using
simulations based on real-world traces.

We find that RMW performance is poor on most traces
and worse on others. The proposed approaches perform much
better, especially dynamic track mapping, with low write
amplification and latency comparable to CMR for many traces.

1 Introduction

Magnetic recording technology has made enormous strides
over the last several decades, reaching densities of about a
terabit per square inch, higher than that of any but the most
modern and densest solid-state storage technologies. Yet
in recent years density improvements have run up against
the superparamagnetic limit [17]—as bits get smaller, the
magnetic media coercivity (resistance to being magnetized)

must go up, to avoid bit flips from thermal noise, while as heads
get smaller their magnetic field becomes weaker, requiring
lower coercivity media. In other words, smaller bits require
smaller track sizes, requiring smaller write heads, requiring
lower-coercivity media, resulting in larger minimum bit sizes.
When the minimum bit size becomes as large as the write head,
further density improvements require new approaches. We are
currently at or near this limit; increases in disk capacity in the
past 5 years or more have relied more on increasing the number
of platters per drive rather than increases in areal density.

New strategies allow further increases in areal density by
sidestepping one or both sides of this trade-off, i.e. either
breaking the link between bit size and write head size /
magnetic field strength, or between bit reliability and media
coercivity. Shingled Magnetic Recording (SMR) [1] overlaps
adjacent tracks, reducing the effective track width without
reducing the write head size. Yet, this increase in density
comes at a cost: random writes are not allowed, as overwriting
a sector will also overwrite the corresponding sector in the
adjacent “downstream” track, and therefore the data could be
lost. Heat-Assisted Magnetic Recording [12] takes advantage
of the fact that the coercivity of a material goes down with
temperature, and uses a laser to heat the media to near the
Curie point1 before writing. This allows use of a medium with
much higher room-temperature coercivity and smaller grain
size (and thus minimum bit size), and also allows an effective
track width narrower than the write head by narrowing the
width of the heated domain, by controlling the laser current.

Interlaced Magnetic Recording (IMR) [9] uses both heat-
assisted recording and track overlap. This is in contrast to SMR,
which uses track overlap but conventional room-temperature
recording. As shown in Figure 1, tracks are written in an
“interlaced” fashion, with a “bottom” layer of tracks written
first, after which a “top” layer is written between (and partly
overlapping) these bottom tracks. To avoid total overwrite
of the bottom tracks, top tracks are written with a narrower
width and thus slightly lower capacity, roughly 90% that of the

1The temperature above which the material will no longer retain its
magnetic properties.

USENIX Association 2019 USENIX Annual Technical Conference 821

1 3

0 2 4 n-4 n-2 n

n-3 n-1

Bottom track Top track

Figure 1: IMR technology: tracks are written in an interlaced
fashion; top tracks are written between and over bottom tracks.
Top track i partially overlaps bottom track i-1 and i+1.

bottom tracks. The result is a drive with write constraints, but
ones that are far less strict (and thus less performance-limiting)
than those for SMR. Where SMR writes must be limited to
a single track per zone (a group of a few hundred of tracks)
to avoid data loss, in IMR nearly half of the sectors (i.e. those
on the top tracks) can be re-written safely. Moreover whereas
moving valid data in SMR requires reading and/or writing an
entire (typically 256 MB) zone, for IMR in the worst case only
two tracks (less than 5 MB) must be moved.

IMR is a very new technology, with the first descriptions of
its physical feasibility dating to 2016 [4,9]; with one exception,
Wu et al. [20] that is discussed in Section 5 the publications
to date have focused on the magnetic and physical aspects
of IMR, rather than system implications and algorithms. We
provide the first thorough performance analysis of the naive
read-modify-write (RMW) strategy described in the first IMR
proposals [4], correcting several mistaken assumptions, and
quantifying the performance degradation of IMR with RMW
for real workloads. We offer three algorithms for improved
management of IMR writes, track flipping, selective track
caching and dynamic track mapping, all of which (unlike the
approach of Wu et al.) may be readily implemented in disk
firmware with limited memory and compute resources. We
provide detailed performance models of these algorithms,
and evaluate them in simulation on real workloads, show-
ing substantial improvement over RMW in all cases and
near-conventional-drive performance for some workloads.

In particular, the contributions of this paper are:

1. a thorough performance analysis of naive read-modify-
write for IMR disk—i.e. as proposed in Hwang et
al. [9]—showing a performance overhead of more than
2x that assumed by prior work,

2. three novel track-based translation layers—track flipping,
selective track caching and dynamic track mapping—
which mitigate most of the IMR performance penalty at
a sufficiently modest cost in memory that they may be
implemented within today’s on-board disk controllers,

3. evaluation of conventional (“CMR”) disk, RMW and

the three proposed algorithms on real-world traces,
demonstrating (a) significant costs to RMW vs. CMR,
and (b) substantial improvements for all proposed
algorithms particularly dynamic track mapping.

2 Algorithms for IMR

As with SMR, IMR write limitations maybe addressed from
the host or within the device; however the complexity of the
IMR track-to-track write restrictions makes it preferable to
employ a device-based block translation layer rather than
expose restrictions to the host.

We describe in detail four algorithms: naive read-modify-
write [9], track flipping, selective track caching and dynamic
track mapping. For each algorithm we estimate memory usage,
describe the data copies and logging of mapping changes
needed to prevent data loss in the case of a crash, and analyze
the performance of the algorithm’s operations.

2.1 Read-modify-write
The simplest IMR translation layer is what we term naive
read-modify-write (RMW). Sectors on disk are assigned
fixed logical addresses, as in conventional drives, and before
performing any write to some sector S on a bottom track T ,
the drive (1) reads the adjacent top track sectors (ST−1 on
T −1 and ST+1 on T +1) and (2) copies them to a “backup
region”, then (3) performs the bottom-track write, and finally
(4) re-writes the adjacent top track sectors.

When numbering tracks T − 1, T , T + 1 we are referring
to physical position, which may not directly correspond to
logical block numbering. In particular IMR is expected to use
a serpentine or zig-zag layout [10], where LBAs are numbered
sequentially across N adjacent bottom tracks, and then across
the corresponding N top tracks. The result is that sectors in
physically adjacent top and bottom tracks will be separated
by a distance of N track sizes either in all cases (zig-zag) or
on average (serpentine).

Memory usage: Other than buffers for copying, no
additional memory is required beyond that needed for standard
LBA to physical location translation in a conventional drive.

Safety and crash consistency: We first note that to avoid
data loss, host writes to the affected top tracks must be blocked
during the RMW operation, as they would be overwritten when
data is copied back to the tracks. The duration of this locking
determines a phase, which is atomic with respect to user I/O,
and mapping updates need only be persisted once per phase.

Copying sectors ST−1 and ST+1 to the backup region forms
a single phase, and the temporary location of the sectors is
logged to the backup region just before the phase completes. If
a crash occurs before restoring the top tracks, a startup scan of
the log will locate the saved data, which may be copied back
to its proper location. The length of the log is determined by
the number of simultaneous RMW operations allowed; if this

822 2019 USENIX Annual Technical Conference USENIX Association

is 1, then no log trimming is needed as it will just be replaced
by the log from the next operation.

When logging data to the backup region, we can write ad-
ditional metadata with negligible overhead, much like journal
entries in a file system. Efficiently persisting the fact that ST−1
and ST+1 have been restored is more difficult, however; if this
is not done, then future writes to these locations may be lost if
stale backup data is copied back on restart. A straightforward
way to do this is to clear the backup region; however this
requires an additional seek and possibly lost rotation. Instead
we clear the backup region lazily, if we detect a write to ST−1
or ST+1. Since any RMW operation will clear the previous
contents of the backup region, in most cases this lazy cleaning
may be omitted, as until ST−1 or ST+1 are modified, the backup
data is not stale and may be copied back safely on startup.

Timing: The performance of this approach may be
analyzed by examining the steps above. We assume a random
single-sector write to sector S on bottom track T , and assume
as well that sectors ST−1 and ST+1 on tracks T−1 and T +1
respectively must be moved to avoid data loss. The time taken
is thus at least:

1. 0.5trot+tseek to reach and read sector ST−1, where trot is
the rotation time, assuming an average 0.5-rotation delay
for random access.

2. A missed rotation, trot , to reach and read sector ST+1.
3. tseek+0.5trot to reach the backup region, plus negligible

transfer time to write sector ST−1 and ST+1.
4. tseek+0.5trot (see below) to reach and write sector S on

track T .
5. a missed rotation (trot) plus negligible transfer time to

reach and write ST−1 on track T−1.
6. a missed rotation (trot) plus negligible transfer time to

reach and write ST+1 on track T+1.

Steps 3 and 4 together will take an integral number of
rotations, either 1 or 2, depending on whether the disk is able
to seek to the safe track, wait until the write location passes
under the head, and seek back within a single rotation (trot).
Based on discussions with disk vendors we assume the two
steps will take 2trot to complete, for a random write latency
of tseek+5.5trot . The same operation would take tseek+0.5trot
on a CMR drive, for a RMW overhead of 5 rotations

Performance is even worse for sequential write, as the
previous write finishes just after writing sector S, so that step 1
will require an entire missed rotation, for a total latency of 6trot .
Note that multiple writes to the same track may be coalesced
into a single RMW operation, whether via command queuing
or the use of write caching on the drive; however it will still
take 5 or 6 rotations longer than writing a full track on a
conventional drive.

We note that in our analysis, the actual performance of
RMW will be significantly worse than that implied by Hwang
et al. [9], where they state that writes to bottom tracks will
require two rewrites, for a mean of one extra rewrite per host

Figure 2: Track write count CDF (the first 3000 hottest tracks)
for traces w17, w46, w84, w106 (See Section 3 for trace
description); tracks are sorted from the hottest (i.e. track 0)
to the coldest (i.e. track 3000).

write request. We attribute the inaccuracy of their analysis2 to
several factors: (1) the significance of missed rotations in the
rewrite process, each of which is far more costly than all but
the largest write requests; (2) the need to read top-track data
so that it can be re-written, and (3) the need to persist top-track
data in a secondary location, to avoid data loss from failure
in the middle of a RMW operation.

2.2 Track flipping
Real workloads show high locality, with typically a small
number of hot sectors being overwritten frequently, and
the remaining sectors receiving few if any writes; the same
phenomena is found at the track level, as shown in Figure 2 (an
illustration of the first 3000 hottest tracks in a few workloads).
For instance, a significant portion of writes (80%) are received
by a small number (100) of tracks in w106. We can take
advantage of this locality by moving data between tracks
to maximize the amount of hot data stored on re-writable
top tracks. Our first algorithm, track flipping, locates bottom
tracks containing hot sectors (i.e. hot tracks) and swaps them
with adjacent top tracks, moving the hot data to the top, where
additional writes can be performed directly, and (hopefully)
moving cold data to the bottom track. In particular, we track
the number of writes to each track, periodically identify
candidates for flipping—i.e. hot bottom tracks which are
adjacent to cold top tracks—and swap them. The actual swap
of tracks T (bottom) and T+1 (top) is straightforward:

1. read tracks T−1, T , and T+1
2. write T−1 and T contents to a backup region3

3. write T+1 contents to T
4. write T contents to T+1
5. rewrite T−1

Implementation of this algorithm must take into account
several real-world factors. Top and bottom tracks hold

2To be fair, their analysis is a minor paragraph in the middle of a magnetics
paper.

3The backup region must accommodate at least two tracks.

USENIX Association 2019 USENIX Annual Technical Conference 823

1

2

3 5

4 6

2 3 4

(a) Before (b) After

0

Nb

0

Nt
1

0

Nt

Nb 65

Figure 3: Track flipping: hot bottom tracks 1 and 5 (red) are
swapped with cold top tracks 2 and 4. Since top tracks (Nt
sectors) are smaller than bottom tracks (Nb sectors), only the
first or last Nt sectors of hot bottom tracks are moved.

differing amounts of data, with top tracks estimated to have
90% the capacity of bottom tracks. In addition, neighboring
top tracks or bottom tracks may vary slightly in capacity, due
to the presence of bad sectors hidden by slip sparing [10]—i.e.
the LBA numbering skips a bad sector, resulting in a track
containing fewer sectors than if it were perfect. We note that
there are other variations in track capacity due to the use of
zone bit recording [10] and adaptive formatting [11]; however
in all but a negligible number of cases these will not result in
differing capacities for adjacent tracks.

Our solution to differing track capacities is to swap most of
the bottom track with the top track contents, as shown in Fig-
ure 3. If a bottom and adjacent top track hold Nb and Nt sectors
respectively, then we can swap the first Nt sectors of the bottom
track with the entire contents of the top track (tracks 4 and 5 in
Figure 3). In the case where hot sectors are located at the “end”
of the bottom track, we instead swap the last Nt sectors of the
bottom track with the contents of the top track (tracks 1 and
2 Figure 3). Given the original location of a sector (i.e. sector
position S on track T) the sector can be located precisely in the
flipped configuration given knowledge of which flip (low LBA
or high LBA) has been performed and the exact track sizes Nt
and Nb, which are already known by the firmware as part of the
LBA translation process. Note that once two tracks have been
flipped, data cannot migrate any further; if tracks T and T+1
have been flipped, then flipping T − 1 and T , or T + 1 and
T+2, is not allowed until T and T+1 have been flipped back.

Memory usage: The track mapping may be represented
in a very concise fashion, as each bottom track T is in one of
five states: (1) unmoved, (2) its low LBAs flipped with track
T−1, (3) its high LBAs flipped with T−1, or (4) and (5), its
high or low LBAs flipped with T+1. The resulting track map
requires 3 bits per bottom track, or 1.5 bits per track; assuming
a mean track size of 1.5 MB, this would require a map of about
2.5 MB for a 20 TB drive.

Memory requirements for hot track detection can be modest,
as well. The total number of tracks is large, 1.3×107 for our
20 TB drive; however the number of tracks written in the
period between iterations of the track flipping algorithm is
much smaller (e.g. 20K in our experiments). Logging these

track numbers in memory (using data structures such as an
array or a list) will take less than 0.25 MB, and they may then
be sorted and counted to determine track write frequency
during that interval.

Safety and crash consistency: For track flipping we need
to persist not only the state of the flipping process, but also
updates to the track mapping. The flip process involves one
more copy than RMW, but may be handled in the same way,
by keeping an update log in the backup region, and marking
sectors when they are copied back to their home (or flipped)
locations. Backup region metadata can include a small log
of map updates which can be appended to the track map
in batches. To persist changes to the track map we keep a
copy of the map on disk, and a log of updates to the map in
the “checkpoint location”. The checkpoint can be rewritten
periodically and the log recycled, resulting in a negligible
amortized cost for persisting map changes.

Timing: Assuming the head starts in an arbitrary location,
the time required to flip bottom track T and top track T+1 will
be:

1. tseek to reach track T
2. 3trot to read tracks T−1, T and T+14

3. tseek to reach a backup region
4. 2trot to write backup copies of track T−1 and T
5. tseek to return to track T
6. trot to write the contents of T+1 into track T
7. trot to write the contents of track T into T+1
8. trot to rewrite the contents of track T-1

for a total cost of 3tseek + 8trot . Since all accesses are to
entire tracks, we assume that existing disk scheduling and
buffering mechanisms allow reading or writing to begin
immediately after reaching a track, rather than incurring
additional rotational delay. Note, however, that track flipping is
a background operation, and can be interrupted at any point in
time—resuming an interrupted flip is very similar to the crash
recovery scenario, except that in-memory state is still available.
The primary performance impacts of track flipping are thus
a reduction in overall throughput, from the background
flipping process, in combination with RMW latency for those
bottom-track writes to tracks which have not been flipped.

For track flipping to be effective, hot bottom tracks must be
paired with neighboring cold top tracks, as there would be no
advantage to flipping the two tracks of the same “temperature”.
Although one can easily construct synthetic workloads (e.g.
uniform random) which lack neighboring hot/cold track pairs,
we wish to determine whether they are found in real-world
workloads. To address this question we analyze one of our
experimental workloads (w17, described in the Section 3
below), assuming a constant track size of 2 MB. In Figure 4 we
see write counts for the 20 hottest tracks and their neighbors.

4Seeks due to track switches as well as short seeks from track T −1 to
track T+1 and vice versa are not included in our calculations.

824 2019 USENIX Annual Technical Conference USENIX Association

Figure 4: Write count of 20 hottest tracks and their neighbors, trace w17. This workload is seen to be “track flipping-friendly”.

In only a few cases (e.g. track 5187) do hot tracks have a hot
neighbor; however even in those cases the other neighbor is
cold. Similar results are seen in many—but not all—other
workload traces. However we note that results may vary with
file systems other than the ones found in our traces, i.e. ext4
and NTFS, and will certainly vary with differing track sizes.

Real-world workloads are time-varying, with the identity
of hot locations changing over time. We see this in Figure 5,
which shows the write frequency over time for a range of 4
tracks. Not only does write frequency to a given track vary,
but relative write frequency between tracks changes as well:
e.g. track 3854 is much hotter than 3857 for a significant
period, while later in the trace track 3857 is hotter. By using
time-limited write counts, which are periodically reset after
each search for hot tracks to flip, we are able to adapt to these
changes in access frequency. In Algorithm 1 we see the full
track-flipping algorithm: every N writes (e.g. 20,000) we
select the hottest k bottom tracks over the last interval and, if
possible, switch them with cold neighbors.

2.3 Selective track caching

With track flipping—as with RMW—every track on the disk
except for the two “backup region” tracks is filled with user
data, requiring significant “data shuffling” to move data. If we
instead reserve a small number of tracks for translation layer
use, we can achieve additional gains in performance. Selective

Figure 5: Track write frequency for tracks 3054-3057, trace
w106. Y axis is the number of writes to a track out of 100,000
total writes.

Algorithm 1: track flipping
parameter :updateFrequency, flipThreshold, maxFlips
variable :ioDirection (read/write), trackPosition

(bottom/top), trackNumber, writeCount,
flipCount, trackIdLog [], trackCounts []

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 if ioDirection==write then
3 writeCount ++
4 trackIdLog.append(trackNumber)
5 if writeCount mod updateFrequency== 0 then
6 trackCounts []← Count (trackIdLog)
7 for every track in Hottest (trackCounts) do
8 flipCount ++
9 middleCounter = trackCounts [track]

10 leftCounter = trackCounts [track-1]
11 rightCounter = trackCounts [track +1]
12 selected = Min (leftCounter, rightCounter)
13 temperatureDiff = middleCounter- selected
14 if temperatureDiff > flipThreshold then
15 TrackFlip (track, selected) maxFlips ++
16 end
17 if flipCount>=maxFlips then
18 Break ()
19 end
20 end
21 end
22 end

track caching does precisely this, reserving a small range of
non-interlaced bottom-only tracks as a persistent cache for
holding data from hot bottom tracks. Whereas track flipping
is not able to move a hot bottom track if both of its neighbors
are also hot or if both of its neighbors are already flipped with
another bottom track, selective track caching is able to move
any hot bottom track, at any time.

More specifically, we reserve k bottom tracks as a random-
write region (much like an SMR persistent cache), either at
the outer diameter to maximize track size and transfer rate, or
distributed in smaller groups across the disk to minimize seek
time to the nearest cache. We note that tracks in the persistent
cache will not be precisely the size of tracks that are cached
there; instead we allocate “logical tracks” within the cache,
where each logical track is a range of LBAs long enough to

USENIX Association 2019 USENIX Annual Technical Conference 825

hold a full track and a metadata header. As seen in Algorithm 2,
we again monitor track write counts, and periodically select
the hottest bottom tracks to be moved to persistent cache, while
moving the coldest cached tracks back to their home location.

Memory usage: For this algorithm, memory is needed for
monitoring track write counts and for keeping a map of the
cached tracks. The requirements for track write monitoring
are the same as they are for track flipping, and thus the
same approaches may be used with identical memory usage:
hundreds of KB for logging the track numbers written in the
period between iterations, or negligible usage if write tracking
already performed by the drive is adequate. If the cache map
is structured as a look-aside list of exceptions to the standard
map, then its memory usage is proportional to the size of the
persistent cache, not the drive itself. In our experiments a cache
of 100 tracks was used, requiring a trivial amount of memory;
however for a cache of several tens of thousands of tracks,
memory usage should still remain in the range of a few MB.

Safety and crash consistency: The same approach may be
used for maintaining a consistent copy of the map as for track
flipping: updates are logged, and a full checkpoint written
periodically. Alternately if the cache size is sufficiently small
we can exhaustively scan the cache and rebuild the map on
startup; however this requires trot per track, and starts to
become impractical at cache sizes of less than 100 tracks.

Timing: The actual data movement portion of this algo-
rithm is straightforward. Promotion of a bottom track to the
cache merely requires seeking to it (tseek), reading it (trot),
seeking to the cache (tseek), and writing it (trot), for a total of
2tseek+2trot . However track eviction takes longer as it requires
a full-track RMW operation; the time taken will be:

1. tseek to reach track C in the cache
2. trot to read track C

Algorithm 2: selective track caching
parameter :updateFrequency, cacheSize
variable :ioDirection, trackPosition,

trackNumber, writeCount, trackIdLog
[], cachedTracks [], trackCounts [], victim

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 if ioDirection==write then
3 writeCount ++
4 trackIdLog.append(trackNumber)
5 if writeCount mod updateFrequency== 0 then
6 trackCounts []← Count (trackIdLog)
7 for every track in Hottest (trackCounts) do
8 if track not in cache then
9 victim← Coldest (cachedTracks)

10 TrackSwap (track, victim)
11 end
12 end
13 end
14 end

3. tseek to reach track T−1
4. 2trot to read track T−1 and T+1
5. tseek to reach to the backup region
6. 2trot to write backup copies of track T−1 and T+1
7. tseek to seek back to track T
8. trot to write the contents of track C into T
9. 2trot to re-write track T−1 and T+1

for a total cost of 4tseek+8trot . In steady state one track will be
evicted for every track promoted, for a total cost of 7tseek+8trot
per track promoted. Batching of promotions and evictions may
remove several seek times from this total, but will not make
great improvements due to the scattered locations of tracks
being promoted or evicted. Again we note that promotions and
evictions are interruptible background operations; the impact
on host I/O will be a loss of throughput due to these operations,
plus RMW latency for writes to non-promoted tracks.

2.4 Dynamic track mapping
Dynamic track mapping is another strategy for addressing
the track flipping key limitations: (1) only neighboring tracks
could be switched and (2) a small portion of bottom track
must remain unflipped. It achieves this by allowing arbitrary
permutations of tracks within zones (groups of small numbers
of tracks).

To address unequal track sizes, in dynamic mapping we
concatenate all bottom-track LBAs and group them in fixed-
sized pseudo-tracks of approximately one physical track in size
(except for the last pseudo-track). We similarly group all top-
track LBAs into pseudo-tracks of the same size. These equal-
sized pseudo-tracks may then be arbitrarily switched with each
other. Algorithm 3 describes dynamic track mapping in more
detail; as seen, we periodically check for hot bottom pseudo-
tracks and swap the hottest bottom with the coldest top tracks.

Memory usage: If zones are sized to hold 256 pseudo-
tracks, only 8 bits are needed for each map entry; for our
20 TB drive with almost 13M tracks this would require about
12.5 MB of memory: more than that needed for track flipping,
but still modest.

Safety and crash consistency: Similar to track flipping
and track caching, to persist the changes, dynamic track
mapping logs the updates to the map and also writes a full
checkpoint periodically.

Timing: The time required to swap a hot bottom track T with
a cold top track T ′ in dynamic track mapping is very similar to
that of track flipping. However, since pseudo-track size is not
equal to physical track size, it is possible that a track cannot
be read immediately after the head is placed resulting in a half
rotation on average. The time required for a single swap will be:

1. tseek+0.5trot to reach track T
2. 3trot to read tracks T−1, T , and T+1
3. tseek to reach a backup region

826 2019 USENIX Annual Technical Conference USENIX Association

4. 3trot to write backup copies of track T−1, T and T+1
5. tseek+0.5trot to reach track T ′

6. trot to read track T ′

7. tseek+0.5trot to return to track T
8. 3trot to write the contents of T ′ into track T and write

back the contents of T−1 and T+1
9. tseek+0.5trot to return to track T ′

10. trot to write the contents of T into track T ′

Thus, the expected total cost is 5tseek+13trot .

3 Methodology

We evaluate the four IMR translation algorithms—naive read-
modify-write (RMW), track flipping, selective track caching
and dynamic track mapping— in addition to conventional disk
(CMR) via trace-driven simulation. We use the CloudPhysics
traces [18], a recent set of block traces from virtual machines
running Linux and Windows with modern file systems and
large storage volumes. The LBA ranges covered in the traces
varied from tens of gigabytes to 1.5TB.

Prior work [6] has shown that older traces (e.g. the
widely-used MSR Cambridge traces [13] from c. 2007)
display fine-grained behavior which is very different from that
exhibited by modern file systems; although this difference in
behavior may not be significant in block-level systems (e.g.
FTLs) that ignore spatial locality, it has been demonstrated

Algorithm 3: dynamic track mapping
parameter :updateFrequency, swapThreshod
variable :ioDirection (read/write), trackPosition,

trackNumber, writeCount, trackIdLog
[], trackCounts [], cldstTrk, hotstTrk

1 ioDirection, trackPosition, trackNumber← ReceiveIO()
2 Function RemapTracks() is
3 trackCounts []← Count (trackIdLog)
4 for every cldstTrk in Coldest (trackCounts)

and hotstTrk in Hottest (trackCounts) do
5 temperatureGap= hotstTrkCntr- cldstTrkCntr
6 if temperatureGap> swapThreshod then
7 TrackSwap (cldstTrk, hotstTrk)
8 end
9 end

10 end
11 if ioDirection==write then
12 writeCount ++
13 trackIdLog.append(trackNumber)
14 if writeCount mod updateFrequency== 0 then
15 for every zone do
16 RemapTracks()
17 end
18 end
19 end

to result in significant differences in the performance of
disk-based systems. The CloudPhysics corpus comprises 106
different traces; we sampled this set and selected a collection
that represents different levels of read/write intensity and
spatial locality. A summary of the selected workloads is shown
in Table 1. The workloads range in size from about 3 to 44
million I/Os, and range from read-heavy (w08, 09% writes)
to very write-heavy (w39, 95% writes).

Disk model: Our simulation assumes a 6000 RPM disk
(Trot = 10ms) with equal-sized 2 MB tracks; although crude,
we argue that this model is fairly accurate in the absence
of real IMR disks for comparison. Based on current trends,
2 MB is a reasonable estimate of the mean track size for a
next-generation drive; however real disks have decreasing
track sizes towards the inner radius of the platter, with roughly
a factor of two difference between the largest and smallest
tracks. Since the majority of sectors lie in the larger outer
tracks, the actual variance from the mean is less than this factor
of two would imply, and as modern file systems (ext4 and
NTFS) do not consider track location (as opposed to locality) in
placement, errors in either direction are expected to cancel out.

The primary inaccuracy introduced by this model is in track
flipping: the model assumes that top and bottom tracks are
of equal size, so that no remainder of the bottom track is left
behind after flipping. If top tracks in a real drive have 90%
the capacity of bottom tracks, this would result in up to 10%
of writes to this track being classified by the simulator as
top-track writes, rather than bottom-track RMW writes. Since
the colder end of the track is left behind, we expect that the
misclassification rate be less than 10%. However, if both track
ends are equally hot, the misclassification rate will be higher.
Our observation of hot-track LBA access patterns suggests
that either one end is extremely hot or all LBAs are accessed
evenly. At present we neither know the actual ratio of top to
bottom track size in a specific real IMR drive, nor the practical
range of this parameter for feasible drives; therefore this 90%
figure is highly speculative. Given this uncertainty, the choice
of a uniform track size is simple and not unreasonable.

Trace playback: The traces used were collected in a
virtualized environment, with a high-performance multi-disk
(or SSD) back-end storage system. The resulting I/O rates may
be seen in the inter-arrival time CDFs in Figure 6, where half of
inter-arrival times for one trace (w84) are in the 100 µS range
(up to 10,000 IOPS), while 80% of writes for another trace
(w35) are below 500 µS (2000 IOPS). Several approaches may
be taken in adapting such a trace to a single-disk simulation.
One method is to run the simulation “flat-out”, ignoring
inter-arrival times and launching (or queuing) each I/O as soon
as possible. However since our IMR translation algorithms
include background work, the resulting behavior would not
be representative of system behavior for real applications.

Our goal instead is to simulate what system behavior would
be if the application that produced the original trace were
run against the simulated (and much slower) I/O device.

USENIX Association 2019 USENIX Annual Technical Conference 827

Table 1: Statistical summary of selected workloads.

workload w08 w09 w17 w24 w26 w28 w31 w34 w39 w43 w46 w48 w56 w61 w84 w87 w106
I/O count (M) 44.3 49.6 31.3 27.1 26.5 19.7 21.1 19.5 17.9 15.6 11.5 14 10.8 9.8 4.8 3.7 3.2
write ratio 0.09 0.55 0.78 0.11 0.58 0.33 0.16 0.23 0.97 0.51 0.62 0.42 0.95 0.50 0.86 0.79 0.82

Figure 6: CDF of I/O inter-interval times in a few workloads.

Figure 7: “Stretching” of original trace timestamps for IMR
simulation.

Accurate simulation of such behavior requires information
on application CPU usage and I/O dependencies which are
not available in the original traces. Although recent work [5]
provides mechanisms for inferring I/O dependencies given a
trace containing both initiation and completion times for I/Os,
very few of the traces we used contained this information.

Instead we consider a fixed-queue model, with a queue
size of 64; based on inspection of the traces we believe this
is an intermediate point between the lower effective queue
depths seen with many application-initiated I/Os, and the
very high degree of parallelism with which I/Os are initiated
by the virtual memory system. I/O inter-arrival times are
preserved when inserting items into the queue until it is filled,
and then further I/Os are blocked until a position in the queue
opens; in other words, the inter-arrival time between I/Os N
and N+1 is the maximum of the original trace inter-arrival
time and the time for the queue to drain by 1. The resulting
I/O performance reflects a combination of individual I/Os
and queuing delays due to device throughput limitations. As
an example, in Figure 7 we see this “time dilation” for two
workloads with naive RMW—in one case trace completion
is delayed by about 150s, and in the other by over 1440s.

3.1 Disk model details
I/O latency: In our simulation, I/O latency includes host and
device queuing, seek time, rotational delay and transfer time.
Seek time (Tseek) is calculated from the source and destination
track locations using the following equation proposed by
Shafaei [16], assuming minimum and maximum seek times
of 2 and 20 ms and calculating α accordingly:

tseek(trksrc,trkdes)=α∗
√
|trksrc−trkdes|+tseekmin (1)

Rotational delay for I/Os on different tracks is assumed to
be uniformly distributed between 0 and 1 rotation (Trotation);
for deterministic simulation we assume a constant value of
a half rotation, giving a total I/O latency of:

tI/O= tseek+
1
2

trotation+ttrans f er (2)

We note that IOs are split at boundaries in case they touch
more than a track. The full list of drive specifications and
experiment configurations is shown in Table 2.

4 Evaluation

In this section we evaluate five alternatives—conventional
disk (CMR), IMR with naive read-modify-write (RMW),
IMR with track flipping, IMR with selective track caching
and IMR with dynamic track mapping—by measuring I/O
latencies and write amplification factor (WAF). Summary
results for all traces and algorithms are shown in Figure 8
(write amplification) and Figure 9 (latency).

All track flipping, selective track caching and dynamic track
mapping are seen to give substantial improvements in write

Table 2: Experimental parameters and drive specification.

drive specification
track size drive cache size rotation delay

2MB 100MB 10 ms
dynamic track mapping and flipping configuration

update frequency hot/cold threshold max flips
20K write ops 50 50

selective track caching configuration
update frequency track cache size cache location

20K write ops 100 tracks OD

828 2019 USENIX Annual Technical Conference USENIX Association

Figure 8: IMR write amplification by workload and translation layer.

(a) Mean latency

(b) 90th percentile latency

Figure 9: Mean and tail latency for 17 workloads: CMR, RMW, track flipping, track caching and dynamic track mapping.

amplification when compared to naive read-modify-write,
by a factor of 2 or more in over half of the cases; in no
case is performance degraded. As expected, dynamic track
mapping shows the best performance in most cases as it has
the minimum limitations among the proposed approaches.
For several workloads it reduces the write amplification by
a factor of 2 or more; in some cases (e.g., w56, w39 and w106)
write amplification is nearly eliminated.

Results for mean latency are more mixed. In several
cases (e.g., w09, w17, w39, w46, w56, w61 and w87) IMR
read-modify-write latencies were noticeably higher than
for the conventional drive. For w56 this excess latency
was virtually eliminated by track flipping, track caching or
dynamic track mapping. For some others (e.g., w17, w39,
w46) at least one of the approaches gave a significant reduction
(more than 2x) in IMR latency, while still remaining about
twice that of conventional. For w09 and w87, however, latency
improvements from dynamic track mapping were modest,
with performance still significantly worse than CMR.

Figure 10: CDF of track write counts for workloads with
highest (w106 and w39) and lowest (w87 and w87) WAF
improvement with track flipping and/or selective track caching.

In Figure 10 we explore one possible reason for lower
improvement for traces w09 and w87: the overall number
of hot tracks. We compare these traces with w106 and w39,
the traces that show the greatest improvements in write
amplification when track flipping or track caching is used (see

USENIX Association 2019 USENIX Annual Technical Conference 829

Figure 8). We see that a high fraction of writes in w106 are to
the hottest 100 tracks, and that half of the writes in w39 are to a
handful of tracks. In contrast the “working set” of hot tracks for
w09 and w87 appears to be very large, with only around 20%
and 15% of writes going to the hottest 100 tracks, respectively.
The track cache used in our experiments (100 tracks) would
do almost nothing to help in this case, and if many writes are
to tracks which are written only a few times at most, then the
gain from flipping them will not outweigh the cost.

As with mean latency, results for tail latency (Figure 9b) are
also mixed, although worse. In a few cases (e.g., w39 and w56)
RMW increases tail latency by a factor of tens of thousands.
That is because with CMR most writes in these cases appear
to complete in the write cache which results in a mean latency
of about 0.1ms, and there is just enough idle time for them
to be flushed to disk; however with RMW the disk cannot
keep up during idle time, so the queue fills and stays that way
causing mean latency of about 2.4s. Overall tail latency is
increased by more than 4x across majority of the workloads. In
the worst cases (w39, w56) the proposed algorithms limit the
relative increase in tail latency to double digits, but is still very
high. In about half the cases tail latency with dynamic track
mapping is similar to that of CMR; however in the remainder
it is significantly worse.

For both mean and tail latency, there are a few workloads
(w08, w24, w31 and w43) that are not affected by IMR and
accordingly no improvement is observed when the proposed
algorithms are applied. Besides w43 with almost 51% of write
operations, the rest of the workloads are read-heavy traces and
therefore are less prone to significant performance penalty due
to IMR.

To examine further, in Figure 12 we see CDFs of I/O
latencies for traces w46 and w28. In each case IMR read-
modify-write results in high-latency I/Os due to a combination
of operation latency and queuing delays due to reduced
throughput; roughly 2/3 of writes were slowed in both cases.
We note that there are some other cases e.g., w56 with fewer
writes (roughly 10%) being affected. Track flipping, track
caching and dynamic track mapping are all able to improve
the w28 and w46 performance considerably, but a significant
fraction of writes (roughly 25%) still suffer excessive latency.
Our observations show that for the case w56 the three improved
algorithms are all able to eliminate the excess latencies,
resulting in performance comparable to a conventional drive.

The impact of IMR overhead on throughput can be
approximated by looking at the issue time expansion during
the simulation run; this indicates the periods at which the
device was unable to keep up with the I/O trace, and by how
much. In Figure 13 we see issue time disparity vs. I/O count
for traces w46 and w28. We note that for w46 all dynamic
track mapping, and to a slightly lesser extent track caching
and track flipping, result in significantly improved throughput.
For w28, dynamic track mapping shows a considerable
throughput improvement; track caching and track flipping

show a smaller improvement. We also note that throughput of
the simulated algorithms would increase with larger I/Os, as
read-modify-writes would be amortized over larger I/O sizes.

Track flipping only works if hot tracks are adjacent to cold
tracks; if hot regions on the disk are substantially larger than a
track, this might not be the case. In Figure 4 of Section 2.2 we
saw that this was the case for trace 17; however in Figure 11
we see the same analysis for w87; although the hottest few
tracks stand alone, many tracks with very high write counts
are surrounded by tracks of similar hotness.

5 Related work

Interlaced Magnetic Recording [9] is a new storage technology
using HAMR (Heat assisted magnetic recording) [4, 12] and
track overlap (the technique on which SMR [19] is based)
to achieve higher areal density than possible with either
approach alone [3]. Numerous works have characterized [1]
and modeled [15, 16] SMR performance; however due to
fundamental differences in track layout and write constraints
such work is not directly applicable to IMR.

While only a limited number of translation layers and data
management techniques have been proposed for IMR in the
two years since the original work became public [20], a wide
range of file systems and translation layers have been proposed
for SMR, such as Cassuto’s indirection system [2], SMaRT [8]
from He and Du, Shafaei’s Virtual Guard [14], and FSTL [7].
Cassuto et al. propose a set associative persistent cache to hold
updated sectors. SMaRT [8] proposes using a track-based dy-
namic mapping. Shafaei et al. propose a track-based static map-
ping translation layer which caches tracks containing at-risk
data, rather than the track targeted by the I/O. Hajkazemi et al.
[7] propose an LBA-based translation layer based on dynamic
mapping. Since the write restrictions in SMR are a strict super-
set of IMR restrictions, SMR translation layers could in fact be
applied to IMR; however this would ignore the performance
improvements possible due to lessened write restrictions.

To the best of our knowledge, the data management design
introduced by Wu et al. [20] is the only published work
on IMR translation layers to date. The authors propose
Top-Buffer, a technique utilizing unallocated top tracks of
each track-group (a small set of tracks interlaced with top
tracks) as a buffer to store LBA updates corresponding to
bottom tracks. Moreover they suggest Block Swapping, a
technique to swap bottom hot LBAs with cold ones within a
track-group. Our work differs in that it is targeted for in-disk
implementation, in a restricted-memory environment, while
the memory requirements for Wu et al.’s algorithm are beyond
the capabilities of a drive controller.

830 2019 USENIX Annual Technical Conference USENIX Association

Figure 11: Write count of 20 hottest tracks and their neighbors, trace 87. This trace is seen to be “track flipping-unfriendly”.

(a) w46

(b) w28

Figure 12: I/O latency distribution: workloads w46 (a) and
w28 (b), for CMR, IMR/RMW, IMR/track flipping, IMR/track
caching.

6 Conclusion

Interlaced magnetic recording is still a new—or even
speculative—technology, and we cannot be sure of its precise
characteristics until real prototypes are available. However,
when such prototypes arrive, algorithms will be needed to cope
with the IMR write restrictions, and due to the track-based
nature of the restrictions, those algorithms will need to run
in the memory-limited environment of the drive controller.

We quantify the performance of the naive read-modify-write
algorithm for IMR bottom track writes, showing that it is
significantly more costly than assumed in prior work, and
show via trace-driven simulations that for some workloads
its performance is comparable to that of a conventional disk,
but that it is worse, sometimes catastrophically so, for others.
We present three algorithms to reduce the frequency of IMR
bottom-track writes: track flipping, selective track caching

(a) w46

(b) w28

Figure 13: Issue time disparity (I/O issue time gap between
CMR and other studied approaches) of traces w46 and w28.

and dynamic track mapping, with sufficiently modest memory
requirements to be readily implemented in drive controllers.
These algorithms are shown to improve I/O amplification
significantly for almost all workloads examined, and to
improve latency for some—but not all—of the workloads
which performed poorly with IMR read-modify-write. Further
research is needed to determine whether extensions of this
work (e.g. track flipping+caching) will yield conventional
drive-level performance for IMR with acceptable memory cost.

Acknowledgment

We would like to thank Irfan Ahmad and CloudPhysics for
the use of their traces, our shepherd William Jannen, and the
anonymous reviewers for their valuable suggestions.

USENIX Association 2019 USENIX Annual Technical Conference 831

References
[1] AGHAYEV, A., SHAFAEI, M., AND DESNOYERS, P. Skylight—a win-

dow on shingled disk operation. ACM Transactions on Storage (TOS)
11, 4 (2015), 16.

[2] CASSUTO, Y., SANVIDO, M. A. A., GUYOT, C., HALL, D. R., AND
BANDIC, Z. Z. Indirection systems for shingled-recording disk drives.
In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST) (Washington, DC, USA, 2010), MSST
’10, IEEE Computer Society, pp. 1–14.

[3] GRANZ, S., JURY, J., REA, C., JU, G., THIELE, J., RAUSCH, T., AND
GAGE, E. C. Areal density comparison between conventional, shingled,
and interlaced heat-assisted magnetic recording with multiple sensor
magnetic recording. IEEE Transactions on Magnetics 55, 3 (March
2019), 1–3.

[4] GRANZ, S., ZHU, W., SENG, E. C. S., KAN, U. H., REA, C., JU, G.,
THIELE, J.-U., RAUSCH, T., AND GAGE, E. C. Heat-assisted interlaced
magnetic recording. IEEE Transactions on Magnetics 54, 2 (2018), 1–4.

[5] HAGHDOOST, A., HE, W., FREDIN, J., AND DU, D. H. C. On the
Accuracy and Scalability of Intensive I/O Workload Replay. In 15th
USENIX Conference on File and Storage Technologies (FAST 17) (Santa
Clara, CA, Feb. 2017), USENIX Association, pp. 315–328.

[6] HAJKAZEMI, M. H., ABDI, M., AND DESNOYERS, P. Minimizing
read seeks for smr drives. In Proceedings of the 2018 IEEE International
Symposium on Workload Characterization (2018), IEEE.

[7] HAJKAZEMI, M. H., ABDI, M., SHAFAEI, M., AND DESNOYERS, P.
Fstl: A framework to design and explore shingled magnetic recording
translation layers. In Proceedings of the 26th IEEE International Sym-
posium on the Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’18) (Oct. 2018), IEEE.

[8] HE, W., AND DU, D. H. SMaRT: An approach to shingled magnetic
recording translation. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies (Santa Clara, CA, 2017), USENIX
Association, pp. 121–134.

[9] HWANG, E., PARK, J., RAUSCHMAYER, R., AND WILSON, B. In-
terlaced magnetic recording. IEEE Transactions on Magnetics 53, 4
(2017), 1–7.

[10] JACOB, B., NG, S., AND WANG, D. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[11] KREVAT, E., TUCEK, J., AND GANGER, G. R. Disks Are Like
Snowflakes: No Two Are Alike. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems (Berkeley, CA, USA,
2011), HotOS XIII, USENIX Association, pp. 14–14.

[12] KRYDER, M. H., GAGE, E. C., MCDANIEL, T. W., CHALLENER,
W. A., ROTTMAYER, R. E., JU, G., HSIA, Y.-T., AND ERDEN, M. F.
Heat assisted magnetic recording. Proceedings of the IEEE 96, 11 (2008),
1810–1835.

[13] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write off-
loading: practical power management for enterprise storage. In Proceed-
ings of the 6th USENIX Conference on File and Storage Technologies
(San Jose, California, 2008), USENIX Association, pp. 1–15.

[14] SHAFAEI, M., AND DESNOYERS, P. Virtual Guard: A Track-Based
Translation Layer for Shingled Disks. In 9th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 17) (Santa Clara, CA,
2017), USENIX Association.

[15] SHAFAEI, M., HAJKAZEMI, M. H., DESNOYERS, P., AND AGHAYEV,
A. Modeling smr drive performance. In Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Science (New York, NY, USA, 2016), SIGMETRICS ’16,
ACM, pp. 389–390.

[16] SHAFAEI, M., HAJKAZEMI, M. H., DESNOYERS, P., AND AGHAYEV,
A. Modeling drive-managed smr performance. ACM Transactions on
Storage (TOS) 13, 4 (2017), 38.

[17] THOMPSON, D., AND BEST, J. The future of magnetic data storage
techology. IBM Journal of Research and Development 44, 3 (May 2000),
311–322.

[18] WALDSPURGER, C. A., PARK, N., GARTHWAITE, A., AND AHMAD,
I. Efficient MRC Construction with SHARDS. In 13th USENIX Con-
ference on File and Storage Technologies (FAST 15) (Santa Clara, CA,
2015), USENIX Association, pp. 95–110.

[19] WOOD, R., WILLIAMS, M., KAVCIC, A., AND MILES, J. The feasibil-
ity of magnetic recording at 10 terabits per square inch on conventional
media. IEEE Transactions on Magnetics 45, 2 (2009), 917–923.

[20] WU, F., ZHANG, B., CAO, Z., WEN, H., LI, B., DIEHL, J., WANG,
G., AND DU, D. H. C. Data Management Design for Interlaced Mag-
netic Recording. In 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 18) (Boston, MA, Feb. 2018), USENIX
Association.

832 2019 USENIX Annual Technical Conference USENIX Association

