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1 Introduction

ACL2 [6–8] is a powerful, industrial strength theorem proving system, which has been used on
numerous verification projects. It is part of the Boyer-Moore family of provers, for which its authors
received the 2005 ACM Software System Award. Termination plays a central role in ACL2’s logic.
It is used to demonstrate the logical consistency of function definitions and allows for the admission
of an induction scheme that mirrors each function’s recursive structure.

In previous work we introduced calling context graphs (CCGs) and showed how they can be
combined with theorem proving queries to provide a powerful method for proving termination of
programs written in first order, functional programming languages [15]. In this paper we describe
work we are doing to integrate CCG-based termination analysis into ACL2.

We begin in the next section by providing relevant background on ACL2 and its current approach
to termination analysis as well as the CCG approach to termination analysis. Section 3 then describes
our work on extending ACL2 to include the CCG approach, with a focus on issues encountered. We
conclude in Section 4.

2 Background

We begin with a brief overview of ACL2. We then contrast ACL2’s existing termination analysis
with the CCG-based approach.

2.1 ACL2 Overview

ACL2 (“A Computational Logic for Applicative Common Lisp”) is an environment for theorem
proving and functional programming that supports a first-order logic. ACL2 has been used on
numerous applications, some of which are described in [6] and in the papers distributed as part
of the periodic ACL2 workshops, the proceedings of which may be found via the Workshops link
on the ACL2 home page [8]. Among these applications, several verification efforts are mentioned
in [17], including register-transfer level and algorithmic descriptions of commercial floating point
units [18–21], microcode-related verification for a Motorola digital signal processor [1,2], process
separation for the Rockwell Collins AAMP7, a JVM bytecode [16] and Sun bytecode verifier [10], a
verified model checker [11], and ordinal arithmetic algorithms [12–14].

Although ACL2 is an automated reasoning tool, its use is typically quite interactive, as the user
breaks theorems into subsidiary lemmas. The goal is to produce ACL2 input files called books, which
are collections of events, typically definitions and theorems for a common topic such as arithmetic,
set theory, or processor verification. The book certification process attempts to admit each of the
book’s events, by proving its theorems and proving termination for its recursive definitions.

2.2 Termination Analysis in ACL2

Termination analysis in ACL2 is based on the notion of a measure that decreases on each recursive
call. For example, the following simple recursive definition of integer exponentiation terminates
because the absolute value of the exponent argument decreases on each recursive call.
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define f(x) =

if !(intp(x)) or x < 2 then 0

else if x mod 2 = 1 then f(x+1)

else 1 + f(x/2)

1. 〈f, {intp(x), 2 ≤ x, x mod 2 = 1}, f(x+1)〉
2. 〈f, {intp(x), 2 ≤ x, x mod 2 6= 1}, f(x/2)〉

if !(intp(x)) or x < 2 then 0

else if x mod 2 = 1 then 2 * x + 3

else 2 * x

?>=<89:;1
))?>=<89:;2ii hh

Fig. 1: Definition (top left), measure (top right), calling contexts (bottom left), and CCG (bottom right)
for a function f.

define expt(base,exp) =

if !(intp(exp)) or exp=0 then 1

else if !(intp(base)) or base=0 then 0

else if exp>0 then base*expt(base,exp-1)

else expt(base,exp+1)/base

Note that at the first recursive call expt(base,exp-1), we know that the measure |exp| decreases
(i.e., |exp-1| < |exp|) because this is logically implied by two of the ruling if-tests, intp(exp) and
exp>0 (the first is not negated because of the context of the call). Similarly, for the second recursive
call, the conjunction of the ruling if-tests, intp(exp), ¬(exp=0) and ¬(exp > 0), implies |exp+1|
< |exp|.

In general, the set of rulers of a subterm u in a given term is defined recursively. If R is the set
of rulers of a subterm u in a term y, then the set of rulers of u in [if w then y else z] is the
result of adding w to R, and the set of rulers of u in [if w then z else y] is the result of adding
the negation of w to R. The set of rulers of u in other than an if-then-else term is the empty set.

ACL2 implements the following definitional principle, which we state for the recursive definition
of a function f but which extends naturally to nests of mutually-recursive definitions. The principle
requires the existence of a relation ≺ with domain, D, for which ACL2 can prove well-foundedness
(induction), along with a measure term m,whose free variables are among the formal parameters of a
given definition, for which ACL2 can prove m ∈ D. Moreover, there is the following proof obligation
for each (recursive) call of f in the body, b, of the definition. Let f(u1, ..., uk) be a subterm of
b, let r be the conjunction of the set of rulers of this subterm in b, and let σ be the substitution
mapping the ith formal xi of f to ui. Then the corresponding proof obligation is that the implication
r ⇒ (m/σ ≺ m) be provable in the current ACL2 environment.

As an aside, we note that under the conditions above, ACL2 soundly stores a corresponding
induction scheme. Roughly, this scheme allows one to prove a formula ϕ by splitting into cases
according to the set of branches through the top-level if structure of the body of the definition of
f , where when proving ϕ under such a branch R we are allowed to assume ϕ/σ, for any substitution
σ mapping xi to ui for a recursive call f(u1, ..., uk) ruled by R.

The ACL2 user can provide the measure and well-founded relation for a given definition. If none
is provided, then ACL2 uses heuristics to pick a formal parameter x for which the default measure
is the size of x (for an appropriate notion of “size,” for example so that the size of a pair is greater
than the size of each component, the size of a natural number is itself, and so on).

2.3 CCG-Based Termination Analysis

In the preceding section we describe the current termination analysis used by ACL2, but it often fails
to automatically establish termination. Consider the example on the left in Figure 1. Here, there are
two recursive calls. If x is an odd integer greater than 1, we call f on x+1. If it is an even positive
integer, we call f on x/2. ACL2 cannot automatically prove this function terminating, because it
cannot find a measure that decreases both when x is odd and when it is even. Such a measure must
be given by the user, and is shown on the right in Figure 1. Note that it is as complicated as the
function itself. In [15], Manolios and Vroon describe a new termination analysis based on calling



context graphs (CCGs), which is significantly more automated than the current ACL2 approach.
Here we informally describe the core idea of the analysis.

Fix a set of mutually recursive functions, {f1, f2, . . . fn}. For each recursive call, e in a body of
some function fi, we form a calling context, 〈fi, R, e〉, where R is the set of rulers of e in fi. A
CCG is a graph whose vertices are calling contexts, such that if there exists a call to function fi

that leads to the execution of a call, e, of a function fj and ends up at another recursive call, e′

in the body of fj , then there is an edge from the context for e to the context for e′ in the CCG.
Intuitively, one can think of the CCG as being similar to a call graph, but at much finer granularity.
That is, instead of telling us how execution leads from one function to another, a CCG tells us how
the execution leads from each recursive callsite to another. The contexts and CCG for f are given
in Figure 1.

Now recall the notions of measure and well-founded relation from the preceding section. Suppose
we can assign a set of measures — called calling context measures, or CCMs — to each context such
that every infinite path through the CCG has a corresponding sequence of CCMs that never increase
and decrease infinitely often. It follows that every computation must then terminate. Theorem
proving plays a key role in this analysis as it is used to prune edges from CCGs and to determine
when CCMs are nonincreasing or decreasing as we traverse edges in CCGs.

In addition to this analysis, the CCG analysis provides a way to absorb a context into the CCG
by merging it with each of its successors in the CCG. The resulting contexts represent two steps
through the original CCG, giving us a more precise analysis. For example, our analysis would absorb
context 1 in Figure 1. The new context then contains the call f((x+1)/2). Since (x+1)/2 < x under
the rulers of the call in the new context, our analysis can easily prove termination.

Our algorithm uses heuristics to pick CCMs, together with a sufficient condition for the above
path-related criterion that is based on [9]. We ran our CCG implementation on the more than 10,000
functions of the ACL2 regression suite. It successfully proved termination for 98.7% of the functions
with no user input. See [15] for details.

3 Integrating CCG Analysis and ACL2

As we saw in Section 2.1, termination plays an important role in ACL2’s logic. A great deal of
care must therefore be taken when altering ACL2’s termination analysis. Otherwise, there is a
danger of undermining the soundness of the system. In addition, the ACL2 theorem prover relies on
information collected when functions are analyzed and admitted in order to guide and control future
proof efforts. Changes to ACL2’s termination analysis can interfere with this process and can easily
render the system unusable. In this section, we discuss several challenges related to these issues that
we have encountered while integrating CCG-based termination analysis into ACL2, as well as our
solutions to those challenges.

In order to avoid infinite expansion of function definitions during proof attempts, ACL2 chooses
parameters of each recursive function to be controllers, which are used heuristically when deciding
whether or not to expand a function definition. In general, this strategy is very effective at gauging
when definitions should be expanded during proof attempts. A key aspect of this is the choice of
controllers. If too many controllers are chosen, the heuristics will be too restrictive, and the definition
will not be opened when it needs to be. If there are too few, or the wrong ones are chosen, infinite
expansion may result.

Currently, ACL2 chooses the controllers of a recursive function to be the parameters appearing
in the measure used to prove termination. Since CCG-based termination analysis does not use a
single measure, we needed to find a new way to choose controllers. The obvious first choice is the
CCMs used in the analysis. However, while heuristics are used to choose CCMs, we also include
the “size” of every parameter (as defined by the function acl2-count) as a CCM. Therefore, all
parameters would be controllers if we were to use all the CCMs. However, even if all the parameters
are used in CCMs, not all of them are necessarily relevant to the termination proof. By altering
our CCM algorithm for finding the infinite decreasing sequences of CCMs, we were able to report



which CCMs are used to prove termination. We then label the parameters used in these CCMs as
controllers for the function containing the corresponding context.

Context absorption causes another challenge related to controller selection. When a context is
absorbed, it is no longer represented in the CCG, having been replaced by the new merged contexts.
Therefore no CCMs are reported for this context, which could lead to missing controllers for a
function and infinite expansions. To address this challenge, we added CCM propagation to our
controller analysis. This involves adding CCMs for an absorbed context that correspond to the
CCMs of its successors in the original CCG. For example, if there is an absorbed context with call
f(g(x,y), h(z)), and the first formal of f is a controller, then g(x,y) is added to the relevant
CCM list of the absorbed context, and x and y are added to its list of controllers.

Using these techniques, we choose controllers that are comparable to the choices made using the
measure-based approach. Rerunning old ACL2 books using the new termination method, we have
yet to see theorems that went though before but did not go through under the new system due to
controller-related issues.

The most challenging problem we have faced arises from how we use the theorem prover during
CCG analysis. The typical usage of ACL2 involves calling the theorem prover to verify a conjecture
that the user believes is valid. For CCG analysis, on the other hand, we use ACL2 as a black box
for making queries, and often those queries are not valid. Therefore, we want to determine if ACL2
can prove a query easily, and if not, it is safe for our purposes to assume it is not valid. We do this
when constructing the CCG to determine if we can prune an edge from the graph. We also use this
technique to determine if a CCM is decreasing or non-increasing compared to some previous CCM
on the path.

This becomes a problem in the presence of encapsulation or book certification. Encapsulation
allows the user, among other things, to hide lemmas. For example, the user may need a particular
lemma to get a proof to go through, but that lemma may not be generally useful, and may even
cause problems later on. In this case, the user can employ encapsulation to use and then immediately
hide the lemma. This can be done on a larger scale with books. Each book is certified once, then
subsequently can be loaded without rerunning proofs. As with encapsulation, events such as theorems
can be declared to be local, and will not be visible outside the book.

In order to deal with local events, the theorem prover typically makes two passes over the
encapsulated events or books. In the case of encapsulated events, all the events are run in order to
verify that they are valid. Then the theorem prover makes a second pass, this time skipping the
proofs and loading only non-local events into the current logical world. Likewise, all the proofs and
local events in a book are processed at certification time, but proofs are skipped and only non-local
events are added to the logical world when the book is loaded.

This works well when the justification for termination can be determined statically using only the
definition of the function. For example, with functions admitted using the measure-based termination
analysis, the measure is determined statically from the function definition or is provided by the user;
so the function can be loaded, and the controllers calculated from the measure, without reproving
termination. In the case of CCG-based termination, on the other hand, theorem prover queries are
used to find the relevant CCMs, which are necessary for the calculation of the controllers. In addition,
this analysis depends on more than the function definition, e.g., it depends on what libraries are
loaded. Therefore, we cannot simply skip CCG-based termination analysis when making the second
pass over encapsulated events or books.

A first approximation at a solution to this problem is simply to run the CCG analysis during
both passes of an encapsulation or book certification. However, local lemmas are not loaded during
the second pass, so the CCG analysis may take place in a different logical environment during the
second pass. This can lead to different CCG analyses, and even result in a successful termination
analysis on the first pass, yet a failed analysis on the second (e.g., if the termination analysis depends
on a local event).

The solution to this problem is provided by a new ACL2 feature called make-event. The idea
behind this feature is that it allows users to compute events. That is, based on the current environ-
ment, a new event is made. An important feature of make-event is that the new event is computed



once and then saved. Thus if ACL2 makes a second pass over the make-event in a different envi-
ronment, the same new event is created. This alleviates the problem caused by the two pass system
employed by ACL2 for encapsulation and books.

To use this feature to our advantage, we alter ACL2’s built in definitional utility, defun, so that
it can be told explicitly which CCMs are important to the termination analysis. Then, when given a
definition without this hint, we run the CCG-based analysis, compute the relevant CCMs, and use
make-event to create a new defun in which the these CCMs are explicitly given as a hint. Then,
when loading a book or making a second pass over an encapsulation, ACL2 can forgo the CCG
analysis and use the CCMs given to calculate the controllers for the function. More information on
make-event may be found in the ACL2 documentation [8] starting with Version 3.0, and in [5].

4 Conclusions

We have explored the question of integrating CCGs, a new and powerful termination analysis
method, into ACL2. Termination analysis plays a central role in ACL2 and is tightly integrated
with numerous aspects of the theorem prover. This has made the integration of CCG-based ter-
mination analysis a challenging problem requiring novel analyses involving controllers and has also
required the introduction of the make-event functionality. We have an initial implementation of this
work in ACL2s, the ACL2 Sedan, which is a new version of the ACL2 system. ACL2s is based on
Eclipse and is designed to improve the usability and interface of ACL2 in order to ease the learning
curve for new users while providing useful new features for experts [3].
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