
TACAS
SV-COMP
Artifact

2020
Accepted

GACAL: Conjecture-based Verification

(Competition Contribution)

Benjamin Quiring ? and Panagiotis Manolios

Northeastern University, Boston MA, USA

Abstract. GACAL verifies C programs by searching over the space of
possible invariants, using traces of the input program to identify poten-
tial invariants. GACAL uses the ACL2s theorem prover to verify these
potential invariants, using an interface provided by ACL2s for connecting
with external tools. GACAL iteratively searches for and proves invariants
of increasing complexity until the program is verified.

1 Verification Approach

GACAL is a tool for verifying reachability queries in C programs by iteratively
and efficiently performing conjecture generation and conjecture verification. Con-
jecture generation involves searching through the space of possible conjectures
using evaluation-based testing to identify likely-to-hold conjectures, and conjec-
ture verification consists of using software verification technology to verify these
conjectures. Our initial motivation was to develop a computational agent that
can automatically complete the Invariant Game [7], in which players suggest in-
variants that are used by a reasoning engine to verify imperative programs, which
we did with success. GACAL is a more fully developed form of the underlying
conjecture generation ideas. This section presents a brief overview of GACAL’s
basic structure and methods for conjecture-based verification, and then discusses
these, as well as associated challenges, in more depth. Section 2 provides infor-
mation about the GACAL project, Section 3 provides an evaluation of GACAL,
and Section 4 concludes this paper and discusses future work.

In GACAL, conjectures are potential invariants paired with program loca-
tions. Evaluation-based testing consists of evaluating possible invariants using
execution-produced program traces. The ACL2s theorem prover [1] verifies con-
jectures using a graph representation of the input program. To search through
the space of conjectures, GACAL first constructs a space of terms, which are
C-expressions composed of the constants, variables, and arithmetic/bitwise oper-
ators in the program. Terms are combined using relational and logical operators
to create possible invariants, and possible invariants which hold in all generated
program traces are promoted to potential invariants and turned into conjectures.
Discovered potential invariants are then analyzed using ACL2s and, if proven,
used to verify the program. In the case that the program cannot be verified from
the currently proven invariants, the above process is repeated: construct new,
more complex, terms, find potential invariants via testing on program traces,

? Jury member: quiring.b@northeastern.edu

https://orcid.org/0000-0002-6922-9706
https://orcid.org/0000-0003-0519-9699

2 Benjamin Quiring and Panagiotis Manolios

prove potential invariants, attempt program verification, and repeat. At a high-
level, this loop is the heart of GACAL’s conjecture-based verification.

GACAL’s approach to verification presents challenges which can be summa-
rized into two categories: how to minimize the number of generated conjectures,
and how to optimize the interactions with ACL2s. The techniques GACAL uses
to address these challenges, as well as a more in-depth explanation of the previ-
ously mentioned methods are outlined below.

Term and Invariant Construction GACAL builds the space of terms by
iteratively constructing all terms of a fixed size, where the size of a term is the
number of constants, variables, and operators in that term. GACAL uses a col-
lection of rewrite rules to filter the newly constructed terms: terms which can be
rewritten to an equivalent form that has already been constructed are not kept.
The size partial order on terms allows GACAL to perform rewriting effectively.
Furthermore, the term constructor searches for new rewrite rules by evaluating
and comparing terms under a set of random assignments to find pairs of equiva-
lent terms. The discovered equivalences are generalized and turned into rewrite
rules which are added to the collection of rewrite rules. We designed the rewrit-
ing techniques to have the property that all terms which cannot be rewritten
are semantically distinct. In general, the term space is at least asymptotically
exponential in size, and the rewriting techniques above, for the class of problems
we consider, significantly improve the asymptotics.

Possible invariants are C-expressions of the form t1 == t2, t1 < t2, t1 <= t2,
and P || Q, where t1, t2 are terms and P , Q are possible invariants. We allow
multiple invariants to be associated with each program location, hence, we do
not need explicit conjunction. We note that the space of possible invariants is
closed under logical negation. GACAL filters out possible invariants which can
be rewritten to an equivalent form that has already been created, reducing the
size of the invariant space. The order the invariant space is searched over is
deterministic and independent of the given program, and was chosen because
it worked well for the benchmark programs. At a high level, GACAL inspects
stronger invariants before weaker invariants (e.g., t1 == t2 before t1 <= t2).

Trace Generation To produce traces through the program GACAL creates
many initial program states which randomly seed the result of all nondetermin-
istic behaviors that occur during execution of the program, making them de-
terministic. For example, a seeded pseudo-random number generator can obtain
values for “nondeterministic integer” expressions. The initial states are prop-
agated through the program for a bounded number of steps, generating a set
of states associated with each program location. These initial traces are not
changed during the course of verification.

Testing on program traces is essential to GACAL’s conjecture generation, but
programs may, for example, contain loops with many iterations or not terminate,
and so obtaining traces which correspond to complete program executions may
be computationally infeasible or impossible. To address this, GACAL creates

GACAL: Conjecture-based Verification 3

additional types of traces which approximate the input program’s behavior. The
first type of these traces generalizes large constants to small and/or nondetermin-
istic values, which allows loops with originally many iterations to be completed.
The second type uses the counter-example generation abilities of ACL2s [5,2,3]
to generate states at any program location which satisfy all currently proven
invariants at that location, which are then propagated through the program.
As GACAL proves more invariants, it recomputes the second type of traces to
obtain a better approximation of the program. Since invariants tested on these
traces are later checked for correctness, the fact that the traces may not reflect
the original program’s behavior does not introduce unsoundness. The states from
the above two methods are only used to test invariants at a program location
if there are no states from the original traces produced for that location, and if
traces cannot be found at all then GACAL assumes all invariants are potential.

Conjecture Verification To prove conjectures, GACAL uses an algorithm
which takes previously proven invariants as well as currently unproven potential
invariants and iteratively removes invariants which cannot be proven until it
reaches a fixpoint. This process requires a large number of verification queries
and for the majority of programs checking these queries using ACL2s is where
the majority of execution time is spent. To improve the ability of ACL2s to
reason about GACAL queries, we developed an arithmetic library consisting
of ACL2s theorems about the GACAL-supported C operators. Additionally,
GACAL caches previous queries and their results, which allows it to answer
queries that are similar to cached queries, without using the theorem prover.
Finally, GACAL saves counter-examples that ACL2s provides when it falsifies
queries and uses them to falsify new queries.

2 Tool Setup and Software Project and Architecture

The competition submission1 uses GACAL version 1.0. GACAL requires Python
3, Java, Common Lisp, ACL2 [4] and ACL2s. The competition archive contains
all files necessary to run GACAL without further installation. Other relevant
information may be found in the README file. GACAL only competes in the
C ReachSafety-Loops category. GACAL is maintained by Benjamin Quiring and
Panagiotis Manolios, and is implemented primarily in ACL2s. The external tools
used by GACAL are the Eclipse CDT parser and ACL2s. GACAL is publicly
available at https://gitlab.com/acl2s/conjecture-generation/gacal under a GNU
GPLv3 license.

GACAL does not handle all C language features. Most importantly, GACAL
does not handle arrays and types other than 32-bit unsigned and signed integers.
There is no theoretical reason for this. GACAL does not correctly model C
semantics for undefined behavior in signed arithmetic. There is a bug in the
contest submission for translating goto statements into our graph representation
of programs which affects a small number of benchmarks.

1 Available at https://gitlab.com/sosy-lab/sv-comp/archives-2020 and Zenodo [6].

https://gitlab.com/acl2s/conjecture-generation/gacal
https://gitlab.com/sosy-lab/sv-comp/archives-2020

4 Benjamin Quiring and Panagiotis Manolios

3 Evaluation

GACAL performs best on programs it can execute to completion because this
allows us to produce high quality traces covering all program locations. When
this is not the case, GACAL often creates false conjectures which lead to a large
number of theorem prover queries. Additionally, we note GACAL’s execution
time depends on the size of the term and invariant spaces, which grow exponen-
tially based on the number of program variables, constants, and operations. The
current version of GACAL verifies 66 of the 109 benchmark programs it parses,
and the top three tools on this distribution verified 102, 70, and 70. GACAL
was able to verify one program that no other tool could verify.

The core of GACAL consists of potential invariant generation using program
traces and the rewriting methods as outlined above. We found that the addition
of the arithmetic library is essential to our ability to reason about unsigned
arithmetic and the mod operator, allowing GACAL to verify 10% more total
programs (which deal primarily with the listed features) and cuts the average
time to query ACL2s by 33% on the verification queries which were not caught
by the caching. We found that the additional trace generation methods did not
significantly increase the number of programs that were verified, though they
did decrease the average time for verifying a program. The caching of proof
results and counter-examples is able to eliminate 85% of all verification queries
from being submitted to ACL2s for checking, which increases the number of
programs which are verified by over 10% and almost halves the average cost to
verify a program. The caching methods also amplifies the benefits of the library
and extra trace generation methods.

4 Conclusions and Future Work

There are many ways to improve GACAL, including incorporating classical anal-
yses such as range analysis, abstract interpretation, decision procedures, etc.,
as well as handling a larger subset of the C language. Another improvement
to GACAL is to perform the search for disjunctive invariants more efficiently;
currently GACAL often finds many potential but false disjunctive conjectures,
which result in a large number of verification queries. One way to improve the
search may be to analyze the program to find meaningful hypotheses, which
could considerably lower the number of tested and generated conjectures.

We believe that GACAL provides evidence that our conjecture-based verifi-
cation techniques can be used to improve current software verification tools, as
we were able to verify a competitive number of programs on the distribution we
parse and we were able to verify a program that all other tools failed to verify,
despite not using any of the classical analyses identified above.

GACAL: Conjecture-based Verification 5

References

1. Chamarthi, H., Dillinger, P., Manolios, P. and Vroon, D. The ACL2 Sedan theorem
proving system. TACAS, 2011.

2. Chamarthi, H., Dillinger, P., Kaufmann, K. and Manolios, P. Integrating Testing
and Interactive Theorem Proving. ACL2, 2011.

3. Chamarthi, H. and Manolios, P. Automated Specification Analysis Using an Inter-
active Theorem Prover. FMCAD, 2011.

4. Kaufmann, M., Manolios, P. and Moore, J. Computer-Aided Reasoning: An Ap-
proach. Kluwer, 2000.

5. Manolios, P. Counterexample Generation Meets Interactive Theorem Proving: Cur-
rent Results and Future Opportunities. ITP, 2013.

6. Quiring, B. and Manolios, P. GACAL v1.0 SV-comp 2020 submission (Version 1.0).
Zenodo, 2019. http://doi.org/10.5281/zenodo.3681607.

7. Walter, A., Boskin, B., Cooper, S. and Manolios, P. Gamification of Loop-Invariant
Discovery from Code. HCOMP, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://doi.org/10.5281/zenodo.3681607
http://creativecommons.org/licenses/by/4.0/

	GACAL: Conjecture-based Verification

