
Towards Development of Complete and Conflict-Free

Requirements

Abha Moitra, Kit Siu,

Andrew W. Crapo,

Harsh Chamarthi, Michael Durling,

Meng Li, Han Yu

GE Global Research

Niskayuna, NY

Panagiotis Manolios

Northeastern University

Boston, MA

Michael Meiners

GE Aviation Systems

Grand Rapids, MI

Abstract—Writing requirements is no easy task. Common

problems include ambiguity in statements, specifications at the

wrong level of abstraction, statements with inconsistent refer-

ences to types, conflicting requirements, and incomplete re-

quirements. These pitfalls lead to errors being introduced early

in the design process. The longer the gap between error introduc-

tion and error discovery, the higher the cost associated with the

error. To address the growing cost of system development, we

introduce a tool called ASSERT™ (Analysis of Semantic Specifi-

cations and Efficient generation of Requirements-based Tests) for

capturing requirements, backed by a formal requirements analy-

sis engine. ASSERT™ also automatically generates a complete set

of requirements-based test cases. Capturing requirements in an

unambiguous way and then formally analyzing them with an

automated theorem prover eliminates errors as soon as require-

ments are written. It also addresses the historical problem that

analysis engines are hard to use for someone without formal

methods expertise and analysis results are often difficult for the

end-user to understand and make actionable. ASSERT™’s major

contribution is to bring powerful requirements capture and anal-

ysis capability to the domain of the end-user. We provide ex-

plainable and automated formal analysis, something we found

important for a tool’s adoptability in industry.

Index Terms—Requirements Formalization, Formal Analysis

of Requirements, Ontology, Automated Requirements-Based Test

Generation, Requirements Engineering, Formal Methods

I. INTRODUCTION

The General Electric (GE) Company designs, develops,

verifies and deploys software intensive critical infrastructure in

the Aerospace, Power, Medical Imaging, and Oil & Gas do-

mains. To address the growing scale and complexity of these

critical software intensive systems, GE Global Research, in

collaboration with GE Aviation Systems, developed a tool

named ASSERT™ (Analysis of Semantic Specifications and

Efficient generation of Requirements based Tests) [1, 2]. AS-

SERT™ helps users capture requirements that are both human

and machine-readable using structured natural language. Hav-

ing a requirements language that is as close as possible to Eng-

lish, instead of a language that is directly based on first-order

logic, temporal logic, or some other symbol-heavy formalism,

is the entry point for convincing users to adopt the tool into

their design process. ASSERT™ checks the requirements for

conflicts and completeness by translating the structured natural

language into a formalism that an automated theorem prover

can reason over. It also translates the requirements into satisfi-

ability modulo theories (SMT) formulas in such a way that an

SMT solver can automatically generate requirements-based test

cases. ASSERT™ saves time and cost by identifying errors

early in the development process and automating requirements-

based test generation.

The focus of this industrial experience paper is to highlight

common problems that designers and engineers experience

when capturing requirements, and to demonstrate how the ap-

plication of formal methods using ASSERT™ helps resolve

these issues. The application space selected for demonstration

is a sensor used in the aerospace domain. The sensor use case

was selected as it is a clear and simple example that readers

will understand and is relevant in many diverse applications.

The paper is organized as follows. Section II gives a brief

history and rationale for development of the ASSERT™ tool.

Section III describes typical problems encountered while cap-

turing requirements. Section IV introduces a semantic model

for an aircraft engine sensor. In section V, we illustrate author-

ing of the requirements in ASSERT™ and how some common

requirement capture pitfalls are addressed. In Section VI we

present the automated formal analyses of the requirements with

user-friendly reporting. In Section VII, we discuss test case

generation and SCADE simulation-based test execution for the

sensor example. In Section VIII we discuss some of the lessons

learned. In Section IX we present our conclusions. The com-

plete aircraft engine sensor model and requirements are availa-

ble in the Appendix.

II. BACKGROUND

GE Aviation Systems (GEAS) produces avionics that man-

age and control safety critical functions on aircraft such as in-

tegrated modular avionics and flight management systems. The

level of effort required for development and certification of

these systems is very high and growing based on increased

software and system complexity. In 2010, GE Aviation Sys-

tems and GE Global Research initiated a research program to

develop technology and a new process to increase efficiency,

improve safety, and reduce cycle time to develop and qualify

safety critical aerospace software and systems. The program

focused on formal modeling and analysis of requirements dur-

ing the design process to identify and address errors and vul-

nerabilities early. The program included the use of structured

natural language requirements capture, design modeling, auto

test case generation, and formal methods to efficiently satisfy

DO-178C [3] software development guidance and verification

objectives. At this point the program has developed the AS-

SERT™ suite of tools and has provided them to product teams

through the GEAS tools dissemination organization.

ASSERT™ is currently being used on several projects

within GE and has been shown to be capable of handling indus-

trial size problems. To date these projects have mostly involved

functional requirements. In one avionics project, use of the tool

for iterative correction and refinement culminated in a set of

1002 requirements with no errors from which 19,276 test cases

and 38,272 test procedures were automatically generated.

There were several noted benefits on another project for an

avionics compute platform with over 500 requirements. First,

ASSERT™ helped produce requirements that were higher in

maturity than plain text requirements due to the error checking

feature in requirements capture and the requirements analysis.

Second, the system design effort was reduced because the on-

tology developed as part of the requirements capture already

provided a functional architecture. Lastly, using ASSERT™ to

automatically generate test cases from requirements was very

beneficial as part of the test-driven development process be-

cause it ensured that requirements are verifiable as soon as they

were written. In earlier papers [1, 2] we introduced ASSERT™

and details of the analysis output. In this paper we expand on

the theoretical underpinnings of the formal analysis and on test

cases and procedures.

III. REQUIREMENT PITFALLS

Writing requirements is not an easy task; see for example

[4]. The requirements writer faces multiple problems which we

will broadly classify as 1) determining what the system should

do and 2) capturing that specification as unambiguously as

possible. Ideally a tool will help with both challenges and in

practice the process is always highly iterative. As the require-

ments author strives to capture what is required she gains deep-

er insights into what is required, leading to further efforts to

refine the specification. We will now examine some of the dif-

ficulties encountered when writing requirements.

A. Ambiguities

Most people find their native tongue to be the easiest lan-

guage in which to describe something. Ease of expression is

important because the more mental resource allocated to the

effort of expression, the less mental resource available to think

about what is being expressed. However, natural language is

famously vague and ambiguous, the opposite of what is desired

in requirements. This creates a tension between ease of expres-

sion on the one hand and precision of meaning on the other.

We have sought a balance between these competing needs by

creating a controlled English requirements language. However,

requirements must be specified in domain terms, and a domain-

specific language for requirements expression is derived from a

domain ontology that defines the relevant concepts. Both the

ontology language and the requirements language map unam-

biguously into a formal representation which is a subset of first

order logic and set theory. This makes requirements amenable

to formal methods for analysis and for automatic test case gen-

eration.

A design goal of the ASSERT™ requirements authoring

environment is to provide as much useful feedback as possible

to the user as quickly as possible. This can be in the form of an

error marker indicating that something is definitely wrong and

must be resolved before any further analysis is possible. Some-

times a statement in a requirement will be marked with a warn-

ing indicating that while it is not strictly incorrect, statements

of this type are often not what the author intended and care

should be taken. Some markers are informational only, inform-

ing the author that a particular assumption was made about

what was expressed. Errors, warnings, and informational mark-

ers are used to make the author aware of errors and ambiguities

in what has been written and assumptions that have been made

to avoid ambiguity.

B. Separating Levels of Detail

Requirements are often broken down into levels ranging

from system requirements to high-level requirements to low-

level requirements. Regardless of the level, the distinction is

often made between requirements that specify what a system is

expected to do and the design of how the system is to accom-

plish the what. Requirements are about the what. Design mod-

els are about the how [5].

A requirement capture environment must somehow allow

the author to not say everything in high-level requirements but

rather indicate that additional detail will be provided in lower-

level requirements. In ASSERT™ this is accomplished through

decomposition. A decomposition is an incomplete specifica-

tion. For example, a decomposition might include descriptive

text that documents informally what should happen and is to be

specified in lower-level requirements or design.

C. Inconsistent References to Types or Units

An ontology captures a model not only of the types of

things (classes) relevant to a domain, but also captures the

kinds of relationships which can exist (properties, also known

as relationships and attributes). It is often the case that a prop-

erty definition will include the kinds of things which can have

that property (the domain of the property) and the kinds of val-

ues that the property can have (the range of the property).

It is a very common pitfall that when a requirements writer

begins to specify what the system under design shall do, these

statements are not consistent with the property definitions and

restrictions in the ontology. Checking to make sure that all

statements in the requirements are consistent with the ontology

is called type checking. For example, type checking would

generate an error marker if a statement indicated that a Rock

was to be inserted into a list of Food items. Type checking

would also generate an error if a thing was to be inserted into

something which is not a list. Type checking ensures that the

requirements make sense at a basic consistency level.

Writing requirements that satisfy type checking can be very

demanding. In normal conversation, we might say that “He is

45.” If he is an adult, this might mean “His age is 45 years” or

if he is a child that “His weight is 45 pounds.” We say the

shorter version because it is normally, in context, unambiguous

and more parsimonious; and parsimony is important to make

requirements more easily understood. In ASSERT™ we allow

a limited form of the same parsimony using implied properties.

If age is a property with domain person and range decimal, and

if age is an implied property of person, then the statement “The

person is 45” will be automatically interpreted as “The age of

the person is 45” provided there is only one implied property of

person with range matching the numeric type of 45. Implied

properties allow the expression of requirements to be closer to

how subject matter experts think about a domain.

Especially in lower-level requirements, units matter. Fail-

ures caused by mismatched units have downed airplanes, sent

space flights off course, and crashed vehicles [6]. Inclusion of

units on numbers and expressions is supported in ASSERT™.

D. Assumptions Not Captured; Conflicting or Incomplete

Requirements

For large projects, the system is typically broken down into

subsystems and the design process involves multiple develop-

ers. One subsystem may depend on another and sometimes

developers neglect to properly capture these dependencies.

ASSERT™ allows for the capturing of these types of assump-

tions. For example, an assumption might capture the range of

values expected for a property based on another subsystem or

even on the environment.

It is also not possible for everyone on the team to under-

stand all the details of the entire project. This can result in a

developer having an incorrect or incomplete mental model of

the entire system. Resulting conflicts and incompleteness issues

are typically caught during testing and code coverage analysis,

which happens later in the design process and hence any issues

found can lead to extensive re-work.

 Our approach in ASSERT™ is to catch these issues as ear-

ly in the process as possible. We do this by employing explain-

able and automated formal analysis of the requirements. The

requirements engineer does not need to be well-versed in for-

mal analysis because the formal analysis in ASSERT™ is au-

tomated and the output is explainable. ASSERT™ localizes an

issue and provides counterexamples in terms of the concepts

and properties used in the requirements. These counterexam-

ples focus the attention of the requirements engineer on the

exact issue to be resolved.

IV. EXAMPLE OF AN AIRCRAFT ENGINE SENSOR

We have modeled parts of an aircraft engine and related

requirements. In this paper, we will use a simplified pressure

sensor as a running example. There are numerous publications

that describe how to handle redundant sensor selection, such

as PS3 and T5, in aircraft engines controls [7]. Here we will

describe a dual-channel pressure sensor Px as specified in Fig.

1, where the selected value is based on the inputs received.

Figure 1. Dual channel pressure sensor.

Engine speed is used as a proxy for determining the status of

the aircraft and is used to set range limits on pressure values.

Px has two channels, Ch1 and Ch2, and each channel receives

an input raw signal. The status of Px is also an input to Px –

this is a signal indicating the status of Px as determined by

other mechanisms. ASSERT™ captures the semantic model in

the controlled English Semantic Application Design Language

(SADL) [8,9]. High-level details of Px are as follows.

SYSTEM is a class.

Engine is a class.

engineSpeedPercentage describes Engine

 with a single value of type decimal.

Sensor is a class.

statusOk describes Sensor with a single value of type boolean.

DCPS is a type of Sensor. // DualChannelPressureSensor

channels describes DCPS with values of type TwoChannels.

TwoChannels is a type of Channel, must be one of {Ch1, Ch2}.

Px is a type of DCPS. // Pressure Sensor

Channel is a class.

This describes a sparse skeleton that can be expanded upon by

adding additional properties and restrictions. Note that the

class-subclass structure provides inheritance of properties and

so, for example, the statusOk property is defined for Px, a sub-

class of Sensor. Notice the readability of the model as speci-

fied in ASSERT™.

The flow of processing for the pressure sensor Px is as fol-

lows. The raw signals for each channel are provided in mV

units and are converted to psi units and filtered. For fault detec-

tion and isolation, we will follow the traditional approach of

determining hard faults for each channel based on specified

limits and persisted hard faults become hard fail for the chan-

nels [10]. At the pressure sensor level, soft fault is identified

based on the difference in values of the converted values of the

two channels. A persisted soft fault becomes a soft failure. The

pressure sensor is declared persistent bad if both of its channels

have hard fail and the pressure sensor has a soft fail.

We now expand on the skeleton ontology presented above

by adding the additional properties we will need in capturing

the requirements for Px including defining unitted quantities.

selectedValue describes DCPS with a single value of type decimal.

persistentBad describes DCPS with a single value of type boolean.

softFault describes DCPS with a single value of type boolean.

softFail describes DCPS with a single value of type boolean.

lowRangeLimit describes DCPS with a single value of type decimal.

highRangeLimit describes DCPS with a single value of type decimal.

rawValue describes Channel with a single value of type decimal.

convertedValue describes Channel

 with a single value of type decimal.

filteredValue describes Channel with a single value of type decimal.

hardFault describes Channel with a single value of type boolean.

hardFail describes Channel with a single value of type boolean.

The selected value of the pressure sensor is then determined

as specified by the flow chart in Fig 2.

Figure 2. Determination of selected value.

This section highlighted part of the ontology used; the full

ontology and requirements for Px are given in the Appendix.

V. FORMAL REQUIREMENTS CAPTURE

To perform formal analysis on requirements, we need to

first formally capture the requirements. The requirements are

captured in the SADL Requirements Language (SRL). We pre-

sent some basic requirement definitions relevant to ASSERT™

and used for the sensor example. A more in-depth technical

discussion on the development of a requirements language

from an ontology language can be found in [1, 2].

There are other tools that capture requirements and analyze

them. Goals are like ours – ease an engineer’s transition from

natural language to formal requirements; minimize the seman-

tic distance between the subject matter expert’s mental model

and the target language. RSML (Requirements State Machine

Language) [11] is one such early work, including its follow-on

research SpecTRM (Specification Tools and Requirements

Methodology) [12], designed primarily for process-control

systems and is based on state machines. SpeAR (Specification

and Analysis of Requirements) [13, 14] is another tool for cap-

turing and analyzing requirements. It is open source and has a

specification language front-end that gets translated to a Lustre

model and analyzed for logical conflicts, among other checks.

Our tool differs in our preference for ontology-based technolo-

gy. The core of ASSERT™ is the ability to capture the domain

as a semantic model. The semantic model based on SADL,

which we developed as a domain-specific language for repre-

senting ontologies in the Web Ontology Language (OWL).

SADL also provides if-then rules. SADL is both a controlled-

English language and a rich integrated development environ-

ment (IDE) or modeling environment for creating, testing, and

maintaining semantic models. We feel that the selection of se-

mantic modeling is superior to other technologies for a variety

of reasons. High among them is the modularity and extensibil-

ity that are achieved through a formal semantics based on set

theory. Set theory encompasses inheritance and inheritance

allows information about a model concept to be captured in a

single model location but used in as many locations as appro-

priate.

A. Anatomy of a Requirement

A requirement is a statement made up of three main

components: a name, a conclusion, and a condition. The name

is a unique identifier given by the user or assigned by a

requirements management tool such as DOORS®. The

conclusion is the shall part of the statement that specifies

something that is required to be true. The condition is the

when part which specifies the applicability of the requirement.

Here is an example.

Requirement LowRangeLimit1: // name

SYSTEM shall set lowRangeLimit of Px to 1.0 // conclusion

when engineSpeedPercentage <= 30.0 . // condition

lowRangeLimit and engineSpeedPercentage are properties and

are defined in the ontology model. Each concept has a single

meaning shared across all users. In each requirement, we dif-

ferentiate between properties whose values are being set in the

conclusion, which we refer to as “controlled properties” or

“controlled variables,” and properties whose values are used in

the condition, which we refer to as “monitored properties” or

“monitored variables.” Note that it is certainly possible for a

property to be a controlled variable in one requirement and be a

monitored variable in another.

B. Compact Requirements based on Context and Grounding

The controlled English requirements language in

ASSERT™ allows for a compact representation. The user can

refer to a property without explicitly spelling out its full class

path by specifying a Context. The Context sets the focus for a

set of requirements and limits the scope of interpretation so

that full class paths are not needed to avoid ambiguity.

Suppose the property name statusOk is used in multiple

classes, such as P0 and Px. If we set the Context in a

requirements file as follows

Context: Px with channels TwoChannels.

then in that file we can use statusOk instead of statusOk of Px.

The user can also write requirements at the class level

and grounding expands the requirement for each instance of a

class. Here is an example that illustrates grounding.

Requirement HardFault:

SYSTEM shall set hardFault of channels of Px to true

only when convertedValue of channels of Px < lowRangeLimit of Px

 or convertedValue of channels of Px > highRangeLimit of Px.

Without grounding, we would need two requirements, one for

Ch1 and one for Ch2. ASSERT™ internally expands out

HardFault requirement into two requirements.

C. Continuous Type Checking

As requirements (and ontology) are authored in

ASSERT™, type checking is performed continually and errors

are flagged as illustrated by the following requirement.

Requirement SoftFault1:

SYSTEM shall set softFault of Px to true

when abs(convertedValue of Ch1 - convertedValue of Ch2) > 15.0

 and statusOk of Px is true.

The property softFault is defined in the ontology model as a

boolean. This prevents a user from writing a requirement like

the following.

Requirement SoftFault1:

SYSTEM shall set softFault of Px

to abs(convertedValue of Ch1 - convertedValue of Ch2)

when statusOk of Px is true.

ASSERT™ will immediately flag this an as error, notifying the

user that softFault takes a boolean value and cannot be com-

pared with an expression of type decimal.

D. Unitted Quantity

In addition to type checking, ASSERT™ also handles

unitted quantity. This makes for even stronger typed require-

ments in that not only do primitive types must agree, but their

units also must be consistent. For example,

rawValue describes Channel with a single value

of type UnittedQuantity.

convertedValue describes Channel with a single value

of type decimal.

Signal_mV is a type of UnittedQuantity.

unit of Signal_mV always has value "mV".

rawValue of Channel only has values of type Signal_mV .

In our example, we use unitted quantity to specify when a

property is in millivolt (mV). Unit conversion errors can lead

to egregious miscalculations. Unitted quantity prevents the

user from writing requirements that sets/compares rawValue

to/with convertedValue.

E. Specifying What and Not How by Using Decomposition

Decomposition in ASSERT™ allows the requirements

writer to say what a system is expected to do without being

forced to specify the implementation details. This allows the

user to stay at the right level of abstraction. Suppose in the

ontology we define

SecondOrderTustinFilter is a class.

inp describes SecondOrderTustinFilter with a single value

of type decimal.

_value describes SecondOrderTustinFilter with a single value

of type decimal.

We use _value, as value is a reserved word in ASSERT™.

Now without giving further details such as the gains or the

update rate for SecondOrderTustinFilter, we can use it as a

decomposition as follows.

Requirement FilteredValue:

SYSTEM shall set

filteredValue of channels of Px to _value of filteredSignal

where filteredSignal is (a SecondOrderTustinFilter

 with description “2nd order Tustin with K=1, D=0.5, N=0.5”

 with inp (convertedValue of channels of Px)).

We only need to specify the values for required inputs. A

special property, description, allows us to capture text that can

be used when a designer implements the decomposition. Note

also the use of where clause that allows us to introduce and use

a local variable (filteredSignal).

F. Equations

In contrast to decomposition where details are abstracted

away, equations allow the user to capture an exact detail for

implementation. This feature is important for recording conver-

sion formulas from a supplier or for documenting how we shall

compute an output used by a customer downstream. In our ex-

ample, we use the following equation for converting the raw

pressure sensor signal to engineering units.

Equation Conversion(decimal mult, decimal raw-input,

 decimal adder) returns decimal:

mult * raw-input + adder.

Equations are analyzed in a similar way to decomposition.

Analysis can be proven or disproven, depending on the set of

requirements analyzed.

VI. FORMAL REQUIREMENTS ANALYSIS

Requirements are formally analyzed using RAE, the patent-

ed [15] Requirements Analysis Engine of ASSERT™. RAE

can be used to analyze requirements as soon as they are written,

without the need for lower-level requirements, annotations,

properties or code. RAE can also be used to analyze an incom-

plete set of requirements, which allows requirements engineers

to get meaningful feedback immediately. If errors are found,

RAE will localize the error by identifying which requirements

are responsible, it will generate a test case showcasing the er-

ror, where appropriate, and it will generate a report explaining

the error. RAE errors never include false alarms, i.e., RAE

generates error reports only when it has a proof that an error

exists.

To formally analyze SRL requirements we need to translate

them to a formal language with mechanized logic and theorem

proving and disproving support. RAE uses the ACL2 logic as

its base language and the ACL2s system as its background

solver. ACL2s, the ACL2 Sedan [16], is itself an extension of

the ACL2 theorem prover, featuring automated termination

analysis [17, 18], counterexample generation capability [19,

20] and a convenient typed language support [21].

In this section, we briefly outline the core technical details

of how RAE works. First, we informally describe how major

aspects of the SADL ontology and SRL requirements map to a

syntactic extension of the ACL2s typed language [21]. Then,

we describe how conflict and completeness analysis are mech-

anized in ACL2s. We assume some familiarity with ACL2, an

industrial-strength interactive theorem prover that has been

successfully applied to verify complex hardware designs. We

refer the reader to [22] for a short introduction and to [23] for a

more complete description.

A. Translation to ACL2

The requirements engineer captures the concepts and the re-

lational vocabulary of the system under design in a SADL on-

tology. Concepts are captured as SADL classes and relations as

SADL properties. The requirements specifying the behavior of

the system under design are captured in SRL.

1) Translating Ontology.

Primitive SADL datatypes such as decimal and boolean are

translated directly to corresponding basic types in ACL2s. Each

SADL class C gets translated to an ACL2s data definition

form, (defdata C <def>). The defdata form concisely supports

common data definition patterns, e.g. list types, enum types,

record types, range types, etc. The defdata form defining C,

among other things, automatically generates a predicate func-

tion (Cp) and an enumerator function (nth-C) that recognize

and generate values of type C.

Range restrictions on primitive datatypes are translated to

defdata range types. Many SADL classes are explicit enumera-

tions and are encoded using enum types. Undefined SADL

classes are translated to concrete enum types by taking into

account their subclasses and occurrences of property expres-

sions of that type. List classes with length constraints are trans-

lated to list types with appropriate length restrictions.

2) Translating Requirements.

Below, we assume that SRL requirements have been

grounded as described in a previous section. Each SRL re-

quirement form is translated to a defrequirement form with the

following structure:

 (defrequirement name

 ((mvar1 Cp1) ..)

 ((cvar Cp))

 (implies when_formula

 (equal cvar rhs_expression)))

The first element of the form is the name of the require-

ment. The second is a list of monitored variables along with

their types. The third is a list containing a single controlled

variable and its type. The last element of the defrequirement

form, called its body, is an ACL2 formula.

The translation is as follows. The property expression, lhs,

in the shall set lhs to rhs SRL construct is translated to a fresh

controlled variable, e.g., cvar in the above form. Suppose the

range of this property is a SADL class (or primitive SADL

datatype) that is translated to defdata type C, then we associate

cvar with its type predicate Cp. All other property expressions

are encoded as monitored variables along with their respective

types as above. The shall set lhs to rhs construct is translated to

an equality whose first argument is cvar and whose second

argument is a translation of the SRL expression rhs. If the

when condition is present, the requirement body is encoded as

an implication whose antecedent is a translation of the when

condition expression and whose conclusion is the equality ex-

pression described above.

We note that the defrequirement form itself macro-expands

to an ACL2s defunc form that defines functions along with its

input-output contract (i.e. type signature). Each top-level SRL

construct (including assertion, assumption and equation) is

translated to a form that has a similar structure as defrequire-

ment. Occurrences of decomposition expressions such as

(a C with p1 (pexp1) with p2 (pexp2) ...)

give rise to defdecomposition forms that define an uninterpret-

ed function whose signature is determined by the translated

types of class C (output) and properties p1,p2,.. (inputs). The

decomposition expression is translated to the corresponding

function call whose arguments are the translations of the prop-

erty expressions, pexp1, pexp2 appearing in the decomposition.

ASSERT™ also handles qualitative and quantitative timing

constraints. Timing conditions are translated away into regular

ACL2 boolean expressions using fresh copies (past snapshots)

of monitored variables occurring in the conditions. The previ-

ous operator that can be used as a prefix to any property ex-

pression in SRL gives rise to a fresh monitored variable. The

remaining SRL expressions map to ACL2 expressions, using a

syntax-directed translation.

B. Formal Requirements Analysis using ACL2s

All requirements, assumptions, assertions, equations perti-

nent to a single controlled variable are collected together and

translated as a unit. RAE does a sequence of formal analyses on

each such translated unit. The first analysis RAE performs is

type-safety analysis. All operators, equations, decompositions

are typed and the pervasive use of defdata and defunc forms

program the ACL2s typechecker (Tau-system) to automatically

discharge type-like proof obligations [21]. Among the other

analyses, two major ones RAE performs are conflict and com-

pleteness, which we describe below.

RAE performs conflict and completeness analysis by gen-

erating a corresponding ACL2 formula and querying its validi-

ty using the ACL2 theorem prover and its falsifiability using

ACL2s counterexample generation facility, Cgen [19, 20].

Cgen uses a synergistic combination of property-based testing

and theorem proving to find counterexamples to ACL2 conjec-

tures. The enumerators that perform property-based test data

generation are automatically synthesized by the defdata form.

When the proof is found, RAE reports that the analysis

passed. If a counterexample is found, RAE reports an analysis

error. Note that although we have carefully programmed

ACL2s to achieve automation and minimize the number of

undetermined results, i.e., ACL2s is neither able to prove the

query, nor is ACL2s able to falsify it, our method is not a deci-

sion procedure and we sometimes get undetermined results that

are reported as potential errors. The formal details, including

checks for conflicts, completeness, contingency, independence

and surjectivity, are described in detail elsewhere [15].

In a typical project, requirements analysis is done iterative-

ly as requirements are added and modified. For the project with

1002 requirements mentioned earlier, the processing time for a

complete requirements analysis was under half an hour. The

requirements analysis is also incremental which can signifi-

cantly reduce requirement analysis processing time as require-

ments are added and modified.

C. Illustration of Requirements Analysis

We will now illustrate formal analysis for the sensor

example. For Px, we require that softFault be set to true only

when the difference between the converted values of the

channels is greater than 15, provided the statusOk of Px is

true. Suppose the following requirements were drafted.

Requirement SoftFault1:

SYSTEM shall set softFault of Px to true

when abs(convertedValue of Ch1 – convertedValue of Ch2) >= 15.0

 and statusOk of Px is true.

Requirement SoftFault2:

SYSTEM shall set softFault of Px to false

when abs(convertedValue of Ch1 – convertedValue of Ch2) <= 15.0.

This is an example of a common error – did we want the

difference to be strictly greater than 15 or greater than or equal

to 15? RAE reports the error message as shown in Fig. 3 that

includes a counterexample (test case). Note that the counterex-

ample captures the system state where the gap between the

converted values is exactly 15, in which case both requirements

apply and set softFault of Px to different values (true is repre-

sented as T). There is a conflict among the requirements! This

feedback is presented contextually with the offending require-

ments that makes it easy to understand and correct.

Figure 3. Illustration of a pair-conflict error with counterexample.

The requirements engineer corrects her mistake and replac-

es the >= sign in the first requirement with the > sign. This

resolves the conflict, but now RAE reports another error as

shown in Fig. 4.

Figure 4. Illustration of completeness error with counterexample.

The difference between the channel values is greater than

15, but since statusOk is false (represented as NIL), no re-

quirement applies, and RAE displays a system state where the

behavior of the system is unspecified. The requirements are not

complete. The requirements engineer can correct this by adding

a third requirement that specifies what is to be done in the case

statusOk is false. With the third requirement added, RAE re-

ports no errors, asserting that the three requirements for con-

trolled variable softFault of Px are complete and conflict-free.

VII. AUTOMATED TEST CASE GENERATION

After requirements are analyzed with RAE, they are then

processed by ATG, the Automated Test Generation tool of

ASSERT™. ATG automatically analyzes the requirements

against predefined test coverage criteria (based on DO-178C

guidelines) and produces requirements-based test cases and

procedures. Here we provide a brief description; some addi-

tional details can be found in [1, 24-26].

Prior work in this area includes [27-29] that discuss test

case generation from design models, such as SCADE, to

achieve structural coverage at the design/code level. Our auto-

mated test generation tool focuses on generating test cases from

requirements written in structured natural language to achieve

test coverage at the requirements level. The generated test cases

are then executed on the design model/code to reveal inconsist-

encies between requirements and design/code. Unlike the prior

work, our tool’s ability to generate test cases before a single

line of code is written promotes independence between the

person generating the requirements-based test cases and the

developer of the code to be verified.

A. Test Case Generation

Formal methods are applied in ATG to perform key tasks,

such as reachability analysis, test optimization, test sequencing,

test data generation, and initial condition setting. ATG first

automatically derives test objectives from requirements and test

coverage criteria, then for each of the above tasks ATG synthe-

sizes a set of satisfiability modulo theories (SMT) formulas

from the test objectives and applies SMT solvers to check the

satisfiability of the formula. The solver results, including the

counterexamples, are used for removing invalid test cases,

combining redundant test cases, generating satisfiable in-

put/output data, etc. The generated test cases are formatted to

support human review. They are written in a text file with ta-

bles to show how each test coverage criteria are satisfied by the

generated test cases. The test case files also provide justifica-

tions for when a certain coverage criterion is not achieved. Test

procedures are generated separately. The test procedures are

machine readable. They describe step-by-step instructions on

how to set the initial conditions and inputs to verify the actual

outputs against the expected outputs.

B. SCADE Simulation

The test procedures can then be automatically mapped to

the target test platform and be executable against the system or

software under test. The Automated Test Procedure Translator

tool of ASSERT™ takes the test procedures generated by

ATG, a template describing the format of the tests in the target

test environment, and a mapping of names from how they ap-

pear in ASSERT™ to how they appear in the test environment,

and generates test scripts. These test scripts can then be direct-

ly executed in the target test environment using third-party

tools for functional verification and test coverage measurement.

Note that the software under test is an output of a separate de-

velopment activity and not directly part of ASSERT™.

Figure 5. SCADE implementation.

Figure 6. Compilation of the test cases run in the SCADE

simulation environment.

Figure 7. Test inputs along with the output that can be validated against the expected values from ATG.

We now show how the test procedures are simulated

against a SCADE design model. Fig. 5 shows an

implementation that meets the requirements for the selected

value of Px. Fig. 6 is the compilation of the test cases run in

the SCADE simulation environment. Fig. 7 shows graphically

the test inputs along with the output that can be validated

against the expected values from ATG.

VIII. LESSONS LEARNED

There are several lessons learned when designing a tool for

industry-wide acceptance. For business leaders to use a new

requirement capture and analysis tool, they must be convinced

that the engineers can be trained to use the tool. It is unlikely

that we could have sold that argument if the language used was

directly based on first-order logic, temporal logic, or some oth-

er symbol-heavy formalism. By showing management and en-

gineers that ASSERT™ requirements look very similar to the

requirements they were writing in English, we were able move

beyond this first hurdle.

To be accepted, a new requirement capture and analysis

tool must offer means of mitigating the risks of adoption. Since

the ASSERT™ language is English-like, it was possible to

argue that even if requirements analysis and test case genera-

tion were not fully successful, there was still much benefit in

capturing requirements in ASSERT™, e.g., having a common

ontology and automated type checking, all in an integrated sys-

tem, were on their own worth it.

Having engineers from the business units embedded into

the team developing the tools was important because it kept us

focused on solving the real problems the business was having.

We also developed a deep bench of power-users in the business

who have the domain expertise to explain how to effectively

use the tool to others in the business, and finally we gained

access to real problems. All of this allowed us to make the val-

ue proposition to management, which was needed to fund a

multi-year, multi-team project like this.

IX. CONCLUSIONS

In this paper we have listed some of the common require-

ment pitfalls that inadvertently introduce errors into a program.

Many studies have shown that the cost of fixing errors in the

designs of safety-critical systems depends on the time elapsed

between error introduction and error discovery. As the gap be-

tween error introduction and error discovery increases, so does

the cost of resolving such errors. The resolution may require

architectural changes and may have a cascading effect that re-

quires redesigning various aspects of the system, which leads to

delays and cost overruns. In this paper, we have shown how

ASSERT™ helps a developer capture complete and conflict

free requirements, and provides explainable and automated

formal analysis to identify and help resolve errors during the

requirements authoring process. Of notable importance is the

fact that the domain experts using the ASSERT™ tool do not

need to be formal modeling or analysis experts to benefit from

the formal methods used to assist them in the capture, analysis

and automated test generation of their requirements.

ACKNOWLEDGMENT

The authors gratefully acknowledge Scott Stacey, Tony

Lanzillotti, Jeff Gilton, Shreecharan Kanchanavally, Craig

McMillan, Gary Quackenbush, Christin Rauche, and Michael

Idelchik for their unwavering support throughout the course of

this research.

REFERENCES

[1] Siu, K. et al.: Flight critical software and systems development

using ASSERT™. In: IEEE/AIAA 36th Digital Avionics Sys-

tems Conference (DASC), pp. 1-10, St. Petersburg, FL, USA

(2017).

[2] Crapo, A., Moitra, A., McMillan, C., Russell, D.: Requirements

Capture and Analysis in ASSERT™. In: IEEE 25th Interna-

tional Requirements Engineering Conference (RE), pp. 283-

291, Lisbon, Portugal (2017).

[3] DO-178C Software Considerations in Airborne Systems and

Equipment Certification. RTCA, 12/13/2011.

[4] Brat, G., Bushnell, D., Davies, M., Giannakopoulou, D., How-

ar, F., Kahsai, T.: Verifying the safety of a flight-critical sys-

tem. In: International Symposium on Formal Methods, pp. 308-

324. Springer, Cham. (2015).

[5] Whalen, M., Gacek, A., Cofer, D., Murugesan, A., Heimdahl,

M., Rayadurgam, S.: Your “What” is My “How”: Iteration and

Hierarchy in System Design, IEEE Software, 30 (2), (2013).

[6] Some Famous Unit Conversion Errors. [Online]

https://spacemath.gsfc.nasa.gov/weekly/6Page53.pdf

[7] Litt, J.S., Simon, D.L., Garg, S., Guo, T.H., Mercer, C., Millar,

R., Behbahani, A., Bajwa, A., Jensen, D.T.: A survey of intelli-

gent control and health management technologies for aircraft

propulsion systems. JACIC, 1 (12), 543-563 (2004).

[8] Semantic Application Design Language (SADL). [Online]

http://sadl.sourceforge.net/index.html.

[9] Crapo, A. Moitra, A.: Toward a unified English-like represen-

tation of semantic models, data, and graph patterns for subject

matter experts. International Journal of Semantic Computing, 7

(3), 215-236 (2013).

[10] Laprie, J. C., Arlat, J., Beounes, C., Kanoun, K.: Definition and

analysis of hardware-and software-fault-tolerant architec-

tures. Computer, 23 (7), 39-51 (1990).

[11] Leveson, N., Heimdahl, M., Hildreth, H., Reese, J.: Require-

ments specification for process-control systems. In: IEEE

Transaction on Software Engineering (1994).

[12] Leveson, N., Heimdahl, M., Reese, J.: Designing specification

languages for process control systems: lessons learned and

steps to the future. In Software Engineering – ESEC/FSE ’99.

Lecture Notes in Computer Science, vol 1687. O. Nierstrasz,

M. Lemoine (eds). Berlin, Heidelberg: Springer (1999).

[13] GitHub SpeAR. [Online] https://github.com/lgwagner/SpeAR.

[14] Wagner, L., Fifarek, A., DaCosta, D., Gross, K.: SpeAR: Spec-

ification and Analysis of Requirements. In: S5 Symposium

(2014).

[15] Manolios, P.: Scalable methods for analyzing formalized re-

quirements and localizing errors. U.S. Patent 9,639,450, May 2,

2017.

[16] Chamarthi H.R., P.C. Dillinger, P.C., Manolios P., Vroon D.:

The ACL2 Sedan theorem proving system. TACAS, 2011,

Springer.

[17] Manolios, P. Vroon, D.: Termination analysis with calling con-

text graphs. Computer Aided Verification (CAV), Lecture

Notes in Computer Science 4144, Springer, pp. 401–414

(2006).

[18] Manolios P., Vroon, D.: Interactive termination proofs using

termination cores. Interactive Theorem Proving, July 2010,

Springer LNCS 6172.

[19] Chamarthi, H.R., Dillinger, P.C., Kaufmann, M., Manolios, P.:

Integrating testing and interactive theorem proving. In: ACL2

2011, EPTCS 70, pp. 4–19.

[20] Chamarthi, H.R., Manolios, P.: Automated specification analy-

sis using an interactive theorem prover. In: FMCAD 2011, pp.

46–53.

[21] Chamarthi H.R., Dillinger P.C., Manolios, P.: Data Definitions

in the ACL2 Sedan. ACL2 pp. 27-48 (2014).

[22] ACL2 Tutorial. [Online]

http://www.cs.utexas.edu/users/moore/acl2/v7-4/combined-

manual/

[23] Kaufmann, M., Manolios, P., Strother Moore J.: Computer-

aided reasoning: an approach. Kluwer Academic Publishers

(2000).

[24] Li, M.: Integrated automated test case generation for safety-

critical software. U.S. Patent Application 20160170864A1,

filed December 2014.

[25] Li, M., Durling, M., Siu, K., Oliveira, I., Yu, H., De Conto, A.:

System and method for safety-critical software automated re-

quirements-based test case generation. U.S. Patent 9,940,222,

April 10, 2018.

[26] De Conto, A., Li, M., Manolios, P., Oliveira I.: System and

method for equivalence class analysis-based automated

requirements-based test case generation. U.S. Patent

Application 20170228309A1, filed February 2016.

[27] Durrieu, G., Laurent, O., Seguin, C., Wiels, V.: Formal proof

and test case generation for critical embedded systems using

SCADE. In: Building the Information Society, vol. 156, pp.

499-504, R. Jacquart, Eds. Boston, MA: Springer (2004).

[28] Wiels, V., Delmas, R., Doose D., Garoche, P.L., Cazin, J.,

Durrieu, G.: Formal verification of critical aerospace software.

In: Aerospace Lab, pp. 1-8 (2012).

[29] Bochot, T., Virelizier, P., Waeselynck, H., Wiels, V.: Model

checking flight control systems: the Airbus experience. In:

International Conference on Software Engineering (2009).

X. APPENDIX: DOMAIN MODEL AND REQUIREMENTS

The semantic domain model is as follows.

uri "http://sadl.org/PressureSensor" alias PS.

SYSTEM is a class.

Engine is a class.

engineSpeedPercentage describes Engine

 with a single value of type decimal.

Sensor is a class.

statusOk describes Sensor with a single value of type boolean.

Signal_mV is a type of UnittedQuantity.

unit of Signal_mV always has value "mV".

Signal_psia is a type of UnittedQuantity.

unit of Signal_psia always has value "psia".

DCPS is a type of Sensor. //DualChannelPressureSensor

selectedValue describes DCPS

 with a single value of type decimal.

persistentBad describes DCPS

 with a single value of type boolean.

softFault describes DCPS with a single value of type boolean.

softFail describes DCPS with a single value of type boolean.

lowRangeLimit describes DCPS

 with a single value of type decimal.

highRangeLimit describes DCPS

 with a single value of type decimal.

channels describes DCPS with values of type TwoChannels.

TwoChannels is a type of Channel, must be one of {Ch1, Ch2}.

Px is a type of DCPS. //Pressure Sensor

Channel is a class.

rawValue describes Channel

 with a single value of type UnittedQuantity.

convertedValue describes Channel

 with a single value of type decimal.

filteredValue describes Channel

 with a single value of type decimal.

hardFault describes Channel with a single value of type boolean.

hardFail describes Channel with a single value of type boolean.

rawValue of Channel only has values of type Signal_mV .

// Decompositions

SecondOrderTustinFilter is a class.

inp describes SecondOrderTustinFilter

 with a single value of type decimal.

_value describes SecondOrderTustinFilter

 with a single value of type decimal.

WeightedAverageTwoValue is a class.

inpA describes WeightedAverageTwoValue

 with a single value of type decimal.

inpB describes WeightedAverageTwoValue

 with a single value of type decimal.

_value describes WeightedAverageTwoValue

 with a single value of type decimal.

// Interface Definitions

COMPONENT_TEMPLATE_IntDef1

 is a INTERFACE_DEFINITION,

 with reference_class Channel,

 with reference_property rawValue,

 with functional_min 0.0 ,

 with functional_max 120.0 ,

 with physical_min 0.0 ,

 with physical_max 120.0 ,

 with tolerance 0.05 ,

 with resolution 0.01 .

COMPONENT_TEMPLATE_IntDef2

 is a INTERFACE_DEFINITION,

 with reference_class Channel,

 with reference_property convertedValue,

 with functional_min 0.0 ,

 with functional_max 500.0 ,

 with physical_min 0.0 ,

 with physical_max 500.0,

 with tolerance 0.05 ,

 with resolution 0.01 .

COMPONENT_TEMPLATE_IntDef3

 is a INTERFACE_DEFINITION,

 with reference_class Channel,

 with reference_property filteredValue,

 with functional_min 0.0 ,

 with functional_max 500.0 ,

 with physical_min 0.0 ,

 with physical_max 500.0 ,

 with tolerance 0.05 ,

 with resolution 0.01 .

COMPONENT_TEMPLATE_IntDef4

 is a INTERFACE_DEFINITION,

 with reference_class Px,

 with reference_property selectedValue,

 with functional_min 0.0 ,

 with functional_max 500.0 ,

 with physical_min 0.0 ,

 with physical_max 500.0 ,

 with tolerance 0.05 ,

 with resolution 0.01 .

COMPONENT_TEMPLATE_IntDef5

 is a INTERFACE_DEFINITION,

 with reference_class Engine,

 with reference_property engineSpeedPercentage,

 with functional_min 0.0 ,

 with functional_max 100.0 ,

 with physical_min 0.0 ,

 with physical_max 100.0 ,

 with tolerance 0.05 ,

 with resolution 0.01 .

We have 2 requirement files. In the first one below, the

Context is used so that all the requirements in the file are

grounded to the channels of Px which are Ch1 and Ch2 as

defined in the ontology. This ability to do the grounding

means that a requirements engineer needs to write fewer

requirements than without grounding.

uri "http://sadl.org/PressureSensorReq" alias PSR.

import "http://sadl.org/PressureSensor".

Context: Px with channels TwoChannels.

// for Px channels : rawValue -> convertedValue -> filteredValue

Equation Conversion(decimal mult, decimal raw-input,

 decimal adder) returns decimal:

mult * raw-input + adder.

// since “value” is a keyword, we use it as a non-keyword by

// escaping it with a preceding “^”
Requirement ConvertedValue:

SYSTEM shall set convertedValue of channels of Px to

Conversion(4.5, ^value of rawValue of channels of Px, -13.2).

Requirement FilteredValue:

SYSTEM shall set filteredValue of channels of Px

 to _value of filteredSignal

where filteredSignal is (a SecondOrderTustinFilter

with description "2nd order Tustin with K=1, D=0.5, N=0.5"

with inp (convertedValue of channels of Px)).

// for Px channels : hard fault -> hard fail (persisted hard fault)

Requirement HardFault:

SYSTEM shall set hardFault of channels of Px to true

only when convertedValue of channels of Px

 < lowRangeLimit of Px

 or convertedValue of channels of Px

 > highRangeLimit of Px.

Requirement HardFail:

SYSTEM shall set hardFail of channels of Px to true

only when hardFault of channels of Px has been true

 for the past 0.5 seconds.

The second requirements file is as follows.

uri "http://sadl.org/PressureSensorReq2" alias PSR2.

import "http://sadl.org/PressureSensor".

// for Px : set range limits

Requirement LowRangeLimit1:

SYSTEM shall set lowRangeLimit of Px to 1.0

when engineSpeedPercentage <= 30.0 .

Requirement LowRangeLimit2:

SYSTEM shall set lowRangeLimit of Px to 5.0

when engineSpeedPercentage > 30.0 .

Requirement HighRangeLimit:

SYSTEM shall set highRangeLimit of Px to 100.0 .

// for Px : soft fault -> soft fail (persisted soft fault)

Requirement SoftFault1:

SYSTEM shall set softFault of Px to true

when abs(convertedValue of Ch1 - convertedValue of Ch2)

 > 15.0

 and statusOk of Px is true.

Requirement SoftFault2:

SYSTEM shall set softFault of Px to false

when abs(convertedValue of Ch1 - convertedValue of Ch2)

 <= 15.0

 and statusOk of Px is true.

Requirement SoftFault3:

SYSTEM shall set softFault of Px to false

when statusOk of Px is false.

Requirement SoftFail:

SYSTEM shall set softFail of Px to true

only when softFault of Px has been true for the past 0.2 seconds.

Requirement PersistentBad:

SYSTEM shall set persistentBad of Px to true

only when hardFail of Ch1 is true

 and hardFail of Ch2 is true

 and softFail of Px is true.

Requirement SelectedValue:

SYSTEM shall set selectedValue of Px as follows:

{[hardFault of Ch1, hardFault of Ch2, persistentBad of Px,

 selectedValue of Px],

[false, false, --, _value of

standardWeightedAvgPressureSensor],

[false, true, --, filteredValue of Ch1],

[true, false, --, filteredValue of Ch2],

[true, true, false, previous selectedValue of Px],

[true, true, true, 14.0]

}

where standardWeightedAvgPressureSensor

 is (a WeightedAverageTwoValue

 with description "Standard Weighted Average"

 with inpA (filteredValue of Ch1)

 with inpB (filteredValue of Ch2)

).

