
Copyright

by

Panagiotis Manolios

2001

Mechanical Verification of Reactive Systems

by

Panagiotis Manolios, B.S.,M.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2001

The Dissertation Committee for Panagiotis Manolios
Certifies that this is the approved version of the following dissertation:

Mechanical Verification of Reactive Systems

Committee:

J Strother Moore, Supervisor

Lorenzo Alvisi

E. Allen Emerson

Matt Kaufmann

Jayadev Misra

Amir Pnueli

To Helen and Emmanuel

Acknowledgments

First and foremost I want to thank J Moore. J provided financial support when

we first started working together, from his Admiral B.R. Inman Centennial

Chair in Computing Theory. More importantly, I learned a great deal from

J about being a researcher, a teacher, and a human being during our many

collaborations and interactions.

The impetus for my dissertation work came from discussions and col-

laborations with fellow graduate students, including Kedar Namjoshi, Rob

Sumners, and Jun Sawada. I met many other wonderful graduate students;

the ones who helped shape my view of computing science include Richard Tre-

fler, Rajeev Joshi, Vasilis Samoladas, Emilio Camahort, Yannis Smaragdakis,

Nina Amla, John Gunnels, John Havlicek, Will Adams, and Robert Krug.

The teachers that inspired me and taught me things I still remember

include Edsger W. Dijkstra, E. Allen Emerson, Jayadev Misra, and, of course,

J Moore. I thank Edsger for inviting me to join the Austin Tuesday Afternoon

Club, where every week I had the pleasure of reading and analyzing papers on

various topics with interesting people.

I was very fortunate that Matt Kaufmann started attending the ACL2

meetings and agreed to be on my committee. Matt has read my work as

v

carefully as anyone else and has been an invaluable resource throughout my

graduate career.

My interactions with Warren Hunt, Yuan Yu, and Natarajan Shankar

have been enlightening and enjoyable.

The Semiconductor Research Corporation funded my work for several

years under contract 99-TJ-685 and I am very grateful.

Finally, my family has been wonderful. Helen and Emmanuel are the

source of the greatest joy in my life. I would like to thank my parents and

siblings, but especially my sister Fay who left New York and moved to Austin

when she found out we were having a baby.

Panagiotis Manolios

The University of Texas at Austin

August 2001

vi

Mechanical Verification of Reactive Systems

Publication No.

Panagiotis Manolios, Ph.D.

The University of Texas at Austin, 2001

Supervisor: J Strother Moore

It is increasingly crucial to the well-being of our society that safety-

critical computing systems behave correctly. Examples of such systems include

air traffic control systems, medical monitoring systems, systems for controlling

nuclear reactors, communication protocols, and microprocessors. All of the

above are examples of reactive systems, non-terminating computing systems

that maintain an ongoing interaction with their environment. Establishing

correctness requires proof. However, due to the complexity of reactive sys-

tems, hand proofs are not reliable: just the description of a system can be

hundreds of pages long! The only viable solution is mechanical verification,

where a computer program is employed to check and to help construct proofs

of correctness. The main obstacle to the widespread use of mechanical ver-

ification is that it requires considerable human effort. In this dissertation,

we show how to reduce the effort involved in the mechanical verification of

reactive systems.

vii

We start by considering notions of correctness that allow us to relate a

reactive system to a simpler system that acts as the specification. Notions of

correctness for reactive systems characterize the relationship between infinite

computations of the implementation and of the specification. To simplify

the effort involved in reasoning mechanically about such notions, we develop a

compositional theory of refinement with proof rules that are based on reasoning

about single steps of reactive systems, as opposed to infinite computations,

which is otherwise required.

In the next part of the dissertation, we present a novel approach to

combining theorem proving and model checking, the two leading mechanical

verification paradigms. Theorem proving is very general, but requires consid-

erable human interaction; model checking does not require human reasoning,

but is only applicable to “small” systems. With our approach, theorem proving

is employed to prove the correctness of an abstraction that yields a reduced

system. We introduce algorithms for extracting reduced systems which are

then analyzed using model checking. This is a very general abstraction tech-

nique that allows great flexibility in choosing an appropriate abstraction. The

general idea is to reduce the problem to one that can be model checked in a

reasonable amount of time. We use the ACL2 (A Computational Logic for

Applicative Common Lisp) theorem proving system to implement the ideas,

e.g., we develop and verify a model checker for the Mu-Calculus using ACL2.

The dissertation concludes with two case studies. The first case study

concerns the verification of a simple communications protocol. This case study

highlights the use of our extraction algorithm and our approach to combining

theorem proving and model checking. The second case study involves the ver-

ification of a simple pipelined machine from the literature. We show that the

viii

notion of correctness we use more faithfully represents the informal correctness

requirements than other notions of correctness currently in use. In addition,

we show that it is possible to automate much of the verification effort in ACL2

by using libraries of general purpose theorems. Finally, we verify several vari-

ants of the pipelined machine including machines with exceptions, interrupts,

and netlist (gate-level) descriptions.

ix

Contents

Acknowledgments v

Abstract vii

List of Symbols xiv

List of Figures xvii

List of Tables xviii

I Introduction and Preliminaries 1

Chapter 1 Introduction 3
1.1 Reactive Systems . 4
1.2 Mechanical Verification . 5
1.3 Contributions and Structure of this Dissertation 8

Chapter 2 Preliminaries 12
2.1 Notation and Mathematical Preliminaries 12
2.2 Transition Systems . 14
2.3 Theorem Proving . 15
2.4 Temporal Calculi/Logics . 17

2.4.1 Mu-Calculus . 17
2.4.2 Temporal Logic . 20

2.5 Model Checking . 22
2.6 Simulation and Bisimulation 23
2.7 Bibliographic Notes . 24
2.8 Summary . 25

x

II Notions of Correctness 27

Chapter 3 Introduction 29
3.1 Matching Fullpaths . 31

Chapter 4 Stuttering Simulation 34
4.1 Stuttering Simulation . 34
4.2 Well-Founded Simulation . 39
4.3 Equivalence . 40

4.3.1 Soundness . 41
4.3.2 Completeness . 43

4.4 Refinement . 46
4.5 Bibliographic Notes . 50
4.6 Summary . 50

Chapter 5 Stuttering Bisimulation 52
5.1 Stuttering Bisimulation . 52
5.2 Well-Founded Bisimulation 55
5.3 Equivalence Bisimulations 56
5.4 Quotient Structures . 63
5.5 Refinement . 64
5.6 Remarks on Refinement . 66
5.7 Remarks on Performance . 70
5.8 Bibliographic Notes . 70
5.9 Summary . 72

III Combining Theorem Proving and
Model Checking 73

Chapter 6 Introduction 75

Chapter 7 Quotient Extraction 78
7.1 State Representative Functions 78
7.2 Quotient Extraction for State Representative Functions . . . 81
7.3 Set Representative Functions 84
7.4 Quotient Extraction for Set Representative Functions 88
7.5 Bibliographic Notes . 91
7.6 Summary . 92

xi

Chapter 8 ACL2 93
8.1 Data Types . 95
8.2 Expressions . 96
8.3 Definitions . 102

8.3.1 Functions . 102
8.3.2 Macros . 104

8.4 Theorems . 107
8.4.1 Encapsulation . 108
8.4.2 Books . 110

8.5 Bibliographic Notes . 111
8.6 Summary . 111

Chapter 9 Model Checking 113
9.1 Set Theory . 113

9.1.1 SETS . 114
9.1.2 FAST-SETS . 119

9.2 Fixpoint Theory . 121
9.3 Relation Theory . 123
9.4 Transition Systems . 126
9.5 Mu-Calculus Syntax . 127
9.6 Mu-Calculus Semantics . 129
9.7 Temporal Logic . 137
9.8 Bibliographic Notes . 137
9.9 Summary . 140

IV Case Studies and Conclusions 141

Chapter 10 Introduction 143

Chapter 11 Alternating-Bit Protocol 145
11.1 Introduction . 145
11.2 Protocol . 146
11.3 Protocol Verification . 149

11.3.1 Well-Founded Equivalence Bisimulation 149
11.3.2 Quotient Extraction 152
11.3.3 Model Checking . 153
11.3.4 Stuttering Bisimulation Checking 155
11.3.5 Remarks . 155

xii

11.4 Bibliographic Notes . 156
11.5 Summary . 157

Chapter 12 Correctness of Pipelined Machines 158
12.1 Introduction . 158
12.2 A Simple Pipelined Machine 159
12.3 Pipelined Machine Verification 165

12.3.1 Correctness . 165
12.3.2 Deterministic Machines 166
12.3.3 Non-Deterministic Machines 173

12.4 Proof Decomposition . 175
12.4.1 Supporting Books . 176
12.4.2 Proof Outline . 178

12.5 Bibliographic Notes . 186
12.6 Summary . 187

Chapter 13 Conclusions 190

Bibliography 193

Index 206

Vita 215

xiii

List of Symbols

N The set of natural numbers 12
ω The set of natural numbers 12

〈i, j〉 Ordered pair . 12
[i..j] The set {k ∈ N : i ≤ k ≤ j} 12
[i..j) The set {k ∈ N : i ≤ k < j} 12

Dom.f The domain of function f 12
] Disjoint union . 12
#S Cardinality of set S 12

P(S) The powerset of S 12
f.x Equivalent to f(x) 12

λx(e.x) Lambda notation 13
f.x.y Equivalent to f(x, y) 13

〈Qx : r : b〉 Quantification . 13
true True . 13

〈Qx ∈ X : r : b〉 Abbreviates 〈Qx : x ∈ X ∧ r : b〉 13
sRw 〈s, w〉 ∈ R . 13
R(S) The image of set S under relation R 13
R|A Relation R left-restricted to the set A 13
R; T Composition of relations R and T 13

T ◦R Composition of relations R and T 13
R−1 The inverse of relation R 13

x ∈ σ x is in the range of sequence σ 13
l Well-founded relation 13
≺ The less than relation for the ordinals 14
≡ Binary equivalence 14

TS Transition system 14
99K Transition relation 14

fp.σ.s σ is a fullpath starting at s 14
σi 〈σ.i, σ(i + 1), . . .〉 14

a; b Concatenation of paths, where a is finite 14

xiv

On The class of ordinals 17
fα The α-fold composition of f 17

µ.f Least fixpoint of f 18
ν.f Greatest fixpoint of f 18LeM The predicate denoted by expression e 19

EXf Mu-Calculus formula: ∃ a next time such that f . . 19
µY f Mu-Calculus formula: least fixpoint of f 19
νY f Mu-Calculus formula: greatest fixpoint of f 19JfKMV Semantics of Mu-Calculus formula f 19
LTL Linear-time logic 20

X Next time temporal operator 20
U Until temporal operator 20

CTL∗ A branching-time logic extending CTL 20
A Universal temporal operator 20
E Existential temporal operator 20

CTL Computation Tree Logic 20
M, σ |= f f holds on fullpath σ of M 21

F Eventually temporal operator 21
G Globally temporal operator 21

πσi 〈σ(π.i), . . . , σ(π(i + 1)− 1)〉 32
(πσi)B(ξδj) 〈∀s, w : s ∈ πσi ∧ w ∈ ξδj : sBw〉 32

corr Correspondence of fullpaths 32
match Matching of fullpaths 32

STS Stuttering Simulation 34
B∗ The reflexive, transitive closure of B 38

WFS Well-Founded Simulation 40
+ Cardinal arithmetic 45

κ+ Successor cardinal to κ. 45
s v w There is an STS B such that sBw 47

Mvr M′ M is a simulation refinement of M′ under r 47
STB Stuttering Bisimulation 52
B≡ The reflexive, symmetric, transitive closure of B . . 54

WFB Well-Founded Bisimulation 55
ESTB Equivalence STB 56
WEB Well-Founded Equivalence Bisimulation 57
M/B Quotient of M under B 63

[s]B The equivalence class of s under B≡ 63
s ≈ w There is an WEB B such that sBw 64

xv

M≈r M′ M is a WEB refinement of M′ under r 65
[s] Abbreviates [s]B 79

false False . 88
G → A Abbreviation for λs(if G.s then A.s else s) 148

A Abbreviation for true → A 148
ABP The Alternating Bit Protocol 148
ISA Instruction Set Architecture 159
MA Micro Architecture 160

xvi

List of Figures

4.1 STSs are not closed under intersection. 39

5.1 An example of an ESTB. 57
5.2 An example of a WEB. 59

7.1 Quotient extraction procedure for state representatives. . . . 81
7.2 Example where no state representative exists. 84
7.3 Quotient extraction procedure for set representatives. 89

8.1 Examples of conses. 96

9.1 The syntax of the Mu-Calculus. 128
9.2 The semantics of the Mu-Calculus. 132
9.3 The syntax of CTL. 138
9.4 A translator from CTL to the Mu-Calculus. 139

11.1 Protocol from sender’s and receiver’s view. 146
11.2 Alternating Bit Protocol. 147

12.1 A simple three-stage pipelined machine. 161

xvii

List of Tables

8.1 Some built-in function symbols and their values. 99
8.2 Some commonly used macros and their values. 100

11.1 Rules defining the transition relation. 148
11.2 WEB case analysis. 152
11.3 Definition of the non-lossy protocol. 155

12.1 The contents of memory. 161
12.2 ISA and MA traces. 162
12.3 How to relate the ISA and MA traces. 163

xviii

Part I

Introduction and Preliminaries

Chapter 1

Introduction

Society is increasingly dependent on reactive systems, non-terminating com-

puting systems that maintain an ongoing interaction with their environment.

Examples of safety-critical reactive systems include air traffic control systems,

medical monitoring equipment, systems for controlling nuclear reactors, mi-

croprocessors, and communication protocols.

The recent PITAC1 report to the president makes it clear that build-

ing dependable computing systems is one of the major challenges facing the

computing field ([Pre99], page 4).

We have become dangerously dependent on large software systems

whose behavior is not well understood and which often fail in un-

predicted ways.

The correct behavior of these systems depends on the correct behav-

ior of the hardware and software used to implement them. To verify that

such systems are indeed correct requires proving that the systems satisfy their
1President’s Information Technology Advisory Committee

3

specifications. Due to the complexity of such systems, hand proofs are infea-

sible and mechanical verification, i.e., computer-aided verification, is the only

reliable way of ensuring correctness.

In this dissertation, we examine techniques for reducing the effort re-

quired to construct mechanical proofs of correctness. To this end, we extend

the theory of stuttering simulation and bisimulation and build libraries of the-

orems and techniques for reasoning about stuttering simulation and bisimula-

tion in the ACL22 theorem proving system. We then present a novel approach

to combining theorem proving and model checking (the two leading mechanical

verification paradigms). The dissertation ends with two case studies where we

apply our theory and techniques to verify a simple communications protocol

and a simple pipelined machine.

1.1 Reactive Systems

In this section we examine reactive systems and their verification in more

detail. It is instructive to compare reactive systems with the traditional trans-

formational systems. Transformational systems accept an input, perform a

transformation, and return a result. Such systems are supposed to termi-

nate. Recursive function theory is based on this view of computation. The

semantics of transformational systems is given as a relation between initial and

final states and underly Hoare logic [Hoa69], the weakest precondition calcu-

lus [Dij76], and related reasoning formalisms. In contrast, reactive systems are

non-terminating and their semantics is based on their infinite computations.

There are various approaches to reasoning about reactive systems. One
2A Computational Logic for Applicative Common Lisp

4

is to define a notion of equivalence between systems based on their compu-

tations. To prove the correctness of a reactive system we show that it is

equivalent to another system that serves as a specification. For example, in

chapter 12 we show that a pipelined machine is equivalent to the machine de-

fined by the instruction set architecture. This approach is essentially the one

used in process algebra [Mil90]. Another approach is to use temporal logic to

specify properties of computations: a reactive system is correct if its compu-

tations satisfy the set of specification formulas. For example, in chapter 11 we

show that, under some fairness conditions, messages sent by a communications

protocol are eventually received. Temporal logic was proposed as a formalism

for specifying the correctness of reactive systems by Pnueli [Pnu77].

In this dissertation, a computing system is a mathematical object. For

example, we think of a microprocessor as a function that given some set of

inputs and the current state returns the outputs and the next state. Of course,

there are also physical devices that are called microprocessors and someone is

responsible for ensuring that the physical devices, when operated in reasonable

environments, correspond to the mathematical objects. We ignore such issues

as they lie within the purview of the engineers and physicists.

1.2 Mechanical Verification

Since both a reactive system and its specification are mathematical objects,

correctness is established by proving that the system satisfies its specification.

The proof has to refer to the reactive system under consideration, but such

systems tend to be very complicated and can easily require over one hundred

pages to define. It is improbable that a hand-constructed “proof” is error-free

5

and it is very difficult and tedious for a human to check. The only reliable

way of constructing and checking these proofs is to use a computer program

to check the proof and to fill in some of the details.

Unfortunately, commercial systems are very rarely fully verified. To

ensure that many of the obvious errors are removed, extensive testing is per-

formed. There are various reasons for this. The most important are that full

verification is difficult and requires well-trained scientists. Even so, there have

been advances that have made it possible to define very complicated systems.

For example, advances in programming languages, including high-level lan-

guages, polymorphic type systems, functional programming, libraries of data

structures, and domain-specific languages, have all helped. In addition, de-

cision procedures such as model checking, static analysis, and type checking

have been very useful for automatically detecting errors. While such methods

can be used to detect simple errors, full verification has remained elusive.

Consider the example of microprocessor verification. At Intel, the de-

sign of a Pentium-class microprocessor requires about six hundred engineers

working for several years. Informal estimates indicate that about 40% of the

overall budget is used to ensure the correctness of the microprocessor. This

figure has been rising and is expected to keep rising in the future. Even with

such resources allocated to ensuring correctness, bugs are common. Some of

the bugs are extremely costly, e.g., the Pentium FDIV (Floating point DIVi-

sion) bug [Coe95, Ede97] led to a $475 million write-off by Intel. The situation

is similar in the software arena. At the 1998 SIGMOD (Special Interest Group

on Management of Data) conference, Bill Gates said that Microsoft was getting

to the point where they have more software testers than developers [Gat98].

Clearly, the verification of computing systems is one of the major challenges

6

of computing science.

The goal of building a calculus of thought has been a dream from at least

the time of Leibniz who wanted to construct a method by which all truths could

be reduced to calculation, including the truths of the moral and metaphysical

disciplines!3 Leibniz thought that such a program could be carried out in five

years. Needless to say, Leibniz was overly optimistic.

It took centuries before Leibniz’s dream, restricted to mathematics, was

seriously pursued. One of the key figures was Hilbert who, in response to the

various paradoxes discovered at the end of the nineteenth century, wanted to

place mathematics on a solid foundation. “Hilbert’s program” consisted of

showing that all of mathematics can be formalized, that there is an effective

procedure for deciding if a formula is provable, and the resulting theory can

be shown consistent using only finitary methods.

The work of Gödel and Turing showed that Hilbert’s program cannot

be realized: finitistic consistency proofs are not possible within a given system

and there is no algorithm that can decide if a formula is provable (in a rich

enough logic). But, there are programs that can be used to check proofs. For

example, the ACL2 system, due to Kaufmann and Moore [KM, KMM00b], can

be used to check if a proof outline can be turned into a formal proof. Often

the proof outline is just the statement of the theorem, in which case ACL2 is

responsible for filling in all the details. More often, the user is responsible for

giving a fairly detailed proof outline.
3Dijkstra and Thomas describe Leibniz’s dream in more detail [Dij01, Tho01].

7

1.3 Contributions and Structure of this Dis-

sertation

In this section, we outline our contributions and the structure of this disserta-

tion. Some of the results reported in this dissertation have previously appeared

in various conference proceedings and books [MNS99, Man00a, KMM00b,

KMM00a, Man00c, Man00d].

The dissertation consists of the following four parts.

• Introduction and Preliminaries

• Notions of Correctness

• Combining Theorem Proving and Model Checking

• Case Studies and Conclusions

Chapters with technical content have a section that contains bibliographic

notes.

In the next chapter of this part we review some preliminaries including

notational conventions, theorem proving, model checking, and the notions of

simulation and bisimulation. This chapter can be skimmed and consulted as

needed. The list of symbols on page xiv and the index at the end of the

dissertation can be used to find definitions of symbols and explanations of

notational conventions.

Part II deals with notions of correctness. Recall that one method of

verifying reactive systems is to show that the system is related to another

system that serves as the specification. This involves comparing systems at

different levels of abstraction, where a single step of the abstract system may

8

correspond to several steps of the concrete system. For this reason, the re-

lations between systems that we consider are insensitive to finite stuttering.

The notions of correctness we consider are stuttering simulation and stuttering

bisimulation. Stuttering bisimulation was introduced by Browne, Clarke, and

Grumberg [BCG88]. Stuttering simulation is a weaker variant. We develop

the theory of these notions in ways that prove useful for mechanical verifica-

tion. We show that these notions satisfy various algebraic properties, e.g., the

relational composition of two stuttering simulations is a stuttering simulation.

We also develop a theory of refinement based on these notions and present

compositional proof rules for showing stuttering simulations and bisimulation

in stages. Proving stuttering simulations and bisimulations directly requires

reasoning about infinite computations. We would rather reason about single

steps. To this end, we present several sound and complete proof rules, similar

to the proof rule of Namjoshi [Nam97]. The proof rules allow us to prove stut-

tering simulations and bisimulations, but the reasoning is about single steps

of the systems in question. Some of our proof rules for stuttering bisimulation

are simpler than the one by Namjoshi and some are more general. They shed

further light on the structure of stuttering bisimulations, which has allowed

us to construct ACL2 libraries that we use to further automate mechanical

verification.

Part III describes a novel approach to combining theorem proving and

model checking for the verification of reactive systems. The idea is to describe

a large system in ACL2 and to reduce the system to a finite-state system by

proving a stuttering bisimulation. This is accomplished by defining a relation

using what we call representative functions and proving that the relation is

a stuttering bisimulation. Such a proof implies that the system is equivalent

9

to an induced quotient structure. The idea is to check the quotient structure,

but constructing the quotient structure can be difficult because determining

if there is a transition between states in the quotient structure depends on

whether there is a transition between some pair of related states in the origi-

nal system (the number of such pairs may be infinite). Moreover, the quotient

structure may be infinite-state, but the set of its reachable states may be fi-

nite. To address these two concerns, we introduce on-the-fly algorithms that

automatically extract the quotient structure. We present two extraction al-

gorithms. One is based on the simple state representative functions but is

incomplete since it is possible that a stuttering bisimulation induces a finite

quotient structure, but there is no state representative function that can be

used to extract it. Set representative functions are more complicated, but

we prove completeness: for any stuttering bisimulation that induces a finite

quotient, there is a set representative function that can be used to extract it.

Once extracted, the quotient structure can be model checked. To this end,

we use a model checker for the Mu-Calculus that we have written and verified

using ACL2.

In part IV we present two case studies and conclusions. The first case

study is the verification of the alternating bit protocol, a simple communica-

tions protocol. We use our approach to combining theorem proving and model

checking to prove a stuttering bisimulation on the alternating bit protocol,

which is then used to extract a quotient, which is infinite-state, but has a

finite set of reachable states. The quotient is then model checked with our

model checker. The second case study is the verification of a simple pipelined

machine due to Sawada [Saw00]. We discuss notions of correctness and their

importance in some detail and compare our notion of correctness, which is

10

based on stuttering bisimulation, to the variant of the Burch and Dill notion

of correctness [BD94] used by Sawada. We show, with mechanical proof, that

the Burch and Dill notion can be satisfied by incorrect machines, e.g., ma-

chines that deadlock. In contrast, we argue that no incorrect machine satisfies

our notion of correctness. In addition, we give an overview of the libraries

of ACL2 theorems used and explain how to automate much of the verifica-

tion, e.g., the verification of the pipelined machine is automatic. We examine

various variants of the pipelined machine including machines with exceptions,

interrupts (which lead to non-determinism), and netlist (gate-level) descrip-

tions and show that our notion of correctness applies to these extensions.

Many of the variant machines are verified using the compositional proof rule

for stuttering bisimulations from part II.

11

Chapter 2

Preliminaries

In this chapter we discuss notational issues and we present some background

information including various temporal calculi/logics and the notions of sim-

ulation and bisimulation. Most of the notation is standard and some of it is

ambiguous, but the intended meaning should be clear from the context.

2.1 Notation and Mathematical Preliminaries

N and ω both denote the natural numbers, i.e., {0, 1, . . . }. The ordered pair

whose first component is i and whose second component is j is denoted 〈i, j〉.

[i..j] denotes the closed interval {k ∈ N : i ≤ k ≤ j}; parentheses are used

to denote open and half-open intervals, e.g., [i..j) denotes the set {k ∈ N :

i ≤ k < j}. Dom.f denotes the domain of function f . The disjoint union

operator is denoted by]. Cardinality of a set S is denoted by #S. P(S)

denotes the powerset of S. Function application is sometimes denoted by an

infix dot “.” and is left associative. This allows us to use the curried version of

a function when it suits us, e.g., we may write f.x.y instead of f(x, y). We use

12

the lambda notation λx(e.x) to denote a function of one argument, x, whose

value is e.x, for expression e.

〈Qx : r : b〉 denotes a quantified expression, where Q is the quantifier,

x the bound variable, r the range of x (true if omitted), and b the body. We

sometimes write 〈Qx ∈ X : r : b〉 as an abbreviation for 〈Qx : x ∈ X ∧ r : b〉,

where r is true if omitted, as before.

For any binary relation R: we abbreviate 〈s, w〉 ∈ R by sRw, we write

R(S) for the image of S under R (i.e., R(S) = {y : 〈∃x : x ∈ S : xRy〉}), and

R|A denotes R left-restricted to the set A (i.e., R|A = {〈a, b〉 : (aRb) ∧ (a ∈

A)}). The composition of binary relations R and T is denoted R; T or T ◦R,

i.e., R; T = T ◦ R = {〈r, t〉 : 〈∃x :: rRx ∧ xTt〉}. The inverse of binary

relation R is denoted R−1 and is defined to be {〈a, b〉 : bRa}.

A binary relation, B ⊆ X × X, is reflexive if 〈∀x ∈ X :: xBx〉. B

is symmetric if 〈∀x, y ∈ X :: xBy ⇒ yBx〉. B is antisymmetric if

〈∀x, y ∈ X :: xBy ∧ yBx ⇒ x = y〉. B is transitive if 〈∀x, y, z ∈ X ::

xBy ∧ yBz ⇒ xBz〉. A binary relation is a preorder if it is reflexive

and transitive. A preorder that is also symmetric is an equivalence relation.

A preorder that is antisymmetric is a partial order . If ≤1 is a partial order on

X, ≤2 is a partial order on Y , and f : X → Y , we say that f is monotonic if

a ≤1 b ⇒ f.a ≤2 f.b for all a, b ∈ X.

A finite sequence is a function from [0..n) for some natural number n.

An infinite sequence is a function fromN. When we write x ∈ σ, for a sequence

σ, we mean that x is in the range of σ.

A well-founded structure is a pair 〈W,l〉 where W is a set and l is

a binary relation on W such that there are no infinitely decreasing sequences

on W , with respect to l. We use < to compare natural numbers and ≺ to

13

compare ordinal numbers.

From highest to lowest binding power, we have: parentheses, func-

tion application, binary relations (e.g., sBw), equality (=) and membership

(∈), conjunction (∧) and disjunction (∨), implication (⇒), and finally, binary

equivalence (≡). Spacing is used to reinforce binding: more space indicates

lower binding.

2.2 Transition Systems

Definition 1 (Transition System)

A transition system (TS) is a structure 〈S, 99K, L〉, where S is a set of states,

99K⊆ S × S is the transition relation, L is the labeling function: its domain

is S and it tells us what is observable at a state. We also require that 99K is

left-total : for any s ∈ S, there is some u ∈ S such that s 99K u. Notice that a

transition system is a labeled graph where the nodes are states and are labeled

by L.

A path σ is a sequence of states such that for adjacent states s and u,

s 99K u. A path, σ, is a fullpath if it is infinite. fp.σ.s denotes that σ is a

fullpath starting at state s and σi denotes the suffix fullpath 〈σ.i, σ(i+1), . . .〉.

We use the symbol “;” for concatenation of paths where the left path is finite,

e.g., a; ab = aab.

Here is how to think of a program as a transition system. The set of

states is the state space of the program. Two states are related by 99K if it

is possible in one program step to transit from one to the next. The labeling

function is the identity function.

14

2.3 Theorem Proving

By theorem proving we mean mechanical theorem proving. This involves defin-

ing a formal logic that is used to state and prove theorems. In addition, the

proofs are checked by a computer program.

There are various theorem proving systems in use and their underly-

ing logics vary greatly [KMM00b, KM, COR+95, GM93, CAB+86, DFH+93,

CKM+91, Rud92]. For example, there are theorem provers that are based

on set theory, higher-order logic, constructive type theory, first order logic,

and so on. In addition, there is considerable variability in the amount of au-

tomation possible. Some of the theorem proving systems can be thought of as

proof checkers, while some can perform a considerable amount of unassisted

reasoning. We focus on the ACL2 system which is described in more detail in

chapter 8. The ACL2 system consists of a programming language, a first-order

logic, and a theorem prover.

One of the advantages of ACL2 is that it is based on a high-level lan-

guage, namely Common Lisp. The ACL2 programming language is purely

functional and, to a first approximation, is applicative Common Lisp. ACL2

also includes macros, which make it possible to extend the syntax and, in

effect, define your own notations. This makes it very convenient to define

computing systems and is an advantage ACL2 has over most of the languages

used in model checking systems, which tend to impose draconian restrictions,

e.g., that the computing systems be finite-state. Dijkstra gives a really clear

example of how the use of a high-level programming language can make it easy

to write programs that were incredibly difficult to write previously ([Dij99],

pages 7–8). A computing system, as modeled in ACL2, is just a function com-

15

posed of other functions. We can represent a transition system M in ACL2

with three functions, s, r, l, where:

• s is a predicate of one argument that holds when the argument is a state

in M.

• r is a predicate of two arguments that holds when the first argument is

a state that can transit to the second argument.

• l is a function of one argument that returns the label of its argument, if

it is a state.

Notice that we can succinctly represent infinite-state transition systems, e.g.,

the transition system whose states are the integers and where the only tran-

sitions are between i and i + 1 for all integers i, is an infinite-state transition

system that can be represented in ACL2, with a few lines of code.

The ACL2 logic includes axioms that constrain the meaning of the built-

in functions symbols. For example, cons and car satisfy the axiom (car

(cons x y)) = x. Since the logic is based on a programming language, it is

executable. ACL2 runs on top of Common Lisp and can be compiled, usually

into C [KR89] or assembly. From the logical viewpoint, function definitions

introduce new axioms. Since the unconstrained introduction of axioms can

render the logic unsound, ACL2 has a definitional principle which restricts the

functions one can define. This principle guarantees that allowable function

definitions do not introduce axioms that render the logic unsound. The logic

also includes rules of inference, including an induction principle that is used

to reason about recursively defined functions.

The theorem prover is used to check proofs mechanically. More pre-

cisely, ACL2 is given a proof outline and checks that the proof outline can

16

be turned into a formal proof, without actually constructing a formal proof.

ACL2 uses previously proven theorems when attempting to fill in the gaps

of a proof outline and it is possible to have ACL2 automatically prove very

complicated theorems by using well-designed libraries of theorems. For exam-

ple, in chapter 12, we show that with a general-purpose library, ACL2 can

automatically verify the correctness of a pipelined machine.

2.4 Temporal Calculi/Logics

In this section, we present variants of some of the standard temporal cal-

culi and logics. This includes the Mu-Calculus, CTL, LTL, and CTL∗. The

Mu-Calculus is the most expressive, followed by CTL∗. LTL and CTL are

incomparable. LTL is a linear-time logic, while the others are branching-time

calculi and logics. In the linear-time framework, the semantics of a transition

system is the set of labeled fullpaths from some set of initial states. In con-

trast, in the branching-time case, the semantics of a transition system is the

set of labeled computation trees from the initial states. Since distinguishable

trees can give rise to the same fullpaths, branching-time logics can be more

expressive than linear-time logics [Eme90].

2.4.1 Mu-Calculus

The propositional Mu-Calculus [Koz83, Par69, EC80, EL86, EJS93, Eme97] is

based on fixpoint operators. We start by recalling the Tarski-Knaster theorem.

Given f : Z → Z, we define fα : Z → Z, the α-fold composition

(iteration) of f as follows, where α ranges over On, the class of ordinals.

17

• f 0(A) = A

• fα+1(A) = f(fα(A))

• fα(A) = {x : 〈∃β :: 〈∀γ : β ≺ γ ≺ α : x ∈ fγ(A)〉〉}, when α is a limit

ordinal.

If f.x = x we say that x is a fixpoint of f . If f is a monotonic function

on the powerset of a set, then by the following version of the Tarski-Knaster

theorem [Tar55], it has a least and greatest fixpoint, denoted by µ.f and ν.f ,

respectively.

Theorem 1 Let f : P(S) → P(S) such that a ⊆ b ⇒ f.a ⊆ f.b for all

a, b ∈ S. Then

1. µ.f = 〈∩b : b ⊆ S ∧ f.b ⊆ b : b〉 = 〈∪α ∈ On :: fα(∅)〉, and

2. ν.f = 〈∪b : b ⊆ S ∧ b ⊆ f.b : b〉 = 〈∩α ∈ On :: fα(S)〉,

We say that x is a pre-fixpoint of f iff x ⊆ f.x; x is a post-fixpoint

iff f.x ⊆ x. The Tarski-Knaster theorem tells us that µ.f is below all post-

fixpoints and that ν.f is above all pre-fixpoints.

We can replace On by the set of ordinals of cardinality at most #S.

When the state space is finite, this gives us an algorithm for computing least

and greatest fixpoints. Notice that by the monotonicity of f , α 4 β ⇒

fα(∅) ⊆ fβ(∅) ∧ fβ(S) ⊆ fα(S). Therefore, we can compute µ.f by

applying f to ∅ until we reach a fixpoint; similarly, we can compute ν.f by

applying f to S until we reach a fixpoint.

We now describe the Mu-Calculus. We are really describing a class of

calculi parameterized by a set of variables, VAR, and a language for denoting

18

predicates on labels. The predicate denoted by expression e is written LeM.
The formulas of the Mu-Calculus are defined recursively as follows.

1. e, where e is an expression;

2. Y , where Y is a variable (i.e., Y ∈ VAR);

3. ¬f and f ∨ g, where f, g are formulas;

4. EXf , where f is a formula;

5. µY f and νY f , where Y is a variable and f is a formula that is monotone

in Y , i.e., occurrences of Y in f are under an even number of negations.

Notice that µ and ν are now overloaded, but one can easily distinguish

syntactically whether we refer to the fixpoint operator or the Mu-Calculus

operator symbol. The semantics of Mu-Calculus formula f is given with

respect to a transition system M = 〈S, 99K, L〉 and a valuation V, where

V : VAR → P(S), i.e., V assigns a subset of S to each variable in VAR. It

is denoted JfKMV and is the set of states in M satisfying f under valuation V.

The semantics of the Mu-Calculus is defined as follows.

1. JeKMV = {s ∈ S : L.s ∈ LeM}
2. JY KMV = V .Y

3. J¬fKMV = S \ JfKMVJf ∨ gKMV = JfKMV ∪ JgKMV
4. JEXfKMV = {s ∈ S : 〈∃u ∈ S :: s 99K u ∧ u ∈ JfKMV 〉}

19

5. JµY fKMV = µ.g where g.y = JfKMW and W = V except W .Y = yJνY fKMV = ν.g where g.y = JfKMW and W = V except W .Y = y

Notice that by the syntactic monotonicity restrictions we place on µ’s

and ν’s, the semantics of µ’s and ν’s is well defined and correspond to least

and greatest fixpoints, respectively. Note also that the semantics of a sentence

(a formula with no free variables) does not depend on the initial valuation. For

f a sentence, by M, s |= f we mean s ∈ JfKM∅ .

2.4.2 Temporal Logic

LTL formulas are formed from expressions (denoting predicates on labels, as

above), boolean connectives and the temporal operators X (next time) and U

(until). LTL formulas define sets of infinite sequences. CTL∗ adds the universal

and existential branching operators A and E to the LTL syntax. CTL is formed

similarly with the restriction that each LTL temporal operator appear paired

with its own path quantifier. CTL∗ and CTL formulas define sets of infinite

depth trees.

Most presentations of CTL∗ define the syntax using mutual recursion,

e.g., this is done in the Handbook of Theoretical Computer Science [Eme90].

We present an alternate formulation which does not require mutual recursion.

We believe this approach provides a more concise and clear presentation.

The syntax of CTL∗ formulas follows.

1. e, where e is an expression;

2. f ∧ g and ¬f , where f, g are formulas;

3. Ef, Xf, fUg, where f, g are formulas.

20

The semantics of CTL∗ is given with respect to M, a transition system

and σ, a fullpath of M. For temporal logic formula f , M, σ |= f denotes that

f holds on fullpath σ of M.

1. M, σ |= e iff L(σ.0) ∈ LeM;
2. M, σ |= f ∧ g iff M, σ |= f and M, σ |= g,

M, σ |= ¬f iff it is not the case that M, σ |= f ;

3. M, σ |= Ef iff there exists a fullpath δ = 〈σ.0, ...〉 in M such that

M, δ |= f ,

M, σ |= Xf iff M, σ1 |= f ,

M, σ |= fUg iff there exists i ∈ N such that M, σi |= g

and for all j < i, M, σj |= f .

We introduce the following useful operators. Af abbreviates ¬E¬f ;

M, σ |= Af if f holds on all fullpaths from σ.0. Fg abbreviates trueUg;

M, σ |= Fg if eventually g holds along σ. Gf abbreviates ¬F¬f ; M, σ |= Gf

if f always holds along σ.

Sometimes a formula depends only on the first state of a fullpath, e.g.,

this is the case with the formulas Af and Ef . In such cases, we often write

M, s |= f instead of M, σ |= f , where s = σ.0. Such formulas are called state

formulas.

We now define various sublogics of CTL∗. Since the languages of the

sublogics are subsets of the language of CTL∗, the semantics of the logics has

already been given.

The language of LTL is the set of CTL∗ formulas that start with an A

path quantifier and contain no other path quantifiers.

21

The syntax of CTL can be defined by replacing item 3 in the syntax of

CTL∗ by the following.

3. if f, g are formulas then so are EXf, E(fUg), E¬(fUg).

ECTL∗ is defined to be CTL∗, but with negations applied only to pred-

icates. ECTL is be defined be CTL, but with negations applied only to predi-

cates. ACTL∗ and ACTL are similar to ECTL∗ and ECTL, but instead of the

operator E, only the operator A is allowed. CTL∗ \ X, CTL \ X, ECTL∗ \ X,

ECTL \X, ACTL∗ \X, and ACTL \X are obtained from CTL∗, CTL, ECTL∗,

ECTL, ACTL∗, and ACTL, respectively, by dropping the X operator.

2.5 Model Checking

Model checking algorithms are used to decide if a finite-state system satisfies

a temporal formula [CE81, Eme81, QS82]. Model checking is covered in detail

in chapter 9; we briefly mention some of the key points here. Many temporal

logics, e.g., CTL, LTL, and CTL∗ can be translated into the Mu-Calculus.

In addition, the algorithm that decides the Mu-Calculus is used for symbolic

(BDD-based) model checking [CBM89, Pix90, McM93, BCM+92, TSL+90],

a technique that has greatly extended the applicability of model checking.

Model checking is especially useful for verifying reactive systems, systems with

nonterminating or concurrent behavior [Pnu77]. Such systems are especially

difficult to design and verify. Model checking has been successfully applied to

automatically verify many reactive systems and is now being used by hardware

companies as part of their verification process.

22

2.6 Simulation and Bisimulation

R is a simulation relation [Mil71] on TS M = 〈S, 99K, L〉 if R ⊆ S × S and

for s, w such that sRw we have the following.

1. L.s = L.w

2. 〈∀u : s 99K u : 〈∃v :: w 99K v ∧ uRv〉〉

B is a bisimulation relation [Par81, Mil90] on TS M = 〈S, 99K, L〉 if

B ⊆ S × S and for s, w such that sBw we have the following.

1. L.s = L.w

2. 〈∀u : s 99K u : 〈∃v :: w 99K v ∧ uBv〉〉

3. 〈∀v : w 99K v : 〈∃u :: s 99K u ∧ uBv〉〉

We say that s is similar to w if there exists a simulation relation R

such that sRw. Similarly we say that s is bisimilar to w if there exists a

bisimulation relation B such that sBw. It is not the case that if s is similar

to w and w is similar to s, then s and w are bisimilar [Pnu85]. If s and w

are bisimilar, then they satisfy the same Mu-Calculus formulas. Hence, they

satisfy the same CTL∗, CTL, and LTL formulas. If s is similar to w then

any ACTL∗ formula (and hence any LTL formula as well) that holds in w also

holds in s. There exists a greatest bisimulation and a greatest simulation. The

greatest bisimulation is an equivalence relation and the greatest simulation is

a preorder.

23

2.7 Bibliographic Notes

Temporal logic was proposed as a formalism for specifying the correctness of

computing systems in a landmark paper by Pnueli [Pnu77]. There are a few

differences between our presentation of temporal logic and the standard pre-

sentation [Eme90]. First, in our presentation there is only one type of formula,

but in the standard presentation of temporal logic there are two types of for-

mulas. There are state formulas and path formulas and they are defined using

mutual recursion. This makes the definitions more difficult to understand and

the proofs more tedious than is the case with our approach. Second, in the

standard presentation, instead of building formulas from expressions denoting

predicates on the labels, formulas are built out of atomic propositional con-

stants which denote predicates on the labels. The reason we use expressions

is that we define a Mu-Calculus model checker using ACL2 in a later chapter

and we want the ability to write temporal logic formulas using the full power

of ACL2.

The most efficient algorithm for deciding bisimulation equivalence has

time complexity O(m log n), where n is the number of states and m the num-

ber of transitions, and is due to Paige and Tarjan [PT87]. The best known

algorithm for checking simulations has time complexity O(m · n) and is due

to Henzinger, Henzinger, and Kopke [BP95, HHK95]. In contrast, Stock-

meyer and Meyer show that trace equivalence and trace containment are both

PSPACE-complete problems [SM73]. One way of understanding this differ-

ence is that both simulation and bisimulation are local properties: they can

be checked by comparing related states and their successors. In contrast trace

containment and trace equivalence are global properties: one has to examine

24

paths through the transition system. We discuss this issue in more detail in

part II, especially in section 5.6, on page 66. A very readable discussion of

the computational complexity of bisimulation is given by Moller and Smolka

[MS95]. Pnueli gives a balanced comparison between the branching-time and

linear-time approaches in [Pnu85].

Bisimulation has proved useful even in the foundations of mathematics.

Peter Aczel uses bisimulation to develop a theory of non-well-founded sets

[Acz88]. This theory differs from ZFC in that the axiom of foundation is

replaced by the “Anti-Foundation Axiom”, which allows sets that are not

well-founded. Non-well-founded sets can be thought of as graphs. Two graphs

are the same if they are bisimilar. Non-well-founded set theory even appears

in an introductory text on set theory by Devlin [Dev92].

2.8 Summary

In this chapter we presented our notational conventions and gave an overview

of transitions systems, theorem proving, temporal calculi and logics, model

checking, and simulation and bisimulation.

25

Part II

Notions of Correctness

Chapter 3

Introduction

In this part we examine two notions of correctness for transition systems. We

say that an implementation is correct with respect to a notion of correctness

and a specification, if the implementation is related to the specification as

prescribed by the notion of correctness. A step of the specification might

translate to many steps of the implementation. Since we do not want to limit

the kinds of implementations that are considered, stuttering steps should be

ignored. In fact, both notions of correctness that we consider are insensitive

to stuttering.

Our notions of correctness are based on simulation [Mil71] and bisimu-

lation [Par81, Mil90] and are therefore branching-time notions of correctness.

This is in contrast to linear-time notions such as trace containment, trace

equivalence, and trace congruence [Pnu85]. There are two reasons why we

chose to work in the branching-time framework. First, as was mentioned

on page 24, there are polynomial time algorithms for deciding simulation and

bisimulation, whereas the corresponding problems for linear time are PSPACE-

complete. This is important later when we show how to reduce large (perhaps

29

infinite-state) systems to finite-state systems that we then compare against

specifications using bisimulation algorithms; thus, efficiency is important. Sec-

ond, when we prove refinement theorems about infinite-state systems, we use

inductive arguments which depend on the structure of the systems in question.

The branching-time notions are structural and local; this leads to simple proof

rules. In the linear time case, proof rules are more complicated, e.g., it is

sometimes necessary to introduce so-called “prophecy” variables. These issues

are discussed more fully in section 5.6.

The first notion we consider is stuttering simulation. With this notion

of correctness, an implementation is correct if every one of its computations is a

computation of the specification, up to stuttering. Thus, the implementation

can resolve some of the non-determinism in the specification. The second

notion is stuttering bisimulation [BCG88]. With this notion of correctness,

an implementation is correct if it has exactly the same computations as the

specification, up to stuttering.

We develop the theory of stuttering simulation and bisimulation in or-

der to simplify mechanical verification. We show that these notions satisfy

various algebraic properties, e.g., the relational composition of two stuttering

simulations is a stuttering simulation. We also examine proof rules, similar

to those of Namjoshi [Nam97]. The proof rules are sound and complete and

have the technical advantage that they allow us to prove stuttering simulations

and bisimulations by reasoning about single steps of the systems in question.

(Proving stuttering simulations and bisimulations directly requires reasoning

about infinite computations.) Our proof rule for stuttering bisimulation is

more general and simpler than the one by Namjoshi and sheds further light on

the structure of stuttering bisimulations. This has helped us construct ACL2

30

libraries to automate mechanically checked proofs. We also develop a theory

of refinement based on these notions and present compositional proof rules for

showing stuttering simulation and bisimulation in stages.

In the next section of this chapter, we define what it means for two full-

paths to “match”. This notion of matching is fundamental to the development

of the theory in the next two chapters. The next two chapters are devoted to

stuttering simulation and stuttering bisimulation. At the end of the stuttering

bisimulation chapter, we discuss various issues. For example, we compare our

notion of refinement with that of Abadi and Lamport [AL91] and we discuss

reasoning about performance.

3.1 Matching Fullpaths

Stuttering simulation and bisimulation depend on the notion of matching we

now define. We start with an informal account. We are given a relation B on

a set S. We say that an infinite sequence σ (of elements from S) matches an

infinite sequence δ (of elements from S) if the sequences can be partitioned into

non-empty, finite segments such that elements in related segments are related

by B. For example, if the first segment of σ has three elements and the first

segment of δ has seven elements, then each of the three elements is related

by B to each of the seven elements. We use matching, where the infinite

sequences are fullpaths of a transition system, to define stuttering simulation

and bisimulation.

31

Definition 2 (match)

Let i range over N. Let INC be the set of strictly increasing sequences of

natural numbers starting at 0; formally, INC = {π : π :N → N ∧ π.0 =

0 ∧ 〈∀i ∈ N :: π.i < π(i+1)〉}. The ith segment of an infinite sequence σ with

respect to π ∈ INC, πσi, is given by the sequence 〈σ(π.i), . . . , σ(π(i+1)−1)〉.

For B ⊆ S × S, π, ξ ∈ INC , i, j ∈ N, and infinite sequences σ and δ, we

abbreviate 〈∀s, w : s ∈ πσi ∧ w ∈ ξδj : sBw〉 by (πσi)B(ξδj). In addition:

corr(B, σ, π, δ, ξ) ≡ 〈∀i ∈ N :: (πσi)B(ξδi)〉

and

match(B, σ, δ) ≡ 〈∃π, ξ ∈ INC ::corr(B, σ, π, δ, ξ)〉

Lemma 1 Given set S, B ⊆ S × S, and infinite sequences σ and δ,

〈∃π, ξ ∈ INC :: corr(B, σ, π, δ, ξ)〉

≡

〈∃π′, ξ′ ∈ INC :: corr(B, σ, π′, δ, ξ′) ∧ 〈∀i ∈ N :: #(πσi) = 1 ∨ #(ξδi) = 1〉〉

Proof The ⇐ direction is clear. For the other case, π′, ξ′ are just refinements

of π, ξ. Suppose #(πσi) = n > 1 and #(ξδi) = m > 1. If n ≥ m we subdivide
πσi into m segments where the first m − 1 segments have 1 element and the

last segment has n−m + 1 elements; ξδi is subdivided into m segments, each

consisting of 1 element. As (πσi)B(ξδi), each of the refined segments matches

its corresponding segment and all of the δ segments are of length 1. If m > n

we proceed similarly. π′, ξ′ have the desired properties. �

The above lemma allows us to reason about segments using case analy-

sis, where the three cases are: both segments are of length 1, the right segment

is of length 1 and the left of length greater than 1, and the left segment is of

32

length 1 and the right of length greater than 1. As will be seen shortly, the def-

initions of well-founded simulation and well-founded bisimulation are to some

extent based on these three cases. We henceforth assume that all segments

are of this form, as this assumption simplifies some of the arguments.

33

Chapter 4

Stuttering Simulation

4.1 Stuttering Simulation

A relation on B ⊆ S × S where M = 〈S, 99K, L〉 is a stuttering simulation, if

for any s, w such that sBw, s and w are identically labeled and any fullpath

starting at s can be matched by some fullpath starting at w.

Definition 3 (Stuttering Simulation (STS))

B ⊆ S × S is a stuttering simulation on TS M = 〈S, 99K, L〉 iff for all s, w

such that sBw:

(Sts1) L.s = L.w

(Sts2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B, σ, δ)〉〉

We show that there is a greatest STS. This is accomplished by showing that

an arbitrary union of STS’s is an STS, hence, there is a greatest STS. We

then show that the identity relation is an STS and if A and B are STS’s so

is A; B—the composition of A and B. Together, the above results imply that

34

the reflexive, transitive closure of an STS is an STS and that the greatest STS

is a preorder.

Lemma 2 (B ⊆ C) ⇒ [match(B, σ, δ) ⇒ match(C, σ, δ)]

Proof

match(C, σ, δ)

≡ { Definition of match, corr }

〈∃π, ξ ∈ INC :: 〈∀i ∈ N :: (πσi)C(ξδi)〉〉

⇐ { B ⊆ C, monotonicity }

〈∃π, ξ ∈ INC :: 〈∀i ∈ N :: (πσi)B(ξδi)〉〉

≡ { Definition of match, corr }

match(B, σ, δ) �

Lemma 3 Let C be a set of STS’s on TS M, then G = 〈∪B : B ∈ C : B〉 is

an STS on M.

Proof If sGw, sBw for some B ∈ C. L.s = L.w since sBw and Sts1. Our

remaining proof obligation follows.

〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(G, σ, δ)〉〉

⇐ { B ⊆ G, lemma 2, monotonicity }

〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B, σ, δ)〉〉 �

Corollary 1 For any TS M, there is a greatest STS on M.

35

Proof Let G = 〈∪B : B ∈ C : B〉 where C = {B : B is an STS on M}. G is

an STS by lemma 3, hence, the greatest. �

Lemma 4 If R and S are STS’s, so is T = R; S.

Proof Let aTb. By definition of T , there is an x such that aRx and xSb. We

show Sts1 and Sts2:

1. L.a = L.b by transitivity of equality.

2. We must show 〈∀σ : fp.σ.a : 〈∃δ : fp.δ.b : match(T, σ, δ)〉〉. Since R is an

STS and aRx, there exist γ, π, ξ such that fp.γ.x and corr(R, σ, π, γ, ξ),

i.e., match(R, σ, γ). Similarly, since S is an STS and xSb, there exist

δ, ζ, ρ such that fp.δ.b and corr(S, γ, ζ, δ, ρ), i.e., match(S, γ, δ). We show

match(T, σ, δ), thereby proving Sts2. To do this, we must relate states

in σ to states in δ.

Here is an outline of the proof. In step (a), we show that if a state in σ

is related by T to a state in δ, then all the states in the corresponding

segments are also related. We then work at the segment level and show

how to merge segments in σ and δ to get new segments that match under

T . We start in step (b) by defining a function C from segments in σ to

sets of segments in δ that can be thought of as performing the merging

in δ. In step (c), we use C to define the actual partitions on σ and δ,

which are then shown to match under T .

(a) L : N→ N (Lower) and U : N→ N (Upper) are defined as follows.

• L.i = j such that ξ.i ∈ [ζ.j, ζ(j + 1))

• U.i = j such that ξ(i + 1)− 1 ∈ [ζ.j, ζ(j + 1))

36

Note that ξ.i is the index of the first element in ξγi and ξ(i+1)−1

is the index of the last element in ξγi. These elements are each in

some segment of γ with respect to ζ. We show that any element in
πσi is related to any element in ρδk for k ∈ [L.i, U.i], i.e., 〈∀i, k :

k ∈ [L.i, U.i] : (πσi)T (ρδk)〉. To see this, let k ∈ [L.i, U.i], t ∈ ρδk.

By corr(S, γ, ζ, δ, ρ), for all w ∈ ζγk, we have wSt. Since ξγi

intersects ζγk—by definition of U and L—there is u ∈ ζγk such

that u ∈ ξγi and uSt. Since corr(R, σ, π, γ, ξ), for all s ∈ πσi, sRu,

and by definition of T, 〈∀s ∈ πσi :: sT t〉.

(b) We define C (corresponds), a function that identifies which seg-

ments of δ under ρ correspond to πσi. We define C(−1) to be

{−1}.

• C.i = {U.i} if U.i ∈ C(i−1) or U.i = max .C(i−1)+1, otherwise

• if U.i = U(i + 1), C.i = (max .C(i− 1), U.i), otherwise

• C.i = (max .C(i− 1), U.i]

(c) To prove match(T, σ, δ) we will exhibit an explicit partition. We do

this by defining τ and φ as follows.

• τ.0 = 0

• τ(i + 1) = τ.i + j where j = min.{k ∈ N : C(τ.i + k) 6= C(τ.i)}

• φ.i = min.C(τ.i)

The idea is that τ removes duplicate C.i’s (duplicate C.i’s indicate

that neighboring segments of σ under π should be merged into one

segment). We now prove corr(T, σ, π ◦ τ, δ, ρ ◦ φ) that expanded

is 〈∀i,m, n : i ∈ N ∧ m ∈ [τ.i, τ(i + 1)) ∧ n ∈ [φ.i, φ(i + 1)) :

37

(πσm)T (ρδn)〉. Note m ∈ [τ.i, τ(i + 1)) ⇒ C.m = C(τ.i) be-

cause τ collapses similar C.i’s; hence, (πσm)T (ρδj) for any j ∈

C(τ.i) since j ∈ [L(τ.i), U(τ.i)], but n ∈ [φ.i, φ(i + 1)) ≡ n ∈

[min.C(τ.i),min(C.τ(i + 1))) ≡ n ∈ C(τ.i), hence, (πσm)T (ρδn).

�

Lemma 5 The reflexive, transitive closure of an STS is an STS.

Proof The reflexive, transitive closure of B, denoted B∗, can be written as

〈∪i ∈ N :: Bi〉. The identity relation, B0, is an STS and by induction on the

natural numbers, using lemma 4, so is Bi for any i > 0. By lemma 3 so is

〈∪i ∈ N :: Bi〉. �

Theorem 2 Given TS M, there is a greatest STS on M, which is a preorder.

Proof By corollary 1, there is a greatest STS G on M. By lemma 5, G∗ is

also an STS. Now, G∗ ⊇ G, by definition of G∗ and G∗ ⊆ G since G is the

greatest STS. Thus, G = G∗. �

STSs are not closed under intersection or negation, as the following

lemma shows.

Lemma 6 STSs are not closed under intersection or negation.

Proof Consider a TS with two states with different labels. The identity

relation is an STS, but its negation is not. An example showing that STSs are

not closed under intersection appears in figure 4.1.

Theorem 3 Let B be a STS on M and let sBw. For any ACTL∗ \X formula

f , if M, w |= f then M, s |= f .

Proof The proof is by induction on the structure of ACTL∗ \X formulas and

is similar to a proof given by Browne, Clarke, and Grumberg [BCG88]. �

38

Figure 4.1: An example showing that STSs are not closed under intersection.
The transition relation is denoted by a dashed arrow. There are two stuttering
simulation relations denoted by a dashed line and a solid line. Any two states
in the same strongly connected component induced by the dashed line are in
the first stuttering simulation relation. Similarly, any two states in the same
strongly connected component induced by the solid line are in the second
stuttering simulation relation. Only the top two states are related in the
intersection, but they do not have matching children.

4.2 Well-Founded Simulation

In order to check that a relation is an STS, we have to show that infinite

sequences “match”. This can be problematic when using computer-aided ver-

ification techniques. We present the notion of a well-founded simulation to

remedy this situation. To show that a relation is a well-founded simulation,

we need only check local properties; this is analogous to proving program ter-

mination by exhibiting a function that maps states into a well-founded relation

and showing that the function decreases during every step of the program. As

mentioned previously, the intuition is that for any pair of states s, w that are

related by an STS and u such that s 99K u, there are essentially three cases:

either there is a v such that w 99K v and u is related to v, or u is related to w,

or there is a v such that w 99K v and s is related to v. In the last two cases,

we must also ensure that we do not have an infinite sequence of states, each

39

of which is related to a single state. This is where the well-founded relation

comes in: we must show that in these cases there is an appropriate ranking

function into a well-founded relation that decreases. Formally, we have:

Definition 4 (Well-Founded Simulation (WFS)) B ⊆ S×S is a well-founded

simulation on TS M = 〈S, 99K, L〉 iff:

(Wfs1) 〈∀s, w ∈ S : sBw : L.s = L.w〉

(Wfs2) There exists functions, rankt : S × S → W, rankl : S × S × S → N,

such that 〈W,l〉 is well-founded, and

〈∀s, u, w ∈ S : sBw ∧ s 99K u :

(a) 〈∃v : w 99K v : uBv〉 ∨

(b) (uBw ∧ rankt(u,w)l rankt(s, w)) ∨

(c) 〈∃v : w 99K v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉〉

4.3 Equivalence

In this section, we show that well-founded simulation completely characterizes

stuttering simulation. Thus, we can think of well-founded simulation as a

sound and complete proof rule.

In section 4.3.1 we prove that any WFS is an STS. The proof proceeds

by showing that given a WFS and a fullpath from state a, where aBb, we can

construct a fullpath from b that matches the fullpath from a.

In section 4.3.2 we prove that any STS is a WFS. For the proof, we have

to exhibit the rank functions as per the definition of WFS. Here is a high-level

overview.

40

The value of rankt(s, w) is important only if sBw, as otherwise there

are no restrictions required by the definition of WFS. If sBw, then consider

the largest subtree of the computation tree rooted at s such that no node in

the subtree matches a successor of w. The “rank” (a kind of height) of this

subtree is the value of rankt(s, w). The “rank” of s is greater than the “rank”

of any of its children in the tree, so case Wfs2b is satisfied.

The value of rankl(w, s, u) is important only if sBw and s 99K u, as

otherwise there are no restrictions required by the definition of WFS. If sBw

and s 99K u, then rankl(w, s, u) is the length of the shortest path from w that

matches s, u. In the case of Wfs2c, we can choose the next successor of w in

this path to satisfy the condition.

4.3.1 Soundness

Proposition 1 (Soundness) If B is a WFS, then it is an STS.

Proof Let aBb; we need to show Sts1 and Sts2:

1. L.a = L.b since B is a WFS (Wfs1).

2. 〈∀σ : fp.σ.a : 〈∃δ : fp.δ.b : match(B, σ, δ)〉〉. Suppose fp.σ.a. We define

fullpath δ and increasing sequences π, ξ recursively as follows:

δ.0 = b, π.0 = 0, ξ.0 = 0. We write σi, δi instead of πσi, ξδi, respectively.

Also, to make the following more readable, let s = σ(π.i), u = σ(π.i+1),

and w = δ(ξ.i). The idea is that from π.i, ξ.i, δ(ξ.i) we can define π(i +

1), ξ(i + 1), δi, δ.ξ(i + 1) with σi, δi matching. There are three cases:

(a) Wfs2a holds, i.e., 〈∃v : w 99K v : uBv〉. Let π(i+1) = π.i+1, ξ(i+

1) = ξ.i + 1, δi = 〈w〉, δ.ξ(i + 1) = v.

41

(b) Wfs2a does not hold, but Wfs2b does, i.e., ¬〈∃v : w 99K v : uBv〉 ∧

uBw ∧ rankt(u,w)l rankt(s, w). Let n be the maximum number

such that 〈∀l : 1 ≤ l ≤ n : σ(π.i + l)Bw ∧ ¬〈∃v : w 99K v :

σ(π.i+ l)Bv〉〉. Note n ≥ 1 since the above holds for u = σ(π.i+1).

Also, by the well-foundedness of rankt , n must be finite.

Wfs2 has to hold between σ(π.i+n), w, σ(π.i+n) 99K σ(π.i+n+1).

By the maximality of n, we have the following two cases:

i. If 〈∃v : w 99K v : σ(π.i + n + 1)Bv〉, then σ(π.i + n + 1), v

mark the beginning of the (i + 1)th segments and π(i + 1) =

π.i + n + 1, ξ(i + 1) = ξ.i + 1, δi = 〈w〉, δ.ξ(i + 1) = v.

ii. Otherwise, ¬(σ(π.i + n + 1)Bw), but now Wfs2b cannot hold,

but neither can Wfs2c, because if it does 〈∃v : w 99K v :

σ(π.i + n)Bv〉, but by definition of n, this cannot be; hence,

Wfs2a must hold, i.e., 〈∃v : w 99K v : σ(π.i + n + 1)Bv〉, which

is our first case.

(c) Only Wfs2c holds. Let ~v = 〈v.0 = w, v.1 = v, . . . , v.n〉 be a maxi-

mal (with respect to prefix order) sequence such that 〈∀l : 0 ≤ l <

n : v.l 99K v(l + 1)〉 and only Wfs2c holds for s, v.l, s 99K u for

all l < n. Such a sequence must contain v.0 = w and v.1 = v, so

n ≥ 1; in addition, the sequence is finite by the well-foundedness

of rankl . Since sBv.n, Wfs2 must hold between s, v.n, s 99K u,

specifically either Wfs2a or Wfs2b (by maximality of ~v), but Wfs2b

cannot hold because if it did we would have uBv.n, but then Wfs2a

would hold between s, v(n − 1), s 99K u; hence, Wfs2a must hold

between s, v.n, s 99K u, i.e., there exists an x such that v.n 99K x

42

and uBx. Let π(i + 1) = π.i + 1, ξ(i + 1) = ξ.i + n + 1, δi =

〈v.0, . . . , v.n〉, δ.ξ(i + 1) = x; hence, u, x mark the beginning of the

(i + 1)th segment. �

4.3.2 Completeness

Given a TS M = 〈S, 99K, L〉, the notion of the computation tree rooted at a

state s ∈ S is standard. It is the tree obtained by unfolding M starting from

s and can be defined as follows. The nodes of the tree are finite sequences over

S. The tree is defined to be the smallest tree satisfying the following.

1. The root is 〈s〉.

2. If 〈s, . . . , w〉 is a node and w 99K v, then 〈s, . . . , w, v〉 is a node whose

parent is 〈s, . . . , w〉.

Definition 5 (tree) Given an STS B, if ¬(sBw), then tree(s, w) is the empty

tree, otherwise tree(s, w) is the largest subtree of the computation tree rooted

at s such that for any non-root node of the tree, 〈s, . . . , x〉, we have that xBw

and 〈∀v : w 99K v : ¬(xBv)〉.

Lemma 7 Every path of tree(s, w) is finite.

Proof Suppose not, then there exists a path σ such that fp.σ.s. Consider

σ′, the infinite sequence starting at σ.1, but otherwise identical to σ. We

have (σ′.0)Bw, so there exists δ such that match(B, σ′, δ). By construction,

〈∀v : w 99K v : ¬((σ′.1)Bv)〉, hence, δ.1 marks the beginning of the second

segment in δ. Say σ′.j marks the beginning of the second segment of σ′, then

(σ′.j)B(δ.1), but by construction of tree(s, w) this is impossible. �

43

Since the child relation on nodes in tree.s is well-founded, we can recur-

sively define a labeling function, l, that assigns an ordinal to nodes in the tree

as follows: l.n = 〈∪c : c is a child of n : (l.c) + 1〉. This is the standard “rank”

function encountered in set theory [Kun80]. We use the convention that the

label of a tree is the label of its root.

Lemma 8 If #S � κ, where κ is an infinite cardinal (i.e., ω � κ) then for

all s, w ∈ S, tree(s, w) is labeled with an ordinal of cardinality � κ.

Proof The ith level of the tree consists of all nodes of distance i from the

root. Since paths are finite, i is a natural number. We can show by induction

on N that for all i, the number of nodes at level i is at most κ. At level 0

it is easy to see as there is only 1 node. Suppose level i contains at most κ

nodes. Since each node has at most κ children, level i + 1 can have at most

κ2 nodes, which is at most κ. We have shown each level has at most κ nodes.

Since there is a countable number of levels, the total number of nodes is at

most ω × κ = max .{ω, κ} = κ.

Consider any function F = {(n, α) : n ∈ tree.s and α is an ordinal}

where R, the range of F , is an ordinal (this guarantees that for any α in R,

we have β ∈ R for all β ≺ α). Note that the labeling described above is such

a function. We have that F.s is an ordinal of cardinality at most κ, otherwise

we have a surjection from κ to a larger cardinal, a contradiction. �

Lemma 9 If sBw, s 99K u, u ∈ tree(s, w) then l.tree(u,w) ≺ l.tree(s, w).

Proof Since u ∈ tree(s, w), by construction of tree(s, w), the subtree rooted

at u is tree(u,w). By definition of l, l.tree(u,w) ≺ l.tree(s, w). �

44

Definition 6 (length) Given B, an STS, length(w, s, u) = 0 if ¬(sBw) or

¬(s 99K u), otherwise length(w, s, u) is the length of the shortest initial seg-

ment starting at w that matches 〈s, u〉. Formally:

length(w, s, u) = 〈min σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈

INC ∧ corr(B, σ, π, δ, ξ) : #(ξδ0)〉

As sBw and s 99K u, the above range is non-empty and length(w, s, u) ∈

N.

Lemma 10 If sBw, s 99K u and ¬〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧

π, ξ ∈ INC : corr(B, σ, π, δ, ξ) ∧ ξδ0 = 〈w〉〉, then 〈∃v : w 99K v :

length(v, s, u) < length(w, s, u) ∧ sBv〉.

Proof First, note that by assumption length(w, s, u) ≥ 2, because for any

σ, δ, π, ξ such that fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ corr(B, σ, π, δ, ξ),

we have ¬(uBδ.1). Hence, πσ0 = 〈s〉, #(ξδ0) ≥ 2, and length(w, s, u) ≥ 2. Let

v be the successor of w in some minimal initial segment, then length(v, s, u) =

length(w, s, u)− 1 ≥ 1 and sBv, as required. �

Proposition 2 (Completeness) If B is an STS, then B is a WFS.

Proof Wfs1 follows from Sts1. Let W = (#S + ω)+. Note that + denotes

cardinal arithmetic; we add ω to #S to guarantee that we have an infinite

cardinal; κ+ is the successor cardinal to κ. Clearly, (W,≺) is well-founded.

Let rankt = l.tree and let rankl = length. Let sBw and s 99K u. There are

three cases:

45

1. 〈∃v : w 99K v : uBv〉.

By lemma 1, if (1) does not hold, then for any σ, δ, π, ξ such that fp.σ.s∧

σ.1 = u∧ fp.δ.w∧π, ξ ∈ INC ∧ corr(B, σ, π, δ, ξ), either s marks the end

of πσ0 or w marks the end of ξδ0, but not both.

2. 〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ ξδ0 = 〈w〉 :

corr(B, σ, π, δ, ξ)〉 and (1) does not hold. This implies that #(πσ0) > 1,

uBw, and u ∈ tree(s, w); hence, rankt(u,w) ≺ rankt(s, w) by lemma 9.

3. If (1) and (2) do not hold, we must have ¬〈∃σ, δ, π, ξ : fp.σ.s∧ σ.1 = u∧

fp.δ.w∧π, ξ ∈ INC : corr(B, σ, π, δ, ξ)∧ ξδ0 = 〈w〉〉. By lemma 10 and the

definition of rankl , 〈∃v : w 99K v : rankl(v, s, u) < rankl(w, s, u) ∧ sBv〉.

�

Theorem 4 (Equivalence) B is an STS iff B is a WFS.

Proof By propositions 1 and 2. �

A consequence of the above theorem is that all of the properties proved

for STSs carry over to WFSs; we use this fact freely, without reference, in the

sequel.

4.4 Refinement

Up to this point, we have developed a theory for relating states. We now

show how to apply the theory to transition systems. In this section, we define

a notion of refinement and show that STSs can be used in a compositional

fashion. For states s and w, we write s v w to mean that there is an STS B

46

such that sBw. By theorem 2, s v w iff sGw, where G is the greatest STS.

We now lift this idea to transition systems.

Definition 7 (Simulation Refinement) Let M = 〈S, 99K, L〉, M′ = 〈S′, 99K′

, L′〉, and r : S → S ′. We say that M is a simulation refinement of M′ with

respect to refinement map r, written M vr M′, if there exists a relation, B,

such that 〈∀s ∈ S :: sB(r.s)〉 and B is an STS on the TS 〈S]S ′, 99K] 99K′,L〉,

where L.s = L′(s) for s an S′ state and L.s = L′(r.s) otherwise.

In the above definition, it helps to think of M′ as the specification and

M as the implementation. That M is a simulation refinement of M′ with

respect to r implies that every visible behavior of M (where what is visible

depends on r) is a behavior of M′. There are often other considerations, e.g.,

it might be that M and M′ have certain states that are “initial”. In this case

one might wish to show that initial states in M are mapped to initial states

in M′.

One has a great deal of flexibility in choosing refinement maps. The

danger is that by choosing a complicated refinement map, one can bypass the

verification problem all together. To make this point clear, let PRIME be the

system whose single behavior is the sequence of primes and let NAT be the

system whose single behavior is the sequence of natural numbers. We do not

consider NAT to be an implementation of PRIME, but using the refinement

map from NAT to PRIME that maps i to the ith prime, we can indeed prove

the peculiar theorem that NAT is a refinement of PRIME. The moral is that

we must be careful to not bypass the verification problem with the use of such

refinement maps. Simple refinement maps with a clear relationship between

implementation states and their image under the map are best.

47

To check that a proof of refinement is meaningful, one has to look at

the specification system and the refinement map. It is important to look at

the specification system to check that in fact it corresponds to what you ex-

pected. It is important to look at the refinement map for the reasons stated

above, namely, one has to check that refinement maps map implementation

states to “related” specification states. It may occur to the reader that we

should require that refinement maps preserve (part of) the labeling function

of the implementation states. In fact, we consider such a restriction shortly,

but the reason we do not place restrictions on refinement maps is that it is not

a priori apparent what the “reasonable” relationships between implementation

states and specification states might be, e.g., suppose that the specification

system represents numbers in decimal but the implementation system repre-

sents numbers in binary, or that numbers in the specification are spread across

several registers in the implementation, and so on. See also the discussion in

section 5.6, on page 66.

Often refinement maps are especially clear, which makes it easy to check

that they are in fact appropriate. Suppose that associated with states is a set of

variables, each of a particular type. Furthermore, suppose that the variables in

the implementation are a superset of the variables in the specification and that

the refinement map just hides the implementation variables that do not appear

in the specification. Then, it is clear that the refinement map is a reasonable

one. More precisely, given TSM = 〈S, 99K, L〉, if L has the following structure,

we say that M is typed. Let VARS be a set and let TYPE be a function whose

domain is VARS . Think of VARS as the variables of TS M, where TYPE

gives the type of the variables. For all s ∈ S, let L.s be a function from VARS

such that L.s.v ∈ TYPE .v. The lemma below shows why the appropriateness

48

of refinement maps that hide some of the implementation variables is easy to

ascertain.

Lemma 11 If M = 〈S, 99K, L〉 vr M′ = 〈S′, 99K′, L′〉, both M and M′ are

typed TSs, and L′(r.s) = L.s|V , then for any pair of states s, r.s such that

s ∈ S, and any ACTL∗ \ X formula, f , built out of expressions that only

depend on variables in V , we have M′, r.s |= f ⇒ M, s |= f .

Proof Since M vr M′ we have that s v r.s in the disjoint union of M and

M′. Recall that the refinement map r does not alter the value of variables in

V . The result follows from theorem 3. �

Lemma 12 If B is an STS on TS M = 〈S ⊇ S1 ∪ S2, 99K, L〉, S1 ∩ S2 = ∅,

any state in S1 can only reach states in S1, any state in S2 can only reach

states in S2, then B̂ = {〈s1, s2〉 : s1 ∈ S1 ∧ s2 ∈ S2 ∧ s1Bs2} is an STS

on M.

Proof Suppose sB̂w, then s ∈ S1, w ∈ S2, and sBw. Let σ satisfy fp.σ.s.

Since sBw, there is a δ such that fp.δ.w and match(B, σ, δ). Since all states

reachable from s are in S1, σ contains only S1 states and similarly δ contains

only S2 states, therefore, match(B̂, σ, δ) by the definitions of B̂ and match. �

Theorem 5 (Composition) If Mvr M′ and M′ vq M′′ then Mvr;q M′′.

Proof Let M = 〈S, 99K, L〉, M′ = 〈S ′, 99K′, L′〉, and M′′ = 〈S ′′, 99K′′, L′′〉.

Since M vr M′, we have an STS, A, such that 〈∀s ∈ S :: sA(r.s)〉; by

lemma 12 we can assume that A ⊆ S × S ′. Since M′ vq M′′, we have an

STS, B, such that 〈∀s′ ∈ S′ :: s′B(q.s′)〉; by lemma 12 we can assume that

B ⊆ S ′ × S′′. Letting C be A; B, we have, by properties of A and B, that

49

C ⊆ S × S ′′ and 〈∀s ∈ S :: sCq(r.s)〉. By lemma 4, we have that C is an STS

on the TS 〈S]S′′, 99K] 99K′′,L〉, where L.s = L′′(q(r.s)) for s an S state and

L.s = L′′(s) otherwise. �

4.5 Bibliographic Notes

Lamport makes the case that specifications should be invariant under stut-

tering in [Lam83]. Abadi and Lamport have written a well-cited paper on

refinement maps [AL91]. A comparison of their approach to refinement with

our approach appears in section 5.6, on page 66.

Stuttering bisimulation was introduced by Browne, Clark, and Grum-

berg [BCG88]. The definition of stuttering simulation is derived from their

definition. The proof of soundness and completeness is based on the proof of

soundness and completeness of Namjoshi’s proof rule for well-founded bisim-

ulation [Nam97]. We compare our proof rules with Namjoshi’s proof rule in

the bibliographic notes of the next chapter. The first paper to present a me-

chanically verified theorem using stuttering simulation is by Sumners [Sum00].

Sumners shows the correctness of a concurrent, wait-free implementation of

a double-ended queue, which is used to implement an optimal work stealing

algorithm.

See also the bibliographic notes in the next chapter.

4.6 Summary

In this chapter, we introduced the notion of stuttering simulation. We proved

that stuttering simulations enjoy several algebraic properties. For example,

50

they are closed under arbitrary union and relational composition. We gave

a sound and complete proof rule that allows us to prove a stuttering simula-

tion by reasoning about single transitions. We also introduced the notion of

refinement for stuttering simulations and showed that this notion is composi-

tional, i.e., refinement proofs can be decomposed into a sequence of simpler

refinement proofs.

51

Chapter 5

Stuttering Bisimulation

5.1 Stuttering Bisimulation

A relation on B ⊆ S × S where M = 〈S, 99K, L〉 is a stuttering bisimulation,

if for any s, w such that sBw, s and w are identically labeled and any fullpath

starting at s can be matched by some fullpath starting at w and conversely.

Definition 8 (Stuttering Bisimulation (STB))

B ⊆ S × S is a stuttering bisimulation on TS M = 〈S, 99K, L〉 iff both B and

B−1 are STSs on M.

Lemma 13 match(R, σ, δ) ≡ match(R−1, δ, σ)

Proof

match(R, σ, δ)

≡ { Definition of match, corr }

52

〈∃π, ξ ∈ INC :: 〈∀i ∈ N :: (πσi)R(ξδi)〉〉

≡ { Expand (πσi)R(ξδi), definition of R−1 }

〈∃π, ξ ∈ INC : 〈∀i ∈ N :: (ξδi)R−1(πσi)〉〉

≡ { Definition of match, corr }

match(R−1, δ, σ) �

Lemma 14 B ⊆ S × S is a stuttering bisimulation on TS M = 〈S, 99K, L〉

iff for all s, w such that sBw:

(Stb1) L.s = L.w

(Stb2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B, σ, δ)〉〉

(Stb3) 〈∀δ : fp.δ.w : 〈∃σ : fp.σ.s : match(B, σ, δ)〉〉

Proof This follows by the definition of STB and lemma 13. �

We show that there is a greatest STB, and that it is an equivalence

relation. This is accomplished by showing that an arbitrary union of STB’s is

an STB, hence, there is a greatest STB. We then show: the identity relation

is an STB, if B is an STB, B−1—the inverse of B—is an STB, and if A and

B are STB’s so is A; B—the composition of A and B. Together, the above

results imply that the reflexive, symmetric, transitive closure of an STB is an

STB and that the greatest STB is an equivalence relation.

Lemma 15 If R is an STB, so is R−1.

Proof

R is an STB

53

≡ { Definition of STB }

R is an STS and R−1 is an STS

≡ { Definition of STB, R−1 }

R−1 is an STB �

Lemma 16 Let C be a set of STB’s on TS M, then G = 〈∪B : B ∈ C : B〉 is

an STB on M.

Proof G is an STS by lemma 3. G−1 = 〈∪B : B ∈ C : B〉−1 = 〈∪B : B ∈ C :

B−1〉. By lemma 15 〈∀B ∈ C :: B−1 is an STB 〉 and by lemma 3, G−1 is an

STS, hence, G is an STB. �

Corollary 2 For any TS M, there is a greatest STB on M.

Proof Let G = 〈∪B : B ∈ C : B〉 where C = {B : B is an STB on M}. G is

an STB by lemma 16, hence, the greatest. �

Lemma 17 If R and S are STB’s, so is T = R; S.

Proof R; S is an STS by lemma 4. By lemma 15, S−1 and R−1 are STBs,

hence, STSs. Thus, by lemma 4, S−1; R−1 = (R; S)−1 is an STS.

Lemma 18 The reflexive, symmetric, transitive closure of an STB is an STB.

Proof The reflexive, symmetric, transitive closure of B, denoted B≡, by def-

inition is (B ∪ B−1)∗, which is 〈∪i ∈ N :: (B ∪ B−1)i〉. The identity relation,

(B ∪ B−1)0, is an STB, as is B ∪ B−1 by lemmas 15,16. By induction on the

natural numbers, using lemma 17, so is (B∪B−1)i for any i > 0. By lemma 16

so 〈∪i ∈ N :: (B ∪B−1)i〉. �

54

Theorem 6 Given TS M, there is a greatest STB on M, which is an equiv-

alence relation.

Proof By corollary 2 there is a greatest STB G on M. By lemma 18 G≡ is

also an STB. Now, G≡ ⊇ G, by definition of G≡ and G≡ ⊆ G since G is the

greatest STB. Thus, G = G≡. �

Lemma 19 STBs are not closed under intersection or negation.

Proof The proof of lemma 6 works in this case as well, as the STSs described

in the proof and in figure and the figure 4.1 are also STBs, and their negations

and intersections are not. �

Theorem 7 Let B be an STB on M and let sBw. For any CTL∗ \X formula

f , M, w |= f iff M, s |= f .

Proof The proof is by induction on the structure of CTL∗ \ X formulas and

is given by Browne, Clarke, and Grumberg [BCG88]. �

5.2 Well-Founded Bisimulation

As was the case with STS, in order to check that a relation is an STB, we

have to show that infinite sequences “match”. This can be difficult when

using computer-aided verification techniques. We present the notion of a well-

founded bisimulation to remedy this situation. To show that a relation is a

well-founded bisimulation, we need only check local properties; this is anal-

ogous to proving program termination by exhibiting a well-founded relation

and showing it decreases during every step of the program. Formally, we have:

55

Definition 9 (Well-Founded Bisimulation (WFB))

B ⊆ S × S is a Well-Founded Bisimulation (WFB) on TS M = 〈S, 99K, L〉 iff

both B and B−1 are WFSs on M.

Theorem 8 (Equivalence) B is an STB iff B is a WFB.

Proof B is an STB iff B is an STS and B−1 is an STS iff B is a WFS and

B−1 is a WFS iff B is a WFB. �

Corollary 3 Given any transition system M, there is a greatest WFB on M.

Proof The greatest WFB corresponds to the greatest STB. �

5.3 Equivalence Bisimulations

If we modify the definitions of STB, WFB so that B is required to be an

equivalence relation, then some simplifications are possible. In this section we

explore this idea.

Definition 10 (Equivalence STB (ESTB))

B ⊆ S × S is an equivalence stuttering bisimulation on TS M = 〈S, 99K, L〉

iff B is an equivalence relation and an STS.

Lemma 20 If B is an STS on TS M and B is symmetric, then B is an STB

on M.

Proof If B is symmetric then B = B−1, thus both B and B−1 are STSs, i.e.,

B is an STB. �

56

: B

: L

Figure 5.1: The graph denotes a transition system, where circles denote states,
the color of the circles denotes their label, and the transition relation is denoted
by a dashed line. States related by the equivalence relation B are joined by a
solid line. Notice that B is an ESTB as related states have the same infinite
paths, up to stuttering.

Lemma 21 B is an ESTB on TSM iff it is an STB onM and an equivalence

relation.

Proof Since B is an equivalence relation, it is symmetric, thus, by lemma 20

it is an STB. For the other direction, note that an STB is an STS. �

An example of an ESTB appears in figure 5.1. ESTBs are very difficult

to prove mechanically because one has to reason about infinite sequences. We

would much rather reason about single steps. This is the motivation for the

following definition.

Definition 11 (Well-Founded Equivalence Bisimulation (WEB)) B ⊆ S × S

is a well-founded equivalence bisimulation on TS M = 〈S, 99K, L〉 iff:

57

(Web1) B is an equivalence relation on S; and

(Web2) 〈∀s, w ∈ S : sBw : L.s = L.w〉; and

(Web3) There exist functions , erankt : S → W, erankl : S × S → N, such that

〈W,l〉 is well-founded, and

〈∀s, u, w ∈ S : sBw ∧ s 99K u :

(a) 〈∃v : w 99K v : uBv〉 ∨

(b) (uBw ∧ erankt .ul erankt .s) ∨

(c) 〈∃v : w 99K v : sBv ∧ erankl(v, u) < erankl(w, u)〉〉

We could have defined a WEB to be a WFS that is an equivalence

relation, but notice that erankt and erankl have fewer arguments in the above

definition. We call a triple 〈erankt , 〈W,l〉, erankl〉 satisfying condition Web3

in the above definition, a well-founded witness. Note that to prove a relation

is a WEB, reasoning about single steps of 99K suffices.

The third WEB condition can be thought of as follows. It says that

given states s and w in the same class, such that s can step to u, u is either

matched by a step from w, or u and w are in the same class and the rank

function decreases (to guarantee that w is forced to take a step), or some

successor v of w is in the same class as s and the rank function decreases (to

guarantee that u is eventually matched). An example of a WEB appears in

figure 5.2.

Proposition 3 (Soundness) If B is a WEB, then it is an ESTB.

Proof If we satisfy Web1-3, we can obtain a WFS by just defining erankt to

be a function of 2 arguments and erankl to be a function of three arguments.

58

11

0

0 0

0

: B

: L

Figure 5.2: The graph denotes a transition system, as in figure 5.1. To check
that B is a WEB, let erankt .v = tag of v, erankl(v, u) = tag of v, and use the
well-founded witness 〈erankt , 〈N, <〉, erankl〉.

We then use the soundness of WFS (proposition 1). �

More interesting is the proof of completeness. For the proof, we have to

exhibit the rank functions as per the definition of WEB. Here is a high-level

overview.

We define erankt .s to be the rank of the largest subtree of the compu-

tation tree rooted at s such that for every node x we have sBx. If Web3b

holds, then w does not have a successor in the class of s and the subtree has

no infinite path. Notice that we do not have to keep track of w; all we need

to know is that it is in the same class as s.

The value of erankl(w, u) is the length of the shortest path from w that

stays in the class of w and reaches a state in the class of u. Again, we do not

need s as an argument and can define erankl so that it works for any state in

the class of w.

Definition 12 (etree) Given an ESTB B, if 〈∀w : sBw : 〈∃v : w 99K v :

sBv〉〉, then etree.s is the empty tree, otherwise etree.s is the largest subtree of

59

the computation tree rooted at s such that for any node of the tree, 〈s, . . . , x〉,

we have that sBx.

Lemma 22 Every path of etree.s is finite.

Proof Suppose not, then there exists a path σ such that fp.σ.s. As etree.s

is not empty, there is a state w such that sBw and for every successor v of

w, we have ¬(sBv). Since sBw, 〈∃δ :: match(B, σ, δ)〉, hence, δ.1 marks the

beginning of the second segment in δ (because 〈∀v : w 99K v : ¬(sBv)〉).

Say σ.j marks the beginning of the second segment of σ, then (σ.j)B(δ.1),

but sB(σ.j) by the definition of etree. Since B is an equivalence relation,

sB(δ.1)—a contradiction; hence, σ cannot be infinite. �

We can use the same labeling function defined on page 43, i.e., since

the child relation on nodes in tree.s is well-founded, we can recursively define

a labeling function, l, that assigns an ordinal to nodes in the tree as follows:

l.n = 〈∪c : c is a child of n : (l.c) + 1〉.

Lemma 23 If #S � κ, where κ is an infinite cardinal (i.e., ω � κ) then for

all s ∈ S, etree.s is labeled with an ordinal of cardinality 4 κ.

Proof The proof is identical to the proof of lemma 8 (except that etree is

used instead of tree). �

Lemma 24 If s 99K u, u ∈ etree.s then l(etree.u) ≺ l(etree.s).

Proof Since u ∈ etree.s, etree.s is non-empty. If etree.u is empty, l(etree.u) ≺

l(etree.s), otherwise, by construction of etree.s, the subtree rooted at u is

etree.u. By definition of l, l(etree.u) ≺ l(etree.s). �

60

Definition 13 (elength) Given B, an ESTB, elength(w, u) = 0 if ¬〈∃s :

sBw : s 99K u〉, otherwise elength(w, u) is the length of the shortest initial seg-

ment starting at w that matches s; u for some s such that sBw and s 99K u.

Formally:

elength(w, u) = 〈min s, σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈

INC ∧ corr(B, σ, π, δ, ξ) : #(ξδ0)〉

The above range is non-empty because 〈∃s : sBw : s 99K u〉, and

elength(w, u) ∈ N.

Lemma 25 If sBw, s 99K u and ¬〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧

π, ξ ∈ INC : corr(B, σ, π, δ, ξ) ∧ ξδ0 = 〈w〉〉, then 〈∃v : w 99K v :

elength(v, u) < elength(w, u) ∧ sBv〉.

Proof Note that by assumption elength(w, u) ≥ 2, because for any s′, σ, δ, π, ξ

such that fp.σ.s′ ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ corr(B, σ, π, δ, ξ),

we have ¬(uBδ.1); if not, uBδ.1 when s′ = s, a contradiction. Hence, πσ0 =

〈s′〉, #(ξδ0) ≥ 2, and elength(w, u) ≥ 2. Let v be the successor of w in

some minimal initial segment, then elength(v, u) = elength(w, u) − 1 ≥ 1;

by sBw,wBs′, s′Bv, and transitivity we get sBv, as required. �

Proposition 4 (Completeness) If B is an ESTB, then B is a WEB.

Proof Web1 holds because an ESTB is an equivalence relation. Web2 follows

from Sts1. Let W = (#S +ω)+. Recall that + denotes cardinal arithmetic and

that κ+ is the successor cardinal to κ. We add ω to #S to guarantee that we

have an infinite cardinal. Clearly, (W,≺) is well-founded. Let erankt = l.etree

and let erankl = elength. Let sBw and s 99K u. There are three cases:

61

1. 〈∃v : w 99K v : uBv〉.

By lemma 1, if (1) does not hold, then for any σ, δ, π, ξ such that fp.σ.s ∧

σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ corr(B, σ, π, δ, ξ), either s marks the

end of πσ0 or w marks the end of ξδ0, but not both.

2. 〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 = u ∧ fp.δ.w ∧ π, ξ ∈ INC ∧ ξδ0 =

〈w〉 : corr(B, σ, π, δ, ξ)〉 and (1) does not apply. This implies that

#(πσ0) > 1, uBw, and etree.s is non-empty (if 〈∃v : w 99K v : sBv〉

by uBw, wBs, sBv, and transitivity uBv holds, as does case (1)—a con-

tradiction). Hence, u ∈ etree.s and erankt .u ≺ erankt .s by lemma 24.

3. If (1) and (2) do not hold, we must have ¬〈∃σ, δ, π, ξ : fp.σ.s ∧ σ.1 =

u ∧ fp.δ.w ∧ π, ξ ∈ INC : corr(B, σ, π, δ, ξ) ∧ ξδ0 = 〈w〉〉. By lemma 25

and the definition of erankl , 〈∃v : w 99K v : sBv ∧ erankl(v, u) <

erankl(w, u)〉. �

Theorem 9 (Equivalence) B is an ESTB iff B is a WEB.

Proof By propositions 3 and 4. �

Corollary 4 B is a WEB on M iff B is a WFB on M and an equivalence

relation.

Proof B is a WEB iff (theorem 9) B is an ESTB iff (lemma 21) B is an STB

and an equivalence relation iff (theorem 8) B is a WFB and an equivalence

relation. �

Corollary 5 Given any transition system M, there is a greatest WEB and a

greatest ESTB on M, and they are equal.

62

Proof The greatest STB is an equivalence relation by theorem 6. By lemma 21

it is also an ESTB. Since any ESTB is an STB (lemma 21), there is a greatest

ESTB which is equal to the greatest STB. By theorem 9 it is also the greatest

WEB. �

5.4 Quotient Structures

For an STB B on M, a quotient structure M/B (read M “mod” B) can be

defined, where the states are equivalence classes (obtained from B) of states

of M and the transition relation is derived from the transition relation of

M. Quotient structures can be much smaller than the original: an STB with

finitely many classes induces a finite quotient. As we will see in chapter 7,

we are often concerned only with the part of the quotient structure that is

reachable from a set of initial states.

Let M = 〈S, 99K, L〉 be a TS and let B be an STB on M. The equiva-

lence class of state s, under B≡, is denoted by [s]B. Define M/B as the TS

〈S, ,L〉 given by:

1. S = {[s]B | s ∈ S},

2. The transition relation is given by : For C,D ∈ S, C D iff either

(a) C 6= D and 〈∃s, w : s ∈ C ∧ w ∈ D : s 99K w〉, or

(b) C = D and 〈∀s : s ∈ C : 〈∃w : w ∈ C : s 99K w〉〉.

The case distinction is needed to prevent spurious self-loops in the quo-

tient, arising from stuttering steps in the original.

63

3. The labeling function is given by L.C = L.s, for some s in C (states in

an equivalence class have the same label).

Theorem 10 If B is an STB on M, then there is an ESTB on the disjoint

union of M and M/B that relates s with [s]B.

Proof Let C be B ∪ {〈s, [s]B〉 : s ∈ S}. The ESTB relating states of M

and M/B is C≡, the reflexive, symmetric, transitive closure of C. The rest of

the proof can be obtained from the proof of a similar result due to Namjoshi

[Nam97].

Corollary 6 For any CTL∗ \ X formula f , M, s |= f iff M/B, [s] |= f . �

5.5 Refinement

Up to this point, we have developed a theory for relating states. We now

show how to apply the theory to transition systems. In this section, we define

a notion of refinement and show that STBs can be used in a compositional

fashion. For states s and w, we write s ≈ w to mean that there is a WEB B

such that sBw. By theorem 6, s ≈ w iff sGw, where G is the greatest STB.

We now lift this idea to transition systems.

Definition 14 (WEB Refinement) Let M = 〈S, 99K, L〉, M′ = 〈S ′, 99K′, L′〉,

and r : S → S ′. We say that M is a WEB refinement of M′ with respect to

refinement map r, written M ≈r M′, if there exists a relation, B, such that

〈∀s ∈ S :: sB(r.s)〉 and B is a WEB on the TS 〈S] S ′, 99K] 99K′,L〉, where

L.s = L′(s) for s an S ′ state and L.s = L′(r.s) otherwise.

64

In the above definition, it helps to think of M′ as the specification and

M as the implementation. That M is a WEB refinement of M′ implies that

M and M′ have the same visible behaviors. There are often other considera-

tions, e.g., it might be that M and M′ have certain states that are “initial”.

In this case one might wish to show that initial states in M are mapped to

initial states in M′. The points made regarding simulation refinement, e.g.,

that we should use clear refinement maps, also apply.

Lemma 26 If M = 〈S, 99K, L〉 ≈r M′ = 〈S′, 99K′, L′〉, both M and M′ are

typed TSs, and L′(r.s) = L.s|V , then any pair of states s, r.s such that s ∈ S

satisfy the same CTL∗ \ X formulas built out of expressions that only depend

on variables in V .

Proof Since M ≈r M′ we have that s ≈ r.s in the disjoint union of M and

M′. Recall that the refinement map r does not alter the value of variables in

V . The result follows from theorem 7. �

We note that the above lemma can be strengthened by replacing “CTL∗\

X” by “stuttering-insensitive.”

Theorem 11 (Composition) If M≈r M′ and M′ ≈q M′′ then M≈r;q M′′.

Proof Let M = 〈S, 99K, L〉, M′ = 〈S′, 99K′, L′〉, and M′′ = 〈S′′, 99K′′, L′′〉.

Since M ≈r M′, we have a WEB, A, such that 〈∀s ∈ S :: sA(r.s)〉. Since

M′ vq M′′, we have a WEB, B, such that 〈∀s′ ∈ S′ :: s′B(q.s′)〉. Thus,

A,B,A∪B are STBs on the disjoint union of M, M′, and M′′, by the defini-

tion of STB and lemma 16. Letting C be the reflexive, symmetric, transitive

closure of A ∪ B, we have, by lemma 18 and the definition of an equivalence

relation, that C is a WEB on the disjoint union of M, M′, and M′′. Letting

65

D = C∩(S∪S ′′)2, we have that D is a WEB on the TS 〈S]S ′′, 99K] 99K′′,L〉,

where L.s = L′′(q(r.s)) for s an S state and L.s = L′′(s) otherwise. �

5.6 Remarks on Refinement

In this section we relate our work on refinement with the well-known and in-

fluential work of Abadi and Lamport [AL91]. Abadi and Lamport prove that

if one system implements another, then there is a refinement map that can

be used to prove this. Their theorem has the following conditions. First, the

systems under consideration are from a restricted class: the implementation

system is machine closed and the specification system has finite invisible non-

determinism and is internally continuous. Second, they allow the use of history

and prophecy variables, which may be needed to carry out the refinement proof.

See their paper for the details. As in our case, the reason why such a theorem

is interesting is that it allows one to prove that systems have related infinite

computations, by reasoning locally, about states and their successors, instead

of globally, about infinite paths. Our soundness and completeness theorems

differ from the Abadi and Lamport theorem in that there are no restrictions

on the types of systems considered and there is no need for auxiliary variables.

We now give an overview of why this is the case, by discussing some of the

key differences between the two approaches.

The most glaring difference is that our notions of correctness are based

on the branching-time framework, whereas the work of Abadi and Lamport

is based on the linear-time framework. The reason we chose branching-time

notions is that refinement proofs are inductive. One shows that an implemen-

tation state and the specification state that it is related to by a refinement

66

map have related successors. As was pointed out in section 2.7 on page 24,

simulation and bisimulation are structural properties, whereas linear-time no-

tions such as trace containment are not and require global analysis. As a

consequence, we do not need prophecy variables to prove soundness and com-

pleteness. Consider the example given by Abadi and Lamport to motivate the

need for prophecy variables. System S chooses ten values non-deterministically

and displays each in turn, whereas system I chooses each value as it is dis-

played. From the linear-time point of view I refines S since they have the

same traces, but since proofs using refinement maps are structural and local,

there is no refinement map that can be used to show this. This is one reason

for introducing prophecy variables and they are used to resolve the dilemma

as follows. A prophecy variable is added to I and the variable “guesses” what

I will decide to do in the future. There is now a refinement map, based on this

prophecy variable, that can be used to show that I implements S. What is

happening is that the prophecy variables allow one to push all of the branching

in the computation tree of I up to the root, thereby destroying the branching

structure of I. In light of this, it is no surprise that we cannot show that I

refines S, because from the branching point of view, it does not. More specif-

ically, from the initial state in I, there is a successor that has more than one

possible future, a branching-time expressible property that does not hold in

the initial state of S.

Another difference is that in the Abadi and Lamport approach, a re-

finement map, r : S1 → S2 has to satisfy the following condition. For all

s, u ∈ S1 such that u is a successor of s, we have that r.u is a successor of

r.s or r.s = r.u. In our case, the analogous condition is: in the disjoint union

of the two systems, s and r.s are related (e.g., see definitions 7 and 14). Our

67

formulation allows us to avoid the use of history variables, which are needed in

the Abadi and Lamport approach. Consider the example given by Abadi and

Lamport to motivate the need for history variables. System S is a three-bit

clock, where only the low-order bit is visible and system I is a one-bit clock.

I refines S since they have the same traces (up to stuttering), but there is

no refinement map that can be used to show this because there is no way to

define the internal state of S in a way that satisfies the above condition on

refinement maps. This is one reason for introducing history variables and they

are used to resolve the dilemma as follows. A history variable is added to

I and the variable “remembers” what I did in the past. The result is that

the state space of I is expanded so that there are enough states to define an

appropriate refinement map. In our case, it should be clear that we do not

need history variables. We can define a refinement map that maps the state in

I whose counter is 0 to any state in S whose low-order bit is 0 and similarly

with the other state in I. The equivalence relation that relates states with

the same low-order bit in the disjoint union of the two systems is a stuttering

bisimulation, hence, the relation is also a stuttering simulation.

There is a third example given by Abadi and Lamport that shows why a

prophecy variable is needed to slow down an implementation that runs faster

than a specification, even though the specification is just stuttering. This

is again due to the same condition discussed in the previous paragraph: a

refinement map, r : S1 → S2 has to satisfy the following: for all s, u ∈ S1 such

that u is a successor of s, we have that r.u is a successor of r.s or r.s = r.u.

From this condition, one can show that any path in S1 has to be matched,

under r, by a path in S2, where we can add, but not remove, stuttering steps.

In our formulation, for the same reasons outlined in the previous paragraph,

68

we can both add and remove stuttering steps.

A minor difference is that Lamport and Abadi require that systems

have the same externally visible states. They make the point that one cannot

say whether the value 11111100 corresponds to −3 without knowing how to

interpret a sequence of bits as an integer. They go on to say that given such

an interpretation, they can translate the externally visible states to the appro-

priate representation. In our case, instead of having a separate interpretation

phase, we allow refinement maps to alter the labels of states directly.

Abadi and Lamport define a specification (what we call a system) as

a state machine together with a supplementary property (usually a liveness

property) and require machine closure: that the supplementary property does

not imply any safety property not already implied by the state machine. In our

case, we have a single system that includes both safety and liveness properties.

Finally, our theorems seem stronger than the ones given by Abadi and

Lamport. For example, they show that even when S is not internally con-

tinuous a refinement map exists to show that I satisfies the safety property

specified by S. They continue “We do not know if anything can be said about

proving arbitrary liveness properties.” Since our refinement theorems apply to

any systems, a simple corollary is that, with our approach, refinement maps

can always be used to prove both safety and liveness properties. This is some-

thing that we use several times in the sequel, e.g., we show that one can use

theorem proving to reduce an infinite-state system to a finite-state system in

such a way that stuttering-insensitive properties, including liveness, are pre-

served. We then model check the reduced system and can lift the results to

the original system. The details are outlined later.

69

5.7 Remarks on Performance

The notions of correctness presented in this part do not address performance.

Even though performance is extremely important, there are good reasons for

this omission. The main reason is that correctness and performance can be

treated separately, thus, it makes sense to separate concerns. Having separated

concerns, we find that there are enough interesting problems associated with

correctness that, for now, we ignore performance. Another reason is that it is

sometimes difficult to reason about performance formally, e.g., in the case of

microprocessor performance analysis, the clock rate is a very poor indicator

of performance. Instead, “typical” workloads are used. What is typical today

might not be typical tomorrow and perhaps the best way of dealing with this

kind of performance analysis is to run experiments. Other types of performance

analysis are possible. For example, if we are given a cost model, then it is

possible to reason mechanically about algorithmic complexity.

5.8 Bibliographic Notes

The process algebra notions of simulation [Mil71] and bisimulation, [Par81,

Mil90] have turned out to be of fundamental importance. There are various

notions of bisimulation equivalence, e.g., strong bisimulation [Par81, Mil90],

weak bisimulation [Mil90], stuttering bisimulation [BCG88], branching bisim-

ulation[vGW96], and many others [Gla01]. We chose to use stuttering simula-

tion and bisimulation as opposed to weak bisimulation because weak bisimu-

lation allows infinite stuttering and we do not consider implementations that

allow divergence, where none is present in the specification, to be correct.

70

Brown, Clarke, and Grumberg describe an algorithm for stuttering

bisimulation that for TS with n states has time complexity O(n5) [BCG88].

This was improved by Groote and Vaandrager who give an O(m ·n) algorithm

[GV90], where m is the number of edges, i.e., the size of the transition relation.

Our proofs rules for stuttering bisimulation are based on a proof rule

by Namjoshi [Nam97]. Namjoshi gives a sound and complete proof rule for

symmetric stuttering bisimulations. Besides developing the theory of stutter-

ing simulations, our work extends and simplifies Namjoshi’s work as follows.

First, we consider more general definitions. For example, we remove the re-

striction that stuttering bisimulations are symmetric and we do not require

transition systems to be countably branching. In addition, we prove that the

reflexive, symmetric, transitive closure of a stuttering bisimulation is again a

stuttering bisimulation. As a consequence, nothing essential is lost in requiring

stuttering bisimulations to be equivalence relations, but simpler proofs rules

are now possible. For example, our definition of WEB contains rank functions

with less arguments than previously required, but is still a sound and complete

proof rule. This requires different constructions that shed further light on the

structure of stuttering bisimulations. The practical consequence of this analy-

sis is that it allowed us to construct ACL2 libraries that are used to more fully

automate mechanical verification. How this is done is described in chapter 12.

Most of the results presented in the last two chapters were first proved

for bisimulations. We later realized that simulations are important, as bisim-

ulation is often too strong a notion. In addition, starting with simulations led

to cleaner proofs and a more streamlined presentation. Mechanical verifica-

tion efforts based on stuttering bisimulation are reported in [MNS99, Man00a,

Man00d, Sum00]. The case studies in this dissertation are based on the first

71

three references. The work by Sumners is described in the bibliographic notes

section of the previous chapter (page 50).

Reasoning about simulations and bisimulations can be tricky. For ex-

ample, Basten shows that the “simple proof” claimed for the folklore result

stating that branching bisimulation (a type of bisimulation closely related to

stuttering bisimulation) is an equivalence relation is wrong [Bas96].

5.9 Summary

This chapter was devoted to stuttering bisimulations. We proved that stut-

tering bisimulations enjoy several algebraic properties. For example, they are

closed under arbitrary union and relational composition. We presented sound

and complete proof rules that allow us to prove a stuttering bisimulation by

reasoning about single transitions. When stuttering bisimulations are equiv-

alence relations, further simplification is possible; this was explored in the

chapter. Finally, we introduced the notion of refinement for stuttering bisim-

ulations and showed that this notion is compositional, i.e., refinement proofs

can be decomposed into a sequence of simpler refinement proofs.

72

Part III

Combining Theorem Proving

and Model Checking

Chapter 6

Introduction

In this part we present a novel way of combining theorem proving and model

checking. To prove that a system satisfies its specification, given as a set of

temporal logic properties, we first use theorem proving to show a WEB on

the system. Another way of saying this is that theorem proving is employed

to prove the correctness of an abstraction that yields a reduced system. The

reduced system can then be model checked. This is a very general abstraction

technique that allows great flexibility in choosing an appropriate abstraction.

If more theorem proving effort is applied, more reduction is possible. At one

extreme, all the work is done with the theorem prover and at the other, all

the work is done with the model checker. The right balance between theorem

proving and model checking depends on the problem at hand. The general

idea is to reduce the problem to one that can be model checked in a reasonable

amount of time. Since we often apply this technique to infinite-state systems,

some amount of theorem proving is required.

We now examine this idea in more detail. The definition of WEB allows

us to carry out the theorem proving task by reasoning only about single steps

75

of the system, a considerable simplification. A WEB induces a quotient struc-

ture that is equivalent (up to stuttering) with the original system. Quotient

structures can be much smaller than the original: a bisimulation with finitely

many classes induces a finite quotient (of a possibly infinite-state system). The

idea is to check the quotient structure, but constructing the quotient structure

can be difficult because determining if there is a transition between states in

the quotient structure depends on whether there is a transition between some

pair of related states in the original system (the number of such pairs may be

infinite). Moreover, the quotient structure may be infinite-state, but the set of

its reachable states may be finite. To address these two concerns, we introduce

an on-the-fly procedure that automatically extracts the quotient structure, if

the set of reachable states is finite. Once the quotient structure is extracted,

we model check it using a model checker for the Mu-Calculus written in ACL2.

In chapter 7 we present two quotient extraction procedures. The first

one is based on state representative functions: functions that assign a state to

each equivalence class in a WEB. The second quotient extraction procedure

is based on set representative functions: functions that assign a set to each

equivalence class in a WEB. State representative functions are simpler than set

representative functions, thus, when applicable, they are preferable. However,

it is possible that a WEB induces a finite quotient structure, but there is

no state representative function that can be used to extract it. Using set

representative functions, we prove that for any WEB that induces a finite

quotient, there is a set representative function that can be used to extract it.

In chapter 8, we give an informal and quick overview of ACL2. ACL2

is explained in a textbook by Kaufmann, Manolios, and Moore [KMM00b]

and there is extensive online documentation available [KM]. We include only

76

enough to make this dissertation self-contained.

In chapter 9, we show how to embed the Mu-Calculus into ACL2. We

give the syntax and semantics of the Mu-Calculus in ACL2. The result is that

we have an executable model checker that we use to model check the quotients,

as extracted by our extraction procedure.

77

Chapter 7

Quotient Extraction

7.1 State Representative Functions

Definition 15 (State Representative Function) Let M = 〈S, 99K, L〉 be a TS

and let B be a WEB on M, with well-founded witness 〈rankt , 〈W,≺〉, rankl〉.

Let rep : S → S; then rep is a state representative function for M with respect

to B if for all s, w ∈ S all of the following hold.

1. sBw ≡ rep.s = rep.w

2. rep(rep.s) = rep.s

3. rankt(rep.s) 4 rankt .s

4. rankl(rep.s, w) ≤ rankl(s, w)

In this and the next section, by “condition i”, we mean condition i

in the above definition. Notice that the function rep can be used to define

B, the WEB, because condition 1 can be thought of as defining B from rep.

78

From conditions 1 and 2 we have that sBrep.s, i.e., rep.s is an element of the

equivalence class of s in the induced quotient structure. Conditions 3 and 4

are “minimality” conditions which, as will be shown shortly, guarantee that

the rep of a state has all of the branching behaviors of its class.

Theorem 12 Let rep be a state representative function for TS M = 〈S, 99K

, L〉 with respect to WEB B. Let M′ = 〈S′,⇒, L′〉, where

1. S ′ = rep(S); and

2. L′ = L|S′; and

3. s ⇒ u iff 〈∃v : s 99K v : rep.v = u〉.

Then M′ is M/B, up to a renaming of states.

Proof We start by defining f , a function from states in M′ to states in

M/B = 〈S, ,L〉, as follows: f(rep.s) = [s].1 From conditions 1 and 2

we have that sBrep.s and it then follows that f is a bijection between the

states of M′ and M/B that respects the labeling functions. We now show

that f respects the transition relations, i.e., c ⇒ d ⇒ f.c f.d and

p q ⇒ f−1(p) ⇒ f−1(q).

If c 6= d and c ⇒ d, then by the definition of ⇒, there is a w such

that c 99K w and wBd. Since c, w ∈ S and c 99K w, by the definition of

the quotient, [c] [w]; but [w] = [d], thus, [c] [d]. We now have: (c 6=

d ∧ c ⇒ d) ⇒ f.c f.d.

If c ⇒ c, then by the definition of ⇒, there is a u such that c 99K u and

uBc. For any s such that cBs, Web3 must hold. If Web3a or Web3c holds,
1In this chapter, in order to simplify notation, we will write [s] instead of [s]B , as it is

clear from the context what B, the relation omitted, is.

79

then s has a successor in [c] and by the definition of the quotient, [c] [c].

Web3b does not hold because if it did, we would have rankt .u ≺ rankt .c,

which violates condition 3. Combining this with the previous result gives:

c ⇒ d ⇒ f.c f.d.

If p 6= q and p q, then by the definition of quotient, there is an s and

a u such that [s] = p, [u] = q, and s 99K u. Since sBrep.s, by the definition

of WEB, Web3 holds for s, u, rep.s. Web3b does not hold as ¬(uBrep.s).

Web3c does not hold as this violates condition 4. Thus, Web3a holds, i.e.,

〈∃v : rep.s 99K v : uBv〉. By transitivity, ¬(rep.sBv); by the definition of

⇒, rep.s ⇒ rep.u, but rep.s = f−1(p) and rep.u = f−1(q). We now have

(p 6= q ∧ p q) ⇒ f−1(p) ⇒ f−1(q).

If p p, then by the definition of quotient, for any s such that [s] = p,

there is a u such that [u] = p and s 99K u; since [rep.s] = p, 〈∃u : rep.s 99K

u ∧ sBu〉; by the definition of ⇒, rep.s ⇒ rep.s. Combining this with the

previous result gives: p q ⇒ f−1(p) ⇒ f−1(q). �

Note that in systems where all states have self-loops, M/B and M′ will

have self-loops; hence, condition 3 is not required.

State representative functions are very useful (when they exist) because

they identify states that have all of the branching behavior of their class. They

allow one to view the quotient as a submodel of the original structure, and

they are used in the on-the-fly procedure for constructing quotient structures

defined in figure 7.1.

80

0 S′, ⇒, open := rep(I), ∅, rep(I)
1 while open 6= ∅
2 choose s ∈ open
3 open := open \{s}
4 for u ∈ rep(next .s)
5 if u 6∈ S ′ then open := open ∪{u}
6 S ′, ⇒ := S ′ ∪ {u}, ⇒ ∪{〈s, u〉}

Figure 7.1: Procedure for extracting quotient structures using state represen-
tative functions.

7.2 Quotient Extraction for State Represen-

tative Functions

Theorem 13 Let rep be a state representative for TS M = 〈S, 99K, L〉 with

respect to WEB B. If

1. rep(I) is finite and computable, where I is a set of initial states; and

2. M/B has a finite number of reachable states from {[i] : i ∈ I}; and

3. for all s ∈ S reachable from I, rep(next .s) is finite and computable,

where next .s is {u : s 99K u}

then the procedure in figure 7.1 will construct a TS isomorphic to M/B, re-

stricted to states reachable from {[i] : i ∈ I}.

Proof We explore the set of states reachable from rep(I) using the the pro-

cedure in figure 7.1.

The variables open and S ′ contain a set of representative states. Ex-

actly the states that correspond to reachable equivalence classes in M/B are

81

generated. We can show this by induction: the set of generated states includes

the initial states (line 0) and is closed under successors (line 4). Since there

are a finite number of reachable representatives and the while loop of line 1

is taken at most that many times, the procedure terminates. Since the three

conditions of theorem 12 are satisfied, the above procedure returns the reach-

able part of M′, which by theorem 12 is the reachable part of M/B, up to a

renaming of states. �

We now analyze the complexity of the above procedure. One of the

difficulties is that it is not clear what a reasonable cost model is. Specifically,

we do not know the cost of computing rep(A), where A is a set to which rep

is applied above; all we know is that rep(A) is finite and computable. We

therefore consider two possibilities. The first is that the cost of rep(A) (this

includes computing A and rep(A)) is O(#(rep(A))). In this case, the time

complexity of the above procedure is O(m), where m is the number of edges

in the quotient structure.

Lemma 27 Under the cost model above, the procedure in figure 7.1 has (lin-

ear) time complexity O(m + n) = O(m), on the average, where n is the

number of reachable states in the quotient structure and m is the number of

transitions (edges) in the reachable part of the quotient structure.

Proof Since a transition system is left-total, n ≤ m. Line 0 requires O(n) time

since #(rep(I)) ≤ n. The variable open can be implemented as a linked list

with a pointer to the last item as an auxiliary field. This makes it possible to

perform the operations on open (∪ and \) in O(1) time. S ′ is implemented as a

hash table, which makes it possible to perform the search and insert operations

in O(1) average time. Also, operations on ⇒ (union) can be implemented in

82

O(1) time. The while loop in line 1 is executed once per node (i.e., n times)

and the for loop is executed once per edge (i.e., m times). Since n ≤ m, the

time complexity is O(m). �

For the second cost model, we assume that #A is finite for any A to

which rep is applied (as would be the case if states in M are finite branching)

and that the cost of rep.s is constant. Under this, more realistic, assumption,

the time complexity of the procedure is given by the following lemma.

Lemma 28 Let R be the image under rep of the set of reachable states in M.

Under the cost model above, the procedure in figure 7.1 has time complexity

O(#I +
∑

{r∈R}

#(next .r)) on the average.

Proof Line 0 requires #I time, as rep is applied to each element in I. The

variables open, S′, and ⇒ are implemented as in the proof of lemma 27. The

while loop in line 1 is executed once per state for each element r in R and the

inner for loop is executed at most once per element in next .r, thus the time

complexity is O(#I +
∑

{r∈R}

#(next .r)) on the average. �

In the (we expect common) case where #I is a constant and the branch-

ing factor of any state is at most b (as is the case when a transition system is

given by a set of rules that when applied to a state determine its successors),

then by the above lemma, we have time complexity, O(n · b), where n is the

number of reachable states in the quotient structure. This follows from the

observation that #R = n and #(next .r) ≤ b.

83

x y

us

Figure 7.2: The graph denotes a transition system, where circles denote states,
ovals denote equivalence classes, and the transition relation is denoted by a
dashed line. Notice that neither state s nor state u can be the representative
of their class because neither state has all the branching behaviors of its class.

7.3 Set Representative Functions

It is possible to define a WEB for which there is no state representative.

The reason is that there may be an equivalence class such that no element of

the class has all of the behaviors of the class. This is the case for the simple

transition system in figure 7.2. In the figure, circles denote states, ovals denote

equivalence classes, and the transition relation is denoted by a dashed line. To

see that the partitioning of states results in a WEB, consider the well-founded

witness where rankt applied to any state is 0 and the rankl of any pair is

0, except that both rankl(s, y) and rankl(u, x) are 1. Thus, neither s nor u

can be the rep of the class, as in either case condition 4 of the definition of

state representative is violated. The intuition is that neither s nor u has all

the branching behaviors of their class. We introduce a more general type of

representative function and show that there is an extraction method which

can be used with any WEB that induces a finite quotient.

84

Definition 16 (Set Representative Function) Let M = 〈S, 99K, L〉 be a TS

and let B be a WEB on M, with well-founded witness 〈rankt , 〈W,≺〉, rankl〉.

Let rep : S → P(S); then rep is a set representative function for M with

respect to B if for all s, w ∈ S all of the following hold.

1. sBw ≡ rep.s = rep.w

2. 〈∀u ∈ rep.s :: sBu〉

3. 〈∃u ∈ rep.s :: rankt .u 4 rankt .s〉

4. 〈∃u ∈ rep.s :: rankl(u, w) ≤ rankl(s, w)〉

In this and the next section, by “condition i”, we mean condition i in

the above definition.

Lemma 29 u ∈ rep.s ⇒ rep.u = rep.s

Proof rep.u = rep.s follows from uBs by condition 1, which follows from

u ∈ rep.s, by condition 2. �

Theorem 14 Let rep be a set representative function for TS M = 〈S, 99K, L〉

with respect to WEB B. Let M′ = 〈S′,⇒, L′〉, where:

1. S′ = rep(S); and

2. L′.C = L.s, for some s in C (equivalent states have the same label); and

3. The transition relation is given by: For C, D ∈ S ′, C ⇒ D iff either

(a) C 6= D and 〈∃s, w : s ∈ C ∧ rep.w = D : s 99K w〉, or

(b) C = D and 〈∀s ∈ C :: 〈∃w : rep.w = C : s 99K w〉〉.

85

Then M′ is M/B, up to a renaming of states.

Proof We start by defining f , a function from states in M′ to states in

M/B = 〈S, ,L〉, as follows: f(rep.s) = [s]. f is a bijection between the

states ofM′ andM/B as ([s] = [u] ≡ sBu) ∧ (rep.s = rep.u ≡ sBu).

In addition, f respects the labeling functions, i.e., the label of rep.s in M′

equals the label of s, as rep.s is non-empty (condition 3 of the definition of set

representative function) and the labels of the states in rep.s equal the label

of s; the label of [s] in M/B also equals the label of s, by the definition of

quotient structures. We now show that f respects the transition relations, i.e.,

c ⇒ d ⇒ f.c f.d and p q ⇒ f−1(p) ⇒ f−1(q).

If c 6= d and c ⇒ d, then by the definition of ⇒, there is an s ∈ c such

that s 99K u and rep.u = d. Since s, u ∈ S and s 99K u, by the definition of

the quotient, [s] [u]. Now c = rep.s by lemma 29, thus f.c = f(rep.s) = [s].

Also, f.d = f(rep.u) = [u] and we have (c 6= d ∧ c ⇒ d) ⇒ f.c f.d.

If rep.s ⇒ rep.s, then choose y such that y ∈ [s] and 〈∀x ∈ [s] ::

rankt .y 4 rankt .x〉. Since ≺ is well-founded this is possible. By condition 3

(of the definition of set representative functions), we can choose b ∈ rep.s such

that rankt .b 4 rankt .y. Now, let a ∈ [s]. We show that a has a successor in [s].

Since bBa and b 99K z for some z ∈ [s], Web3 holds. If Web3a or Web3c holds,

then a has a successor in [s] and by the definition of the quotient, [s] [s].

Web3b does not hold because if it did, we would have rankt .z ≺ rankt .b,

and since rankt .b 4 rankt .y, rankt .z ≺ rankt .y, contradicting our choice of y.

Combining this with the previous result gives: c ⇒ d ⇒ f.c f.d.

If p 6= q and p q, then by the definition of quotient, there exist a

and b such that [a] = p, [b] = q, and a 99K b. Choose x ∈ [a] such that

86

〈∀y ∈ [a] :: rankl(x, b) ≤ rankl(y, b)〉. Since < is well-founded, this is possible.

By condition 4, there is a u ∈ rep.a such that rankl(u, b) ≤ rankl(x, b). We

therefore have that 〈∀y ∈ [a] :: rankl(u, b) ≤ rankl(y, b)〉. Since aBu, by

the definition of WEB, Web3 holds for a, b, u. If Web3a holds then u has a

successor in [b]. Web3b does not hold as [b] 6= [u]. Web3c does not hold as

otherwise, u has a successor, say v, such that uBv and rankl(v, b) < rankl(u, b),

contradicting the minimality of rankl(u, b). We thus have (p 6= q ∧ p

q) ⇒ f−1(p) ⇒ f−1(q).

If [s] [s], then by the definition of quotient, 〈∀x ∈ [s] :: 〈∃y ∈ [s] ::

x 99K y〉〉 which implies 〈∀x ∈ rep.s :: 〈∃y : rep.y = rep.s : x 99K y〉〉 as

x ∈ rep.s ⇒ x ∈ [s], and y ∈ [s] ≡ rep.y = rep.s. Combining this

with the previous result gives: p q ⇒ f−1(p) ⇒ f−1(q). �

In light of the above theorem, we can view set representative functions

as a generalization of quotient structures. If we define rep.s = [s], then we get

the quotient structure. If #(rep.s) = 1 for all s, then, in essence, we have a state

representative. However, it may be possible to define rep such that rep.s ⊂ [s];

it may even be possible to define rep such that #(rep.s) < ω, in which case, we

may be able to use the definition ofM′ to construct the quotient automatically.

In fact, this definition allows us to prove a completeness result: for any WEB

that induces a finite quotient, it is possible to define a representative function

that can be used to automatically extract the quotient. As before, only the

reachable part of the quotient needs to be finite.

87

7.4 Quotient Extraction for Set Representa-

tive Functions

A set s is hereditarily finite if s has a finite number of elements and each set

in s is hereditarily finite.

Theorem 15 Let rep be a set representative for TS M = 〈S, 99K, L〉 with

respect to WEB B. If

1. rep(I) is hereditarily finite and computable, where I is a set of initial

states; and

2. M/B has a finite number of reachable states from {[i] : i ∈ I}; and

3. for all s ∈ S reachable from I, rep(next .s) is hereditarily finite and

computable, where next .s is {u : s 99K u}

then the procedure in figure 7.3 will construct a TS isomorphic to M/B, re-

stricted to states reachable from {[i] : i ∈ I}.

Proof We explore the set of states reachable from rep(I) using the procedure

in figure 7.3.

The variables open and S ′ contain a set of representative state sets.

Exactly the states in M′ (which are sets of states in M) that correspond to

reachable equivalence classes in M/B are generated. We can show this by

induction: the set of generated states includes the initial states (line 0) and is

closed under successors (line 6). There are a finite number of reachable repre-

sentatives and the while loop on line 1 is taken that many times. In addition,

the two for loops on lines 4 and 6 are bounded as rep(I) and rep(next .w) are

88

0 S′, ⇒, open := rep(I), ∅, rep(I)
1 while open 6= ∅
2 choose srep ∈ open
3 open, sloop := open \{ srep }, true
4 for w ∈ srep
5 wloop := false
6 for urep ∈ rep(next .w)
7 if urep 6∈ S ′ then open := open ∪{ urep }
8 if urep = srep
9 then wloop := true
10 else S ′, ⇒ := S ′ ∪ { urep }, ⇒ ∪{〈 srep, urep 〉}
11 if (¬ wloop) then sloop := false
12 if sloop then ⇒ := ⇒ ∪{〈 srep, srep 〉}

Figure 7.3: Procedure for extracting quotient structures using set representa-
tive functions.

hereditarily finite. Thus, the procedure terminates. We have made sure to

define the transition relation as prescribed by condition 3 of theorem 14, thus

the above procedure computes the reachable part of M′. By theorem 14, this

is the reachable part of M/B, up to a renaming of states. �

Notice that all we really needed for the proof of theorem 15 is that rep

is defined on reachable states, as the above procedure does not attempt to

evaluate rep on unreachable states.

We now analyze the complexity of the above procedure. We assume

that the cost of rep.s is O(#(rep.s)). This is a reasonable cost model, as we

charge for each element in rep.s. We also assume that rep is applied only to

finite sets, i.e., I is finite as is next .w on line 6 of the procedure. We use

the same data structures as before to represent S ′, open, and ⇒. The time

complexity of the procedure is given by the following lemma.

89

Lemma 30 Let R be the image under rep of the set of reachable states in

M. Under the cost model outlined above, the procedure in figure 7.3 has time

complexity O([
∑

{i∈I}

#(rep.i)] + [
∑

{r∈R}

∑

{w∈r}

∑

{u∈next .w}

#(rep.u)])

Proof Line 0 requires O(
∑

{i∈I}

#(rep.i)) time as rep is applied to each element

in I. The variables open, S ′, and ⇒ are implemented as in the proof of

lemma 27. The while loop in line 1 is executed once for each element r in R;

the for loop on line 4 is executed once for each element w of r; the for loop

on line 6 is executed at most once for each element u of next .w and has time

complexity O(#(rep.u)) under our cost model; thus, the total time complexity

is O([
∑

{i∈I}

#(rep.i)] + [
∑

{r∈R}

∑

{w∈r}

∑

{u∈next .w}

#(rep.u)]) on the average. �

In the (we expect common) case where #I is a constant, the branching

factor of any state is at most b (as is the case when a transition system is

given by a set of rules that when applied to a state determine its successors),

and the size of a representative is p, then by the above lemma, we have time

complexity, O(n·b·p2), where n is the number of reachable states in the quotient

structure. This follows from the observation that #R = n, #(next .w) ≤ b,

and #(rep.u) = #r = p. Notice that if p = 1, then the complexity is O(n ·b)),

which matches the complexity of the state representative procedure.

We now show a completeness result for set representative functions. For

any WEB that induces a finite quotient, there is a representative function that

can be used to extract it.

Theorem 16 Let B be a WEB for M = 〈S, 99K, L〉 with well-founded witness

〈rankt , 〈α,≺〉, rankl〉 such that for all s ∈ S, next .s is finite and computable

and M/B has a finite number of reachable states. Then it is possible to define

90

a set representative function for M with respect to B such that the extraction

procedure in figure 7.3 automatically extracts the reachable part of the quotient.

Proof We show that the conditions for theorem 15 can be satisfied, thus the

procedure in figure 7.3 can be used to extract the reachable part of the quotient.

Let c be a reachable class in M/B and define Next .c = {e : c e in M/B}.

For any s ∈ c, we define rep.s = {rmin(c, e) : e ∈ Next .c}, where rmin(c, c)

is a state u ∈ c such that 〈∀w ∈ c :: rankt .u 4 rankt .w〉 and otherwise (i.e.,

e 6= c) rmin(c, e) is a state u ∈ c such that 〈∃w ∈ e : u 99K w : 〈∀x, y : x ∈

c ∧ y ∈ e : rankl(u,w) ≤ rankl(x, y)〉〉. This defines a set representative

function, as conditions 1–4 of the definition of a set representative function are

now easily verified. Furthermore, the representative function is hereditarily

finite as #(rep.s) ≤ #(Next .[s]), which is bounded by the number of reachable

states in M/B, which by assumption, is finite. Finally, by assumption, for all

s ∈ S, next .s is finite and computable, thus, rep(next .s) is hereditarily finite

and computable and the conditions on theorem 15 are satisfied.

We sometimes refer to the two extraction procedures as “algorithms”

in the dissertation. Although this is a slight abuse of notation, in this chapter

we made clear under what conditions they terminate.

7.5 Bibliographic Notes

A sketch of some of the results in this chapter appears in [MNS99]. Related

work includes the approach by Havelund and Shankar [HS96]. See the biblio-

graphic notes section of chapter 11 for further references.

91

7.6 Summary

In this chapter, an approach to verification combining the strengths of model

checking and theorem proving was presented. An overview of the approach

follows. A theorem prover is used to show a WEB (well-founded bisimulation)

on a (potentially infinite-state) system. The WEB induces a quotient structure

that has the same CTL∗ \ X properties as the original system. An on-the-fly

method can be used to extract the (reachable part of the) quotient induced

by the WEB (for finite quotients).

92

Chapter 8

ACL2

The ACL2 system consists of a programming language, a logic, and a theorem

prover. ACL2 was developed by Kaufmann and Moore [KM] and the sources

are freely available on the Web, under the GNU General Public License. The

ACL2 homepage is http://www.cs.utexas.edu/users/moore/acl2. Exten-

sive documentation, including tutorials, a user’s manual, and related papers

are available from the ACL2 homepage. ACL2 is also described in a textbook

by Kaufmann, Manolios, and Moore [KMM00b]. There is also a book of

case studies [KMM00a]. Supplementary material for both books, including

all the solutions to the exercises (over 200 in total) can be found on the Web

[KMM00d, KMM00c]. In this chapter we give an informal overview of the

ACL2 system, in order to make this dissertation more self-contained.

ACL2, the language, is an applicative, or purely functional program-

ming language. One consequence is that the rule of Leibniz, i.e., x = y ⇒

f.x = f.y, written in ACL2 as (implies (equal x y) (equal (f x) (f

y))), is a theorem. This effectively rules out side effects. The ACL2 data

types and expressions are presented in sections 8.1 and 8.2, respectively. ACL2

93

code can be made to execute efficiently. One way is to compile ACL2 code,

which can be done with any Common Lisp [Ste90] compiler. Another way is to

use stobjs, single-threaded objects. Logically, stobjs have applicative seman-

tics, but syntactic restrictions on their use allow ACL2 to produce code that

destructively modifies stobjs. Stobjs have been very useful when efficiency

is paramount, as is the case when modeling complicated computing systems

such as microprocessors. For example, Hardin, Wilding, and Greve compare

the speeds of a C model and an ACL2 model of the JEM1 (a silicon Java

Virtual Machine designed by Rockwell Collins). They found that the ACL2

model runs at about 90% of the speed of the C model [HWG98].

ACL2, the logic, is a first-order logic. The logic can be extended with

events; examples of events are function definitions, constant definitions, macro

definitions, and theorems. Logically speaking, function definitions introduce

new axioms. Since new axioms can easily render the theory unsound, ACL2

has a definitional principle which limits the kinds of functions one can define.

For example, the definitional principle guarantees that functions are total ,

i.e., that they terminate. In section 8.3.1 we discuss the issues. ACL2 also

has macros, which allow one to customize the syntax. Macros are described

in section 8.3.2. In section 8.4.1 we describe encapsulation, a mechanism for

introducing constrained functions, functions that satisfy certain constraints,

but that are otherwise undefined. We end by describing books in section 8.4.2.

Books are files of events that often contain libraries of theorems and can be

loaded by ACL2 quickly, without having to prove theorems.

ACL2, the theorem prover is described in a textbook written by Kauf-

mann, Manolios, and Moore [KMM00b]. In this dissertation, we do not

explore the details of the theorem prover.

94

8.1 Data Types

The ACL2 universe consists of atoms and conses. Atoms are atomic objects

and include the following.

1. Numbers includes integers, rationals, and complex rationals. Examples

include -1, 3/2, and #c(-1 2).

2. Characters represent the ASCII characters. Examples include #\2, #\a,

and #\Space.

3. Strings are finite sequences of characters; an example is "Hello World!".

4. Symbols consist of two strings: a package name and a symbol name.

For example, the symbol FOO::BAR has package name "FOO" and sym-

bol name "BAR". ACL2 is case-insensitive with respect to symbol and

package names. If a package name is not given, then the current package

name is used, e.g., if the current package is "FOO", then BAR denotes the

symbol FOO::BAR. The symbols t and nil are used to denote true and

false, respectively.

Conses are ordered pairs of objects. For example, the ordered pair

consisting of the number 1 and the string "A" is written (1 . "A"). The left

component of a cons is called the car and the right component is called the

cdr. You can think of conses as binary trees; the cons (1 . "A") is depicted in

figure 8.1(a). Of special interest are a class of conses called true lists. A true

list is either the symbol nil, which denotes the empty list and can be written

(), or a cons whose cdr is a true list. For example, the true list containing the

numbers 1 and 2, written (1 2), is depicted in figure 8.1(b). Also of interest

95

(a) (b) (c)

1 "A"

B 1 nil

A 0

1

2 nil

(1 . "A") (1 2) ((A . 0) (B . 1))

Figure 8.1: Examples of conses.

are association lists or alists. An alist is a true list of conses and is often used

to represent a mapping that associates the car of an element in the list with

its cdr. The alist ((A . 0) (B . 1)) is shown in figure 8.1(c).

8.2 Expressions

Expressions, which are also called terms, represent ACL2 programs and eval-

uate to ACL2 objects. We give an informal overview of expressions in this

section. This allows us to suppress many of the details while focusing on the

main ideas. Expressions depend on what we call a history, a list recording

events. One reason for this dependency is that it is possible to define new

functions (see section 8.3 on page 102) and these new functions can be used

to form new expressions. User interaction with ACL2 starts in what we call

the ground-zero history which includes an entry for the built-in functions. As

new events arise, the history is extended, e.g., a function definition extends

the history with an entry, which includes the name of the function and its

arity. We are now ready to discuss expressions. Essentially, given history h,

96

an expression is:

• A constant symbol, which includes the symbols t, nil, and symbols in

the package "KEYWORD"; constant symbols evaluate to themselves.

• A constant expression, which is a number, a character, a string, or a

quoted constant, a single quote (’) followed by an object. Numbers, char-

acters, and strings evaluate to themselves. The value of a quoted con-

stant is the object quoted. For example, the values of 1, #\A, "Hello",

’hello, and ’(1 2 3) are 1, #\A, "Hello", (the symbol) hello, and

(the list) (1 2 3), respectively.

• A variable symbol, which is any symbol other than a constant symbol.

The value of a variable symbol is determined by an environment.

• (f e1 . . . en), where f is a function expression of arity n in history

h and ei, for 1 ≤ i ≤ n, is an expression in history h. A function

expression of arity n is a symbol denoting a function of arity n (in history

h) or a lambda expression of the form (lambda (v1 . . . vn) body), where

v1, . . . , vn are distinct, body is an expression (in history h), and the

only variables occurring freely in body are v1, . . . , vn. The value of the

expression is obtained by evaluating function f in the environment where

the values of v1, . . . , vn are e1, . . . , en, respectively.

ACL2 contains many built-in, or primitive, functions. For example,

cons is a built-in function of two arguments that returns a cons whose left

element is the value of the first argument and whose right element is the value

of the second argument. Thus, the value of the expression (cons ’x 3) is

the cons (x . 3) because the value of the quoted constant ’x is the symbol

97

x and the value of the constant 3 is itself. Similarly, the value of expression

(cons (cons nil ’(cons a 1)) (cons ’x 3)) is ((nil . (cons a 1)) .

(x . 3)). There are built-in functions for manipulating all of the ACL2 data

types. Some of the built-in functions are described in table 8.2.

Comments are written with the use of semicolons: anything following

a semicolon, up to the end of the line on which the semicolon appears, is a

comment. Notice that an expression is an (ACL2) object and that an object is

the value of some expression. For example, the object (if (consp x) (car

x) nil) is the value of the expression ’(if (consp x) (car x) nil).

Expressions also include macros, which are discussed in more detail in

section 8.3.2. Macros are syntactic sugar and can be used to define what seem

to be functions of arbitrary arity. For example, + is a macro that can be used

as if it is a function of arbitrary arity. We can write (+), (+ x), and (+ x y

z) which evaluate to 0, the value of x, and the sum of the values of x, y, and

z, respectively. The way this works is that binary-+ is a function of two argu-

ments and expressions involving + are abbreviations for expressions involving

0 or more occurrences of binary-+, e.g., (+ x y z) is an abbreviation for

(binary-+ x (binary-+ y z)).

Commonly used macros include the ones listed in table 8.2.

An often used macro is cond. Cond is a generalization of if. Instead

of deciding between two expressions based on one test, as happens with if,

one can decide between any number of expressions based on the appropriate

number of tests. Here is an example.

98

Expression Value
(equal x y) T if the value of x equals the

value of y, else nil
(if x y z) The value of z if the value of x is nil,

else the value of y
(implies x y) T if the value of x is nil or the

value of y is not nil, else nil
(not x) T if the value of x is nil, else nil
(acl2-numberp x) T if the value of x is a number, else nil
(integerp x) T if the value of x is an integer, else nil
(rationalp x) T if the value of x is a rational number,

else nil
(atom x) T if the value of x is an atom, else nil
(endp x) Same as (atom x)
(zp x) T if the value of x is 0 or is not a

natural number, else nil
(consp x) T if the value of x is a cons, else nil
(car x) If the value of x is a cons,

its left element, else nil
(cdr x) If the value of x is a cons,

its right element, else nil
(cons x y) A cons whose car is the value of x

and whose cdr is the value of y
(binary-append x y) The list resulting from concatenating

the value of x and the value of y
(len x) The length of the value of x, if it is a cons,

else 0

Table 8.1: Some built-in function symbols and their values.

99

Expression Value
(caar x) The car of the car of x
(cadr x) The car of the cdr of x
(cdar x) The cdr of the car of x
(cddr x) The cdr of the cdr of x
(first x) The car of x
(second x) The cadr of x
(append x1 . . . xn) The binary-append of x1 . . . xn
(list x1 . . . xn) The list containing x1 . . . xn
(+ x1 . . . xn) Addition
(* x1 . . . xn) Multiplication
(- x y) Subtraction
(and x1 . . . xn) Logical conjunction
(or x1 . . . xn) Logical disjunction

Table 8.2: Some commonly used macros and their values.

(cond (test1 exp1)

. . .

(testn expn)

(t expn+1))

The above cond is an abbreviation for the following expression.

(if test1 exp1

. . .

(if testn expn

expn+1) . . .)

Another important macro is let. Let expressions are used to (simulta-

neously) bind values to variables and expand into lambdas. For example

100

(let ((v1 e1)

. . .

(vn en))

body)

is an abbreviation for

((lambda (v1 . . . vn)

body)

e1 . . . en)

Consider the expression (let ((x ’(1 2)) (y ’(3 4))) (append x

y)). It is an abbreviation for ((lambda (x y) (binary-append x y)) ’(1

2) ’(3 4)), whose value is the list (1 2 3 4).

Finally, let* is a macro that is used to sequentially bind values to

variables and can be defined using let, as we now show.

(let* ((v1 e1)

. . .

(vn en))

body)

is an abbreviation for

(let ((v1 e1))

(let* (. . .

(vn en))

body))

101

8.3 Definitions

In this section, we give an overview of how one goes about defining new func-

tions and macros in ACL2.

8.3.1 Functions

Functions are defined using defun. For example, we can define the successor

function, a function of one argument that increments its argument by 1, as

follows.

(defun succ (x)

(+ x 1))

The form of a defun is (defun f doc dcl1 . . . dclm (x1 . . . xn) body), where:

• x1 . . . xn are distinct variable symbols

• the free variables in body are in x1 . . . xn

• doc is a documentation string and is optional

• dcl1 . . . dclm are declarations and are optional

• functions, other than f , used in body have been previously introduced

• if f is recursive we must prove that it terminates

A common use of declarations is to declare guards. Guards are used

to indicate the expected domain of a function. Since ACL2 is a logic of total

functions, all functions, regardless of whether there are guard declarations or

not, are defined on all ACL2 objects. However, guards can be used to increase

102

efficiency because proving that guards are satisfied allows ACL2 to directly

use the underlying Common Lisp implementation to execute functions. For

example, endp and eq are defined as follows.

(defun endp (x)

(declare (xargs :guard (or (consp x) (equal x nil))))

(atom x))

(defun eq (x y)

(declare (xargs :guard (if (symbolp x) t (symbolp y))))

(equal x y))

Both endp and eq are logically equivalent to atom and equal, respectively.

The only difference is in their guards, as atom and equal both have the guard

t. If eq is only called when one of its arguments is a symbol, then it can

be implemented more efficiently than equal which can be called on anything,

including conses, numbers, and strings. Guard verification consists of proving

that defined functions respect the guards of the functions they call. If guards

are verified, then ACL2 can use efficient versions of functions.

Another common use of declarations is to declare the measure used to

prove termination of a function. Consider the following function definition.

(defun app (x y)

(declare (xargs :measure (len x)))

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

103

App is a recursive function that can be used to concatenate lists x and y.

Such a definition introduces the axiom (app x y) = body where body is the

body of the function definition. The unconstrained introduction of such ax-

ioms can render the theory unsound, e.g., consider the “definition” (defun

bad (x) (not (bad x))). The axiom introduced, namely, (bad x) = (not

(bad x)) allows us to prove nil (false). To guarantee that function defini-

tions are meaningful, ACL2 has a definitional principle which requires that

the we prove that the function terminates. This requires exhibiting a measure,

an expression that decreases on each recursive call of the function. For many

of the common recursion schemes, ACL2 can guess the measure. In the above

example, we explicitly provide a measure for function app using a declaration.

The measure is the length of x. Notice that app is called recursively only if x

is a cons and it is called on the cdr of x, hence the length of x decreases. For

an expression to be a measure, it must evaluate to an ACL2 ordinal on any

argument. ACL2 ordinals correspond to the ordinals up to ε0 in set theory.

They allow one to use many of the standard well-founded structures commonly

used in termination proofs, e.g., the lexicographic ordering on tuples of natural

numbers.

8.3.2 Macros

Macros are really useful for creating specialized notation and for abbreviating

commonly occurring expressions. Macros are functions on ACL2 objects, but

they differ from ACL2 functions in that they map the objects given as argu-

ments to expressions, whereas ACL2 functions map the values of the objects

104

given as arguments to objects. For example, if m is a macro then (m x1

. . . xn) evaluates to an expression obtained by evaluating the function corre-

sponding to the macro symbol m on arguments x1, . . . , xn (not their values,

as happens with function evaluation), obtaining an expression exp. Exp is the

immediate expansion of (m x1 . . . xn) and is then further evaluated until no

macros remain, resulting in the complete expansion of the term. The complete

expansion is then evaluated, as described previously.

Suppose that we are defining recursive functions whose termination can

be shown with measure (len x), where x is the first argument to the function.

Instead of adding the required declarations to all of the functions under con-

sideration, we might want to write a macro that generates the required defun.

Here is one way of doing this.

(defmacro defunm (name args body)

‘(defun ,name

,args

(declare (xargs :measure (len ,(first args))))

,body))

Notice that we define macros using defmacro, in a manner similar to

function definitions. Notice the use of what is called the backquote notation.

The value of a backquoted list is a list that has the same structure as the

backquoted list except that expressions preceded by a comma are replaced

by their values. For example, if the value of name is app, then the value of

‘(defun ,name) is (defun app).

We can now use defunm as follows.

105

(defunm app (x y)

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

This expands to the following.

(defun app (x y)

(declare (xargs :measure (len x)))

(if (consp x)

(cons (car x) (app (cdr x) y))

y))

When the above is processed, the result is that the function app is defined. In

more detail, the above macro is evaluated as follows. The macro formals name,

args, and body are bound to app, (x y), and (if (consp x) (cons (car x)

(app (cdr x) y)) y), respectively. Then, the macro body is evaluated. As

per the discussion on the backquote notation, the above expansion is produced.

We consider a final example to introduce ampersand markers. The

example is the list macro and its definition follows.

(defmacro list (&rest args)

(list-macro args))

Recall that (list 1 2) is an abbreviation for (cons 1 (cons 2 nil)). In

addition, list can be called on an arbitrary number of arguments; this is

accomplished with the use of the &rest ampersand marker. When this marker

is used, it results in the next formal, args, getting bound to the list of the

106

remaining arguments. Thus, the value of (list 1 2) is the value of the

expression (list-macro ’(1 2)). In this way, an arbitrary number of objects

are turned into a single object, which is passed to the function list-macro,

which in the above case returns the expression (cons 1 (cons 2 nil)).

8.4 Theorems

We now discuss how to prove theorems with ACL2. The theorem prover

contains a database of rules, included in the logical world or world, that are

used to prove theorems. The user can add a rule to the world by proving a

theorem. The user can specify what kind of rules are generated by a theorem

and this affects the future behavior of the theorem prover.

The command for submitting theorems to ACL2 is defthm. Here is an

example.

(defthm app-is-associative

(equal (app (app x y) z)

(app x (app y z))))

ACL2 proves this theorem automatically, given the definition of app, but with

more complicated theorems ACL2 often needs help. One way of providing

help is to prove lemmas which are added to the world and can then be used

in future proof attempts. For example, ACL2 does not prove the following

theorem automatically.

(defthm app-is-associative-with-one-arg

(equal (app (app x x) x)

107

(app x (app x x))))

However, if app-is-associative is in the world, then ACL2 recognizes that

the above theorem follows (it is a special case of app-is-associative). An-

other way of providing help is to give explicit hints, e.g., one can specify what

induction scheme to use, or what instantiations of previously proven theorems

to use, and so on. More generally, the form of a defthm is

(defthm name formula

:rule-classes (class1 . . . classn)

:hints . . .)

where both the :rule-classes and :hints parts are optional.

8.4.1 Encapsulation

ACL2 provides a mechanism called encapsulation by which one can intro-

duce constrained functions. For example, the following event can be used to

introduce a function that is constrained to be associative and commutative.

(encapsulate

((ac (x y) t))

(local (defun ac (x y) (+ x y)))

(defthm ac-is-associative

(equal (ac (ac x y) z)

(ac x (ac y z))))

(defthm ac-is-commutative

(equal (ac x y)

108

(ac y x))))

This event adds the axioms ac-is-associative and ac-is-commutative.

The sole purpose of the local definition of ac in the above encapsulate form is

to establish that the constraints are satisfiable. In the world after admission

of the encapsulate event, the function ac is undefined; only the two constraint

axioms are known.

There is a derived rule of inference called functional instantiation that

is used as follows. Suppose f is a constrained function with constraint φ and

suppose that we prove theorem ψ. Further suppose that g is a function that

satisfies the constraint φ, with f replaced by g, then replacing f by g in ψ

results in a theorem as well. That is, any theorem proven about f holds for

any function satisfying the constraints on f . For example, we can prove the

following theorem about ac.

(defthm commutativity-2-of-ac

(equal (ac y (ac x z))

(ac x (ac y z)))

:hints (("Goal"

:in-theory (disable ac-is-associative)

:use ((:instance ac-is-associative)

(:instance ac-is-associative

(x y) (y x))))))

We can now use the above theorem and the derived rule of inference to show

that any associative and commutative function satisfies the above theorem.

For example, here is how we show that * satisfies the above theorem.

109

(defthm commutativity-2-of-*

(equal (* y (* x z))

(* x (* y z)))

:hints (("Goal"

:by (:functional-instance

commutativity-2-of-ac

(ac (lambda (x y) (* x y)))))))

ACL2 generates and establishes the necessary constraints, that * is associative

and commutative.

Encapsulation and functional instantiation allow quantification over

functions and thus have the flavor of a second order mechanism, although

they are really first-order. For the full details see [BGKM91, KM01].

8.4.2 Books

A book is a file of ACL2 events analogous to a library. The ACL2 distribu-

tion comes with many books, including books for arithmetic, set theory, data

structures, and so on. The events in books are certified as admissible and can

be loaded into subsequent ACL2 sessions without having to replay the proofs.

This makes it possible to structure large proofs and to isolate related theorems

into libraries. Books can include local events that are not included when books

are included, or loaded, into an ACL2 session.

110

8.5 Bibliographic Notes

ACL2 is the successor to the Boyer-Moore theorem prover Nqthm. It has

been developed by Kaufmann and Moore with significant early contributions

by Boyer. From the ACL2 Web page, http://www.cs.utexas.edu/users/-

moore/acl2, the sources are freely available under the GNU General Public

License. There are also over 3 megabytes of online information available,

including extensive documentation, tutorials, a user’s manual, and related pa-

pers. ACL2 is also described in a textbook [KMM00b] and a book of case

studies [KMM00a]. ACL2 has been used on various large projects, including

the verification of floating point [MLK98, Rus97, Rus99, Rus98, RF00], micro-

processor verification [Hun89, HB92, BH97, HB97, SH97, SH98, Saw99, Gre98,

GWH00, HWG98, WGHar, BKM96], and programming languages [Moo96,

BT00]. There are various papers describing aspects the internals of ACL2,

including single-threaded objects [BM99], encapsulation [KM01], and the base

logic [KM97].

8.6 Summary

In this chapter, we described the ACL2 system, which consists of a program-

ming language, a first-order logic, and a theorem prover. We discussed the data

types residing in the ACL2 universe in section 8.1. In section 8.2 we discussed

expressions, also called terms, which represent ACL2 programs and evaluate

to ACL2 objects. We then explored the issues surrounding definitions in sec-

tion 8.3. For example, we showed why allowing arbitrary definitions can lead to

unsoundness and outlined the definitional principle, a principle which guaran-

111

tees that defined functions do not render the theory unsound, in section 8.3.1.

Macros are syntactic sugar and are really useful for creating specialized nota-

tion and for abbreviating commonly occurring expressions. Macros were briefly

described in section 8.3.2. In section 8.4 we showed how one proves theorems

in ACL2. In section 8.4.1 we discussed encapsulation, a mechanism for intro-

ducing constrained functions, and functional instantiation, a derived rule of

inference that can be used with constrained functions and can be thought of as

allowing a kind of quantification over functions. In section 8.4.2 we discussed

ACL2 books, files of events analogous to libraries. There is extensive docu-

mentation on ACL2, including many large-scale case studies; some of relevant

references are given in section 8.5.

112

Chapter 9

Model Checking

In this chapter, we define a model checker for the Mu-Calculus and CTL in

ACL2. The model checker is used for the case studies in part IV. We start by

developing ACL2 books on set theory, fixpoint theory, and relation theory. We

then encode transition systems and the Mu-Calculus into ACL2. This includes

a definition of the syntax and semantics of the Mu-Calculus, as well as proofs

that the fixpoint operators of the Mu-Calculus actually compute fixpoints.

Finally, we embed CTL into ACL2 and define a translator from CTL to the

Mu-Calculus.

9.1 Set Theory

In this section, we develop some set theory. We represent sets as lists and

define an equivalence relation on lists that corresponds to set equality. It

turns out that we do not have to develop a “general” theory of sets; a theory

of flat sets, i.e., sets whose elements are compared by equal, will do. For

example, in our theory of sets, ’(1 2) is set equal to ’(2 1), but ’((1 2))

113

is not set equal to ’((2 1)).

We develop some of the set theory in the package SETS and the rest in

the package FAST-SETS, in subsections labeled by the package names.

9.1.1 SETS

We use the simplest definitions of sets and operations on them that we can

think of in order to simplify the theorem proving process. We then define

functions that are more efficient and prove the rewrite rules that allow us to

rewrite the efficient functions into the simpler ones. The more efficient versions

are often not equal to the original functions, but they are equal with respect

to set equality. Using congruence-based reasoning in ACL2, we can rewrite

the complicated versions to the simpler ones, if the context is right. In this

way, once rewritten, all the theorem proving is about the simple functions, but

the execution uses the efficient versions.

The definitions of in (set membership), =< (subset), and == (set equal-

ity) follow.

(defun in (a X)

(cond ((endp X) nil)

((equal a (car X)) t)

(t (in a (cdr X)))))

(defun =< (X Y)

(cond ((endp X) t)

(t (and (in (car X) Y)

(=< (cdr X) Y)))))

114

(defun == (X Y)

(and (=< X Y)

(=< Y X)))

We prove that == is an equivalence relation. This is communicated to

ACL2 with the following event, using the macro defequiv.

(defequiv ==)

The defequiv form generates the required defthms. The proof depends on

lemmas about =< (e.g., that =< is transitive). In this chapter, we present what

we consider to be the main lemmas, suppressing many of the details.

We use ACL2’s congruence-based reasoning, which is an extension of

the substitution of equals for equals where arbitrary equivalence relations can

be used instead of equality. For example, suppose we define set-union to be

append. As the name implies, we plan to use set-union to compute the union

of two sets. We might want to prove

(implies (== X Z)

(equal (set-union X Y) (set-union Z Y)))

so that ACL2 can replace x by z in (set-union x y), if it can establish (==

x z). Letting x be (1 1) and z be (1), it is easy to see that this is not a

theorem. However, the following is a theorem.

(implies (== X Z)

(== (set-union X Y) (set-union Z Y)))

115

If stored as a congruence rule, ACL2 can use this theorem to substitute z for (a

set equal) x in (set-union x y), in a context where it is enough to preserve

==. A congruence rule can be proven using the macro defcong. The above

theorem can be written (defcong == == (set-union x y) 1). The general

form of a defcong is

(defcong eq1 eq2 (f x1 . . . xn) i)

where 1 ≤ i ≤ n and eq1 and eq2 are known equivalence relations. The

defcong abbreviates the theorem

(implies (eq1 x y)

(eq2 (fx1 . . . x . . . xn)

(fx1 . . . y . . . xn)))

where x, y replace xi.

We prove the following.

1. (defcong == equal (in a X) 2)

2. (defcong == equal (=< X Y) 1)

3. (defcong == equal (=< X Y) 2)

4. (defcong == == (cons a X) 2)

We now define set-union (which is equivalent to binary-append).

(defun set-union (X Y)

(if (endp X)

Y

116

(cons (car X) (set-union (cdr X) Y))))

We prove the following results.

1. (equal (in a (set-union X Y)) (or (in a X) (in a Y)))

2. (=< X (set-union Y X))

3. (== (set-union X Y) (set-union Y X))

4. (equal (== (set-union X Y) Y) (=< X Y))

5. (defcong == == (set-union X Y) 1)

6. (equal (=< (set-union Y Z) X) (and (=< Y X) (=< Z X)))

The definition of intersect, a function which computes the intersection

of two sets, follows.

(defun intersect (X Y)

(cond ((endp X) nil)

((in (car X) Y)

(cons (car X) (intersect (cdr X) Y)))

(t (intersect (cdr X) Y))))

We prove the following results.

1. (equal (in a (intersect X Y)) (and (in a X) (in a Y)))

2. (== (intersect X Y) (intersect Y X))

3. (implies (=< X Y) (== (intersect X Y) X))

117

4. (implies (or (=< Y X) (=< Z X))

(=< (intersect Y Z) X))

The definition of minus, a function which computes the set difference

of two sets, follows.

(defun minus (X Y)

(cond ((endp X) nil)

((in (car X) Y)

(minus (cdr X) Y))

(t (cons (car X) (minus (cdr X) Y)))))

We prove the following results.

1. (implies (=< X Y) (equal (minus X Y) nil))

2. (implies (=< X Y) (=< (minus X Z) Y))

The functions set-complement, remove-dups, cardinality, and s<

(strict subset) are defined below.

(defun set-complement (X U) (minus U X))

(defun remove-dups (X)

(cond ((endp X) nil)

((in (car X) (cdr X))

(remove-dups (cdr X)))

(t (cons (car X)

(remove-dups (cdr X))))))

118

(defun cardinality (X) (len (remove-dups X)))

(defun s< (X Y) (and (=< X Y) (not (=< Y X))))

We prove:

(implies (s< X Y)

(< (len (remove-dups X)) (len (remove-dups Y))))

9.1.2 FAST-SETS

Although the definitions of the basic set operations defined above are simple

(thus, good for reasoning about sets), some are not appropriate for execu-

tion. For example, set-union is not tail-recursive, hence, even if compiled,

we can easily get stack overflows. In this section, we define functions that are

more appropriate for execution and prove rewrite rules that transform the new,

efficient versions to the old, simpler versions in the appropriate context (specif-

ically, when it is enough to preserve ==). This approach is compositional , i.e.,

it allows us to decompose proof obligations of a system into proof obligations

of the components of the system. Compositional reasoning is routinely used

by ACL2 experts and is essential to the success of large verification efforts.

The functions we define below have the same names as their analogues,

but are in the package FAST-SETS. The definition of set-union, in the package

FAST-SETS, follows.

(defun set-union (X Y)

(cond ((endp X) Y)

119

((in (car X) Y)

(set-union (cdr X) Y))

(t (set-union (cdr X) (cons (car X) Y)))))

We prove the following.

(== (set-union X Y) (sets::set-union X Y))

Notice that set-union differs from sets::set-union, e.g., (set-union

’(1 1) ’(1)) is (1) whereas (sets::set-union ’(1 1) ’(1) is (1 1 1),

but they are ==. The above rule allows ACL2 to replace occurrences of set-

-union by sets::set-union in a context where it is enough to preserve ==.

The definition of intersect follows. Note that its auxiliary function is

tail recursive.

(defun intersect-aux (X Y Z)

(cond ((endp X) Z)

((in (car X) Y)

(intersect-aux (cdr X) Y (cons (car X) Z)))

(t (intersect-aux (cdr X) Y Z))))

(defun intersect (X Y) (intersect-aux X Y nil))

We prove the following.

(== (intersect X Y) (sets::intersect X Y))

We also define minus, a tail-recursive version of sets::minus, and prove

(== (minus X Y) (sets::minus X Y)).

Alternate definitions of remove-dups and cardinality are given below.

120

(defun remove-dups (X) (set-union X nil))

(defun cardinality (X) (len (remove-dups X)))

We prove the following.

(equal (cardinality X) (sets::cardinality X))

9.2 Fixpoint Theory

In this section, we develop an ACL2 book on the theory of fixpoints, in the

package SETS. We do this by using encapsulation to reason about a constrained

function, f, of one argument. Later, we show that certain functions compute

fixpoints by using functional instantiation. An advantage of using encapsula-

tion and functional instantiation is that we can ignore irrelevant issues, e.g.,

in a later section we show that certain functions of several arguments compute

fixpoints by functional instantiation using f, a function of one argument.

We start by constraining functions f and S so that f is monotonic and

when f is applied to a subset of S, it returns a subset of S. Since functions

defined in ACL2 are total, we cannot say that f is a function whose domain

is the powerset of S. We could add hypotheses stating that all arguments to

f are of the right type to the theorems that constrain f, but this generality is

not needed and makes it slightly more cumbersome to prove theorems about

f. The definitions of the constrained functions follow.

(encapsulate

((f (X) t)

121

(S () t))

(local (defun f(X) (declare (ignore X)) nil))

(local (defun S() nil))

(defthm f-is-monotonic

(implies (=< X Y)

(=< (f X) (f Y))))

(defthm S-is-top

(=< (f X) (set-union X (S)))))

We now define applyf, a function that applies f a given number of

times.

(defun applyf (X n)

(if (zp n)

X

(if (== X (f X))

X

(applyf (f X) (1- n)))))

From the Tarski-Knaster theorem (on page 18) and the remark follow-

ing it, we expect that lfpf and gfpf, defined below, are the least and greatest

fixpoints, respectively.

(defabbrev lfpf () (applyf nil (cardinality (S))))

(defabbrev gfpf () (applyf (S) (cardinality (S))))

We now prove the ACL2 version of the Tarski-Knaster theorem. We

start by proving that lfpf is the least fixpoint.

122

1. (== (f (lfpf)) (lfpf))

2. (implies (=< (f X) X) (=< (lfpf) X))

We also prove that gfpf is the greatest fixpoint:

1. (== (f (gfpf)) (gfpf))

2. (implies (and (=< X (S)) (=< X (f X)))

(=< X (gfpf)))

9.3 Relation Theory

In this section we develop a book, in the package RELATIONS, on the theory of

relations. We represent relations as alists which map an element to the set of

elements it is related to. A recognizer for relations is the following.

(defun relationp (r)

(cond ((atom r) (eq r nil))

(t (and (consp (car r))

(true-listp (cdar r))

(relationp (cdr r))))))

The definition of image, a tail-recursive function that computes the

image of a set under a relation, follows.

(defun value-of (x alist)

(cdr (assoc-equal x alist)))

123

(defun image-aux (X r tmp)

(if (endp X)

tmp

(image-aux (cdr X) r

(set-union (value-of (car X) r) tmp))))

(defun image (X r)

(image-aux X r nil))

Similarly, we define range, a function that determines the range of a

relation.

(defun range-aux (r tmp)

(if (consp r)

(range-aux (cdr r) (set-union (cdar r) tmp))

tmp))

(defun range (r)

(range-aux r nil))

We also define inverse so that it is tail recursive and computes the

inverse of a relation.

(defun add (x Y)

(if (in x Y)

Y

(cons x Y)))

124

(defun inverse-step-aux (st r tmp)

(if (endp r)

tmp

(inverse-step-aux

st

(cdr r)

(if (in st (cdar r))

(add (caar r) tmp)

tmp))))

(defun inverse-step (st r)

(inverse-step-aux st r nil))

(defun inverse-aux (r ran tmp)

(if (endp ran)

tmp

(inverse-aux

r

(cdr ran)

(acons (car ran) (inverse-step (car ran) r) tmp))))

(defun inverse (r)

(inverse-aux r (range r) nil))

The following function checks if the domain of its first argument (a

relation) is a subset of its second argument.

125

(defun rel-domain-subset (r X)

(cond ((endp r) t)

(t (and (in (caar r) X)

(rel-domain-subset (cdr r) X)))))

The following function checks if the range of its first argument (a rela-

tion) is a subset of its second argument.

(defun rel-range-subset (r X)

(cond ((endp r) t)

(t (and (=< (cdar r) X)

(rel-range-subset (cdr r) X)))))

We prove the following.

1. (implies (rel-range-subset r X) (=< (image Y r) X))

2. (implies (and (rel-range-subset r X) (=< X Y))

(rel-range-subset r Y))

9.4 Transition Systems

We define the notion of a transition system, or model, in ACL2. The functions

defined in this section, as well as the next two sections, are in the package

MODEL-CHECK. An ACL2 model is a five-tuple because it is useful to precompute

the inverse relation of the transition relation and the cardinality of the set of

states. The inverse transition relation relates a pair of states if, in one step,

the first state can be reached from the second. A function that creates a model

is defined below.

126

(defun make-model (s r l)

(list s r l (inverse r) (cardinality s)))

We define modelp, a recognizer for models. We also define the acces-

sor functions states, relation, s-labeling, inverse-relation, and size

to access the states, transition relation, labeling relation, inverse transition

relation, (atomic proposition) labeling relation, and cardinality of the states,

respectively.

9.5 Mu-Calculus Syntax

We are now ready to start embedding the Mu-Calculus in ACL2. As defined on

page 17, there is a restriction on formulas of the form µY f and νY f that f be

monotone in Y ; we do not require this. We return to the issue of monotonicity

in the next section.

In figure 9.1, we define the syntax of the Mu-Calculus (v corresponds

to the set of variables). Mu-symbolp is used because we do not want to decide

the meaning of formulas such as ’(mu + f) and we tag predicates by using

eval.

We also define translate-f, a function that allows us to write formulas

in an extended language, by translating its input into the Mu-Calculus. The

extended syntax contains AX (’(AX f) is an abbreviation for ’(∼ (EX (∼

f)))) and the infix operators | (which abbreviates +), => and -> (both denote

implication), and =, <->, and <=> (all of which denote equality).

We define (M-calc-sentencep f), which recognizes sentences (formu-

las with no free variables) in the extended syntax.

127

(defun mu-symbolp (s)
(and (symbolp s)

(not (in s ’(+ & MU NU eval true false)))))

(defun basic-m-calc-formulap (f v)
(cond ((symbolp f)

(or (in f ’(true false))
(and (mu-symbolp f)

(in f v))))
((and (consp f)

(equal (car f) ’eval))
t)

((equal (len f) 2)
(and (in (first f) ’(∼ EX))

(basic-m-calc-formulap (second f) v)))
((equal (len f) 3)
(let ((first (first f))

(second (second f))
(third (third f)))

(or (and (in second ’(& +))
(basic-m-calc-formulap first v)
(basic-m-calc-formulap third v))

(and (or (in first ’(MU NU)))
(mu-symbolp second)
(basic-m-calc-formulap
third (cons second v))))))))

Figure 9.1: The syntax of the Mu-Calculus.

128

9.6 Mu-Calculus Semantics

The semantics of a Mu-Calculus formula, as explained in section 2.4.1, page 17,

is given with respect to a model and a valuation assigning a subset of the

states to variables. The semantics of an expression denoting a predicate is

the set of states that satisfy the predicate. We use ACL2 expressions to

denote predicates. The semantics of a variable is its value under the valu-

ation. Conjunctions, disjunctions, and negations correspond to intersections,

unions, and complements, respectively. EXf is true at a state if the state

has some successor that satisfies f . Finally, µ’s and ν’s correspond to least

and greatest fixpoints, respectively. Note that the semantics of a sentence (a

formula with no free variables) does not depend on the initial valuation. The

formal definition is given in figure 9.2; some auxiliary functions and abbre-

viations used in the figure follow. We point out that defabbrev generates a

macro, but one that expands the way a function definition would. In addition

the mutual-recursion form is used to define mutually-recursive functions in

ACL2.

The function evl used in semantics-EVAL-aux, below, is an evaluator,

a function that can evaluate terms constructed from a fixed set of functions

symbols. The idea is that once a set of predicates, to be used for specifying

temporal properties, is chosen, then evl is defined to be an evaluator for these

predicates. The macro defevaluator, provided by ACL2, can be used for this

purpose.

(defun semantics-EVAL-aux (l f fs)

(if (endp l)

fs

129

(let ((s (caar l))

(ls (cdar l)))

(if (evl (list f (list ’quote ls)) nil)

(semantics-EVAL-aux (cdr l) f (cons s fs))

(semantics-EVAL-aux (cdr l) f fs)))))

(defun semantics-EVAL (m f)

(semantics-EVAL-aux (s-labeling m) (second f) nil))

(defabbrev semantics-EX (m f val)

(image (mu-semantics m (second f) val)

(inverse-relation m)))

(defabbrev semantics-NOT (m f val)

(set-complement (mu-semantics m (second f) val)

(states m)))

(defabbrev semantics-AND (m f val)

(intersect (mu-semantics m (first f) val)

(mu-semantics m (third f) val)))

(defabbrev semantics-OR (m f val)

(set-union (mu-semantics m (first f) val)

(mu-semantics m (third f) val)))

(defabbrev semantics-fix (m f val s)

(compute-fix-point

130

m (third f) (put-assoc-equal (second f) s val)

(second f) (size m)))

(defabbrev semantics-MU (m f val)

(semantics-fix m f val nil))

(defabbrev semantics-NU (m f val)

(semantics-fix m f val (states m)))

Now, we are ready to define the main function:

(defun semantics (m f)

(if (m-calc-sentencep f)

(mu-semantics m (translate-f f) nil)

"not a valid mu-calculus formula"))

Semantics returns the set of states in m satisfying f, if f is a valid Mu-Calculus

formula, otherwise, it returns an error string.

As an example, consider a Mu-Calculus formula that holds exactly in

those states where it is possible to reach an e-state (i.e., a state whose label

satisfies the predicate denoted by expression e). The idea is to start with

e-states, then add states that can reach an e-state in one step, two steps,

and so on. When you are adding states, this corresponds to a least fixpoint

computation. One way to denote this is µY (e ∨ EXY); it may help to think

about “unrolling” the fixpoint.

As another example contemplate a formula that holds exactly in those

states where every reachable state is an e-state. The idea is to start with e-

states, then remove states that can reach a non e-state in one step, two steps,

131

(mutual-recursion
(defun mu-semantics (m f val)

(cond ((eq f ’true) (states m))
((eq f ’false) nil)
((mu-symbolp f)
(value-of f val))

((and (consp f)
(equal (car f) ’eval))

(semantics-EVAL m f))
((equal (len f) 2)
(cond ((equal (first f) ’EX)

(semantics-EX m f val))
((equal (first f) ’∼)
(semantics-NOT m f val))))

((equal (len f) 3)
(cond ((equal (second f) ’&)

(semantics-AND m f val))
((equal (second f) ’+)
(semantics-OR m f val))

((equal (first f) ’MU)
(semantics-MU m f val))

((equal (first f) ’NU)
(semantics-NU m f val))))))

(defun compute-fix-point (m f val y n)
(if (zp n)

(value-of y val)
(let ((x (value-of y val))

(new-x (mu-semantics m f val)))
(if (== x new-x)

x
(compute-fix-point
m f (put-assoc-equal y new-x val) y (- n 1))))))
; note that the valuation is updated

)

Figure 9.2: The semantics of the Mu-Calculus.

132

and so on. When you are removing states, this corresponds to a greatest

fixpoint computation. One way to denote this is νY (e ∧ ¬EX¬Y); as before

it may help to think about unrolling the fixpoint.

The model checking algorithm we presented is global, meaning that it

returns the set of states satisfying a Mu-Calculus formula. Another approach

is to use a local model checking algorithm. The difference is that the local

algorithm is also given as input a state and checks whether that particular

state satisfies the formula; in some cases this can be done without exploring

the entire structure, as is required with the global approach.

The model checking algorithm we presented is extensional, meaning

that it represents both the model and the sets of states it computes explicitly.

If any of these structures gets too big—since a model is exponential in the size

of the program text, state explosion is common—resource constraints make

the problem practically unsolvable. Symbolic model checking [CBM89, Pix90,

McM93, BCM+92, TSL+90] is a technique that has greatly extended the

applicability of model checking. The idea is to use compact representations of

the model and of sets of states. This is done by using BDDs (binary decision

diagrams), which on many examples have been shown to represent states and

models very compactly [Bry92]. BDDs can be thought of as deterministic

finite-state automata (see any book covering Automata Theory, e.g., [HU79]).

A Boolean function, f , of n variables can be thought of as a set of n-length

strings over the alphabet {0, 1}. We start by ordering the variables; in this

way an n-length string over {0, 1} corresponds to an assignment of values to

the variables. We can represent f by an automaton whose language is the set

of strings that make f true. We can now use the results of automata theory,

e.g., deterministic automata can be uniquely minimized in O(n log n) time (the

133

reason why nondeterministic automata are not used is that minimizing them

is a PSPACE-complete problem), hence, we have a canonical representation

of Boolean functions. Automata that correspond to Boolean functions have

a simpler structure than general automata (e.g., they do not have cycles);

BDDs are a data structure that exploits this structure. Sets of states as well

as transition relations can be thought of as Boolean functions, so they too can

be represented using BDDs. Finally, note that the order of the variables can

make a big (exponential) difference in the size of the BDD corresponding to

a Boolean function. Symbolic model checking algorithms, even for temporal

logics such as CTL whose expressive power compared with the Mu-Calculus

is quite limited, are based on the algorithm we presented (except that BDDs

are used to represent sets of states and models).

Now that we have written down the semantics of the Mu-Calculus in

ACL2, we have an executable model checker. But have we embedded the

Mu-Calculus into ACL2 correctly? To answer this question, we need to prove

theorems in a system that includes both ACL2 and set theory. No such (me-

chanical) system exists, but if it did, the theorem relating the set-theoretic

presentation of the Mu-Calculus to the ACL2 version would be somewhat com-

plicated by the logical differences between ACL2 and set theory, e.g., functions

in ACL2 are total. However, we can check certain “saneness” properties. We

have already shown that our ACL2 set-theoretic functions satisfy some of the

standard properties (e.g., that set-union is associative and commutative with

respect to ==). We also show that MU formulas are least fixpoints (if the for-

mulas are monotonic in the variable of the MU and certain “type” conditions

hold), and similarly NU formulas are greatest fixpoints. We start by defining

what it means to be a fixpoint.

134

(defun fixpointp (m f val x s)

(== (mu-semantics m f (put-assoc-equal x s val)) s))

(defun post-fixpointp (m f val x s)

(=< (mu-semantics m f (put-assoc-equal x s val)) s))

(defun pre-fixpointp (m f val x s)

(=< s (mu-semantics m f (put-assoc-equal x s val))))

We use encapsulation to constrain the functions sem-mon-f, good-val,

good-var, and good-model so that the following hold.

• Sem-mon-f is semantically monotone in good-var.

• Good-val is “reasonable”, i.e., the value of each variable is a subset of

the state space.

• Good-var is “reasonable”, i.e., it satisfies mu-symbolp.

• Good-model is “reasonable”, i.e., its size field corresponds to the size of

the state space, the range of the transition relation is a subset of the

state space, the domain of the labeling relation is a subset of the state

space, and the range of the inverse transition relation is a subset of the

state space.

We prove the following fixpoint theorems by functionally instantiating

the main theorems in the book fixpoints.

(fixpointp (good-model) (sem-mon-f) (good-val) (good-var)

135

(mu-semantics (good-model)

(list ’mu (good-var) (sem-mon-f))

(good-val)))

(fixpointp (good-model) (sem-mon-f) (good-val) (good-var)

(mu-semantics (good-model)

(list ’nu (good-var) (sem-mon-f))

(good-val)))

We prove that MU formulas are least fixpoints and that NU formulas are

greatest fixpoints.

(implies

(post-fixpointp (good-model) (sem-mon-f)

(good-val) (good-var) x)

(=< (mu-semantics (good-model)

(list ’mu (good-var) (sem-mon-f))

(good-val))

x))

(implies

(and (=< x (states (good-model)))

(pre-fixpointp (good-model) (sem-mon-f)

(good-val) (good-var) x))

(=< x (mu-semantics (good-model)

(list ’nu (good-var) (sem-mon-f))

(good-val))))

136

9.7 Temporal Logic

The syntax of CTL formulas (see section 2.4 on page 17) is embedded in

ACL2 as shown in figure 9.3. Notice that the ACL2 syntax is extended in

order to simplify the writing of specifications, e.g., the operators A, F, and G

are allowed.

We define a translator from CTL into the Mu-Calculus in figure 9.4. The

translator is based on the following facts relating CTL and the Mu-Calculus.

• EFf ≡ µY (f ∨ EXY)

• EGf ≡ νY (f ∧ EXY)

• AFf ≡ µY (f ∨ AXY)

• AGf ≡ νY (f ∧ AXY)

• E(fUg) ≡ µY (g ∨ (f ∧ EXY))

• A(fUg) ≡ µY (g ∨ (f ∧ AXY))

9.8 Bibliographic Notes

Model checking algorithms were introduced by Clarke and Emerson and Queille

and Sifakis [CE81, Eme81, QS82]. The propositional Mu-Calculus is due

to Kozen [Koz83, Par69, EC80, EL86, EJS93, Eme97]. Many temporal log-

ics, e.g., CTL, LTL, and CTL∗ can be translated into the Mu-Calculus. In

addition, the algorithm that decides the Mu-Calculus is used for symbolic

(BDD-based) model checking [CBM89, Pix90, McM93, BCM+92, TSL+90],

137

(defabbrev u-formulap (f)
(and (equal (len f) 3)

(ctl-formulap (first f))
(ctl-formulap (third f))
(equal ’u (second f))))

(defun ctl-formulap (f)
(cond ((symbolp f)

(in f ’(true false)))
((and (consp f)

(equal (car f) ’eval))
t)

((equal (len f) 2)
(and (in (first f) ’(∼ EX AX EF EG AF AG))

(ctl-formulap (second f))))
((equal (len f) 3)
(let ((first (first f))

(second (second f))
(third (third f)))

(or (and (in second ’(& +))
(ctl-formulap first)
(ctl-formulap third))

(and (in first ’(E A))
(equal second ’∼)
(u-formulap third)))))

((equal (len f) 4)
(and (in (first f) ’(A E))

(u-formulap (cdr f))))))

Figure 9.3: The syntax of CTL.

138

(defun ctl-2-muc (f)
(cond
((or (symbolp f)

(and (consp f) (equal (car f) ’eval)))
f)

((equal (len f) 2)
(let ((first (first f))

(second (second f)))
(cond ((in first ’(∼ EX AX))

(list first (ctl-2-muc second)))
((equal first ’EF)
‘(mu y (,(ctl-2-muc second) + (EX y))))

((equal first ’EG)
‘(nu y (,(ctl-2-muc second) & (EX y))))

((equal first ’AF)
‘(mu y (,(ctl-2-muc second) + (AX y))))

((equal first ’AG)
‘(nu y (,(ctl-2-muc second) & (AX y)))))))

((equal (len f) 3)
(let ((first (first f))

(second (second f))
(third (third f)))

(cond ((in second ’(& +))
(list (ctl-2-muc first) second (ctl-2-muc third)))

((equal first ’E) ; translate (E ∼ (f U g))
(list ’∼ (ctl-2-muc (cons ’A third))))

(t ; translate (A ∼ (f U g))
(list ’∼ (ctl-2-muc (cons ’E third)))))))

((equal (len f) 4)
(let ((second (second f))

(fourth (fourth f)))
(cond ((equal (first f) ’E) ; translate (E f U g)

‘(mu y (,(ctl-2-muc fourth) +
(,(ctl-2-muc second) & (EX y)))))

(t ; translate (A f U g)
‘(mu y (,(ctl-2-muc fourth) +

(,(ctl-2-muc second) & (AX y))))))))))

Figure 9.4: A translator from CTL to the Mu-Calculus.

139

a technique that has greatly extended the applicability of model checking.

The idea of using temporal logic as a specification language is due to Pnueli

[Pnu77]. Model checking has been successfully applied to automatically verify

many reactive systems and is now being used by hardware companies as part

of their verification process. CTL is used as a specification language in model

checkers such as SMV [McM93] and VIS [RGA+96].

The work reported in this chapter has been published in [Man00c].

9.9 Summary

We defined the Mu-Calculus, CTL, and a translator from CTL to the Mu-

Calculus in ACL2. The result is a model checker for both the Mu-Calculus

and CTL. The model checker is used in the case studies in part IV. We proved

that the model checker is correct. This required developing ACL2 books on set

theory, fixpoint theory, and relation theory. These books were used to show

that µ’s and ν’s really do compute least and greatest fixpoints, respectively.

140

Part IV

Case Studies and Conclusions

Chapter 10

Introduction

In this part, we describe two case studies. In chapter 11 we describe the verifi-

cation of the alternating bit protocol, a simple communications protocol. We

use our approach to combining theorem proving and model checking to prove

a stuttering bisimulation on the alternating bit protocol, which is then used

to extract a quotient, which is infinite-state, but has a finite set of reachable

states. The quotient is then model checked with our model checker.

The second case study is the verification of a simple pipelined machine

due to Sawada [Saw00]. We discuss notions of correctness and their impor-

tance in some detail and compare our notion of correctness, which is based

on stuttering bisimulation, to the variant of the Burch and Dill notion of cor-

rectness [BD94] used by Sawada. We show, with mechanical proof, that the

Burch and Dill notion can be satisfied by incorrect machines, e.g., machines

that deadlock. In contrast, we argue that no incorrect machine satisfies our no-

tion of correctness. In addition, we give an overview of the libraries of ACL2

theorems used and explain how to automate much of the verification, e.g.,

the verification of the pipelined machine is automatic. We examine various

143

variants of the pipelined machine including machines with exceptions, inter-

rupts (which lead to non-determinism), and netlist (gate-level) descriptions

and show that our notion of correctness applies to these extensions. Many

of the variant machines are verified using the compositional proof rule for

stuttering bisimulations from part II.

144

Chapter 11

Alternating-Bit Protocol

11.1 Introduction

We use our approach to combining theorem proving and model checking to

verify the alternating bit protocol [BSW69]. This protocol cannot be directly

model checked because it has an infinite-state space; however, using the theo-

rem prover ACL2, we show that the protocol is stuttering bisimilar to a small

finite-state system, which we model check. We also show that the alternating

bit protocol is a refinement of a non-lossy system.

We chose the alternating bit protocol because it has been used as a

benchmark for verification efforts. The alternating bit protocol has a simple

description but lengthy hand proofs of correctness (e.g., [BG94]), it is infinite-

state, and its specification involves a complex fairness property. We have found

it to be surprisingly difficult to verify mechanically; many previous papers

verify various versions of the protocol (e.g., [Mil90, CE81, COR+95, BG96,

MN95]), but all make simplifying assumptions, either by restricting channels

145

communication

systemsmsg rmsg

ReceiverSender
rvalidsvalid

Figure 11.1: Protocol from sender’s and receiver’s view.

to be bounded buffers, by ignoring data, or by ignoring fairness issues.

In section 11.2, we present the ACL2 formalization of the alternating

bit protocol. In section 11.3, we present the proof of correctness and in sec-

tion 11.4, we discuss related work.

11.2 Protocol

The alternating bit protocol is used to implement reliable communication over

faulty channels. We present the protocol from the view of the sender and

receiver first and then in complete detail. The sender interacts with the com-

munication system via the register smsg and the flag svalid . The sender can

assign a message to smsg provided it is invalid, i.e., svalid is false. The re-

ceiver interacts with the communication system via the register rmsg and the

flag rvalid . The receiver can read rmsg provided it is valid, i.e., rvalid is not

false; when read, rmsg is invalidated. Figure 11.1 depicts the protocol from

this point of view.

The communication system consists of the flags sflag and rflag as well

as the two lossy, unbounded, and FIFO channels s2r and r2s . The idea behind

the protocol is that the contents of smsg are sent across s2r until an acknowl-

edgment for the message is received on r2s , at which point a new message can

146

smsg

svalid

sflag

Sender

rflag

rvalid Receiver

rmsgs2r

r2s

Figure 11.2: Alternating Bit Protocol.

be transmitted. Similarly, acknowledgments for a received message are sent

across r2s until a new message is received. In order for the receiving end to

distinguish between copies of the same message and copies of different mes-

sages, each message is tagged with sflag before being placed on s2r . When

a new message is received, rflag is assigned the value of the message tag and

gets sent across r2s ; this also allows the sending end to distinguish acknowl-

edgments. There may be an arbitrary number of copies of a message (or an

acknowledgment) on the channels, and it turns out that there are at most two

distinct messages (or acknowledgments) on the channels, hence binary flags

suffice. Figure 11.2 depicts the protocol.

The above discussion is informal; a formal description follows, but first

we discuss notation. We have formalized the protocol and its proof in ACL2,

however, for presentation purposes we describe the formalization using stan-

dard notation. We remain faithful to the ACL2 formalization, e.g., we do not

use types: functions that appear typed are really under-specified, but total.

The concatenation operator on sequences is denoted by “:”, but sometimes we

use juxtaposition; “ε” denotes the empty sequence; head .s is the first element

of sequence s; tail .s is the sequence resulting from removing the first element

147

Rule Definition
Skip skip
Accept.m ¬svalid → smsg , svalid := m, true
Send-msg svalid → s2r := s2r : 〈smsg , sflag〉
Drop-msg s2r 6= ε → s2r := tail .s2r
Get-msg s2r 6= ε ∧ ¬rvalid →

if flag(head .s2r) = rflag
then s2r := tail .s2r
else s2r , rmsg , rvalid , rflag :=

tail .s2r , info(head .s2r), true,flag(head .s2r)
Send-ack r2s := r2s : rflag
Drop-ack r2s 6= ε → r2s := tail .r2s
Get-ack r2s 6= ε →

if head .r2s = sflag
then r2s , svalid , sflag := tail .r2s , false,¬sflag
else r2s := tail .r2s

Reply rvalid := false

Table 11.1: Rules defining the transition relation.

from s; #s is the size of the sequence. Messages are pairs; info returns the first

component of a message and flag returns the second.

A state is an 8-tuple 〈sflag , svalid , smsg , s2r , r2s , rflag , rvalid , rmsg〉;

state is a predicate that recognizes states. The sflag of state s is denoted

sflag .s and similarly for the other fields. Rules are functions from states into

states; they are listed in Table 11.1 and are of the form G → A; if A is

used as a rule, it abbreviates true → A. Rule G → A defines the function

λs(if G.s then A.s else s). We now define the transition relation, R: sRw iff

s is a state and w can be obtained by applying some rule to s.

We have defined the states and transition relation of the alternating

bit protocol. The states are labeled with an 8-tuple, as mentioned above.

Therefore, the alternating bit protocol defines a TS, ABP .

148

11.3 Protocol Verification

We give an overview of the verification of the alternating bit protocol. ABP ′′

is an isomorphic copy of ABP , with the channel values distorted. Thus

ABP ≈r ABP ′′, where r is the refinement map that performs the distor-

tion. We define rep, a state representative function on ABP ′′ and prove that

B, the equivalence relation induced by rep, is a WEB on ABP ′′. We then use

our extraction procedure, which by theorems 12 and 13, gives (the reachable

part of) ABP ′′/B. We now have ABP ′′ ≈rep ABP ′′/B. ABP ′ is ABP ′′/B re-

stricted to the non-channel variables (which were left untouched by r), hence,

ABP ′′/B ≈q ABP ′, where q is the refinement map that hides the channels.

By theorem 11, ABP ≈r;rep;q ABP ′. ABP is a typed transition system and

r; rep; q is a refinement map that hides variables. Thus, we have a well-behaved

refinement map and by lemma 26 (on page 65) we can model check ABP ′ and

lift the results to ABP .

We also show that ABP ′ is a refinement of a non-lossy protocol. Re-

finement checking is more convincing than model checking when it is easier to

describe a correct system than it is to specify a set of temporal logic formulas

that implies correctness.

11.3.1 Well-Founded Equivalence Bisimulation

In this subsection we define a relation B and outline the ACL2 proof that B

is a WEB. We start with some definitions.

For the following definitions, a and b are sequences of length 1, a 6= b,

and x is an arbitrary finite sequence. The function compress acts on sequences

149

to remove adjacent duplicates. Formally,

compress.ε = ε compress.a = a

compress(aax) = compress(ax) compress(abx) = a : compress(bx)

The predicate good-s2r recognizes sequences that define valid channel contents.

Formally,

good-s2r .ε = true good-s2r(ax) = (a = 〈info.a,flag .a〉) ∧ good-s2r .x

The function s2r-state compresses the s2r field of a state, except that already

received messages at the head of s2r are omitted. Formally,

s2r-state.s = compress(relevant-s2r(s2r .s, 〈rmsg .s, rflag .s〉))

where the function relevant-s2r is defined by:

relevant-s2r(ε, a) = ε relevant-s2r(bx, a) = bx

relevant-s2r(ax, a) = relevant-s2r(x, a)

The function r2s-state compresses the r2s field of a state, except that ac-

knowledgments at the head of r2s with a flag different from sflag are omitted.

Formally,

r2s-state.s = compress(relevant-r2s(r2s .s, sflag .s))

where the function relevant-r2s is defined by:

relevant-r2s(ε, a) = ε relevant-r2s(ax, a) = ax

relevant-r2s(bx, a) = relevant-r2s(x, a)

150

The main idea behind the WEB is to relate states that have similar

compressed channels—i.e., are equivalent under s2r-state and r2s-state—and

are otherwise identical. We define a state representative function that will be

used to define the WEB, using the rule notation described in section 11.2, as

follows.

rep : good-s2r .s2r → s2r , r2s := s2r-state, r2s-state

We now define our proposed WEB B: sBu iff rep.s = rep.u. It

is easy to see that B is an equivalence relation that, except for s2r and r2s ,

preserves the labeling of states. We define rankt to always return 0 and rank ,

a function on states, as follows: rank .s = #(s2r .s) + #(r2s .s).

We show that 〈rankt , 〈{0}, <〉, rank〉 is a well-founded witness. (To be

pedantic we should define rank so that it has two arguments. This can be

done be defining rank as follows: rank(u, s) = #(s2r .s) + #(r2s .s).) Note that

if sBw, sRu, and sBu, then uBw and by rule Skip, wRw, therefore, we need

only concern ourselves with the case where ¬sBu. To show B is a WEB, it

suffices to show:

sBw ∧ sRu ∧ ¬sBu ⇒ 〈∃v : wRv : uBv ∨ (sBv ∧ rank .v < rank.w)〉

We break up the proof (that B is a WEB) into the eight cases in Ta-

ble 11.2 by expanding R, i.e., by considering all the ways in which s can be

related to u. The cases have the form: Rule Lemma; when u or v appear in

Lemma they abbreviate the terms Rule.s and Rule.w, respectively. We prove

the cases in ACL2.

In order to tie up the case analysis, we define a function step that takes

three states, s, u, and w, as arguments. If sBu, step returns w, else if u = A.s,

151

Rule Lemma
Accept .m sBw ⇒ uBv
Send-msg sBw ∧ ¬sBu ⇒ uBv
Drop-msg sBw ∧ ¬sBu ⇒ (uBv) ∨ (sBv ∧ rank .v < rank.w)
Get-msg sBw ∧ ¬sBu ∧ u 6= Drop-msg .s

⇒ (uBv) ∨ (sBv ∧ rank .v < rank.w)
Send-ack sBw ∧ ¬sBu ⇒ uBv
Drop-ack sBw ∧ ¬sBu ⇒ (uBv) ∨ (sBv ∧ rank .v < rank.w)
Get-ack sBw ∧ ¬sBu ∧ u 6= Drop-ack .s

⇒ (uBv) ∨ (sBv ∧ rank .v < rank.w)
Reply sBw ⇒ uBv

Table 11.2: WEB case analysis.

for A, a rule from Table 11.1, step returns A.w, else step returns w. Since we

proved that B is an equivalence relation, the following theorem implies that B

is a WEB (existential quantification is replaced by the witness function step):

sBw∧ sRu∧ v = step(s, u, w) ⇒ wRv∧ (uBv∨ (sBv∧ rank .v < rank.w))

11.3.2 Quotient Extraction

In this subsection we prove the following ACL2 theorems which show that rep is

a representative function satisfying the requirements of theorem 12; hence, the

quotient structure induced by rep is isomorphic to the quotient structure with

respect to B: sBw ≡ rep.s = rep.w, rep(rep.s) = rep.s, and rank(rep.s) ≤

rank .s. We extract the quotient structure (induced by rep) of the alternating

bit protocol restricted to binary messages. In the following subsections, we

describe the use of model checking and WEB equivalence checking to analyze

this structure.

We now have enough machinery to describe how refinement is used

152

in the verification of the alternating bit protocol. ABP is the model of the

alternating bit protocol in ACL2. ABP ′′ is ABP with s2r , r2s relabeled

by s2r-state and r2s-state, respectively. Note that ABP is a refinement of

ABP with respect to the refinement map that performs the relabeling. B

is a WEB on ABP ′′ with well-founded witness 〈rankt , 〈{0}, <〉, rank〉, such

that rank(u, s) = #(s2r(f−1.s)) + #(r2s(f−1.s)) (f is the bijection between

ABP and ABP ′′; recall that rank is defined on states of ABP ′′). The quotient

structure of ABP ′′ with respect to B is isomorphic to the structure induced by

rep. ABP ′ is this structure, except with s2r and r2s hidden. It is ABP ′ that

we analyze in the next two subsections. By theorem 11, ABP is a refinement

of ABP ′ and properties of ABP ′ can be lifted to ABP .

11.3.3 Model Checking

We model check the quotient structure extracted by the above mentioned

procedure using the Mu-Calculus model checker defined in chapter 9. We

check the following formulas:

1. AG(sending1 ⇒ A(sending1 W rmsg = 1))

2. AG(receiving1 ⇒ A(receiving1 W delivered1))

3. AG EFsvalid (acceptance of a new message is always eventually possible)

where sending1 , receiving1 , and delivered1are abbreviations for svalid ∧

smsg = 1, rvalid ∧ rmsg = 1, and ¬rvalid ∧ rmsg = 1, respectively;

formulas analogous to 1 and 2 are proved for message 0. W is the weak until

operator which is defined as follows fWg ≡ fUg ∨ Gf . All of the above

formulas hold on the extracted structure, which is what one would expect.

153

The property AG AFsvalid (acceptance of a new message is always eventually

guaranteed), however, does not hold without further fairness assumptions.

The liveness properties are as follows. Each property is shown under

a set of fairness assumptions on the actions of the process. These are either

weak fairness (infinitely often disabled or infinitely often executed) or strong

fairness (infinitely often enabled implies infinitely often executed).

1. AG(sendingNew1 ⇒ A(sending1 U rmsg = 1)) (sendingNew1

represents the sending of a new copy of message 1): This holds under

weak fairness on the Send-msg and Reply actions, and strong fairness on

the receipt of a new message by the action Get-msg. A similar property

holds for message 0.

2. AG AFsvalid : This holds under the fairness assumptions for the previous

property, along with weak fairness on the Send-ack action and strong

fairness on the receipt of a new acknowledgment by the action Get-ack.

Since the fairness conditions mention actions, we compose Büchi au-

tomata accepting fair paths with the quotient structure and model check the

resulting structure on formulas which refer both to the propositions of the

quotient structure and the accepting states of the automata.

We use an argument based on bisimulation to derive sufficient conditions

for data-independence [Wol86] of the protocol. These are verified in ACL2; as

a consequence, the properties shown above for the data domain {0, 1} suffice

to show similar properties for arbitrary data domains.

154

Rule Definition
Accept.m ¬svalid → smsg , svalid := m, true
Send-msg svalid ∧ ¬rvalid ∧ ¬sent →

rvalid , sent , rmsg := true, true, smsg
Ready sent → svalid , sent := false, false
Reply rvalid := false

Table 11.3: Rules defining the transition relation of the non-lossy protocol.

11.3.4 Stuttering Bisimulation Checking

In many cases, the correctness proof is more convincing if we can show that

the extracted model is stuttering bisimilar to a model that is so simple, it is

correct by inspection. In the case of the alternating bit protocol, we can show

that the extracted model is stuttering bisimilar to a simple, non-lossy version

of the protocol, presented in Table 11.3.

We use a WEB equivalence checker (based on the algorithm in [BCG88])

written in ACL2 to verify that the non-lossy protocol in Table 11.3 and the

extracted protocol are related by a WEB. The main idea is that we create

the disjoint union of the transition systems corresponding to the extracted

protocol and the non-lossy protocol. The algorithm computes the coarsest

WEB on a structure; hence, if the initial states of the two systems are in the

same class, the two systems are WEB. In computing the coarsest WEB, we

examine only svalid , smsg , rvalid , and rmsg . Notice that this view is exactly

the one presented in figure 11.1.

11.3.5 Remarks

We tried to prove the alternating bit protocol correct using only theorem

proving techniques. This required constructing an invariant and was more

155

tedious because it required understanding the precise relationship between

the flags, valid bits, and channels. The reason an invariant was not required

with our combined approach is that our algorithm extracted the reachable

states, thereby generating the strongest invariant automatically. Thus, using

our approach, it is possible to reduce the amount of manual effort required for

the verification of reactive systems.

Mechanical verification is necessary. In our case, we managed to con-

vince ourselves that a candidate relation was a WEB for the alternating bit

protocol, even though it was not; this became clear only when we tried to

prove it mechanically.

11.4 Bibliographic Notes

Among related work, [MN95] prove safety properties of the alternating bit

protocol by using Isabelle/HOL to prove that a manually constructed finite-

state system contains all of the traces of the alternating bit protocol and

then model check the finite-state system. [COR+95] show the correctness

of an infinite-state system by using PVS to verify that a simple manually

constructed finite-state system is a conservative approximation of the infinite-

state system. The work described in this paper improves upon such methods

by (i) using a (verified) representative function to automatically construct

a quotient structure, and (ii) using WEBs instead of simulations or trace

containment: this allows us to check properties exactly, i.e., if a property

holds (fails) on the simple system, then it holds (fails) on the original system.

There are several known types of infinite-state systems (e.g., [ACD90,

GS92, AJ96, EN95]) for which the model checking problem is decidable, but

156

these types of systems often turn out to be too specialized for many cases where

it is possible to devise finite abstractions. There have been several approaches

to automatically verifying the alternating bit protocol: safety properties of

such lossy channel systems are decidable [AJ96]; however, in order to construct

automatic abstractions that demonstrate liveness properties, most other veri-

fications of the alternating bit protocol (e.g., [GS97]) consider channels to be

bounded. The work in this chapter appeared in [MNS99].

11.5 Summary

In this chapter, we showed how to use our approach to combining theorem

proving and model checking to verify the alternating bit protocol, an infinite-

state protocol. The idea was to reduce the size of the buffers by showing

that states with the same compressed channels have the same behaviors. This

amounts to a WEB proof, which was carried out in ACL2. The proof did

not require that we prove auxiliary invariants. We then used our extraction

algorithm to extract the quotient structure, which we model checked. We

compared our proof to one using only theorem proving methods and found

that a significant reduction in manual effort was achieved with our approach

of combining theorem proving and model checking.

157

Chapter 12

Correctness of Pipelined

Machines

12.1 Introduction

The correctness of pipelined machines is a subject that has been studied ex-

tensively. Most of the recent work has used variants of the Burch and Dill

notion of correctness [BD94]. As new features are modeled, e.g., interrupts,

new notions of correctness are developed. Given the plethora of correctness

conditions, the question arises: what is a reasonable notion of correctness? To

motivate the need for a new notion of correctness we show that the variant

of the Burch and Dill notion of correctness [BD94] used by Sawada can be

satisfied by incorrect machines. We propose a notion of correctness based on

WEBs.

To test the utility of the idea, we use ACL2 to verify several variants

of a simple pipelined machine described by Sawada [Saw99, Saw00]. Our

158

variants extend the basic machine by adding exceptions (to deal with over-

flows), interrupts, and fleshed-out 128-bit ALUs (one of which is described in

a netlist language). In all cases, we prove the same final theorem. We develop a

methodology with mechanical support that we use to verify Sawada’s machine.

Our proofs contain no intermediate abstractions and are almost automatic. In

fact, for Sawada’s example, our proof is substantially shorter than the original:

given the definitions and some general-purpose books (collections of theorems),

the proof is automatic. For some of the variants, we use the compositionality of

WEB refinements (theorem 11 on page 65) to prove correctness in stages. An

advantage of proving correctness in this way is that we can limit the difference

between the machine descriptions from one stage to the next. This allows the

proofs go through automatically because there is enough structural similarity

between machines that ACL2 can establish equivalence forthwith. Yet another

advantage is that changes to the lower-level machines can be localized.

In section 12.2 we present a simple machine and motivate our notion of

correctness. In section 12.3 we describe several variants of a simple pipelined

machine described by Sawada in [Saw99, Saw00]. The variants include excep-

tions, fleshed-out ALUs, interrupts, and combinations of these features. In all

cases, we prove the same final theorem. In section 12.4 we discuss the books

and methodology we developed to automate proofs of pipelined machines.

Bibliographic notes appear in section 12.5 and a summary in section 12.6.

12.2 A Simple Pipelined Machine

The specification used to prove a pipelined machine correct is an instruction

set architecture (ISA). The ISA describes the interface between the hard-

159

ware and software and contains the programmer visible components of the

machine. A pipelined machine is correct if it satisfies a certain relationship

with the ISA. There is no wide agreement on the “right” notion of correctness,

but perhaps the most common approach is that of Burch and Dill [BD94]. One

of the difficulties with specifying correctness is that we want to account for

non-terminating behavior. If we were to restrict ourselves to terminating pro-

grams, we could say that a pipelined machine is correct if for any terminating

program, both the pipelined machine and the ISA machine halt in the same

final state. However, there are interesting non-terminating programs such as

operating systems and transmission protocols that run on these machines and

the traditional approach of stating correctness as a relationship between initial

and final states cannot be used, as there is no final state. We are therefore

forced to think about infinite computations.

We start with an example. Consider a simple ISA machine with in-

structions that are four-tuples consisting of an opcode, a target register, and

two source registers. The state components of the ISA machine that are of

interest are the program counter and the contents of registers ra and rb. The

MA (micro architecture) machine is a pipelined machine with three stages.

A pipeline is analogous to an assembly line. The pipeline consists of several

stages each of which performs part of the computation required to complete an

instruction. When the pipeline is full many instructions are in various degrees

of completion. A diagram of the MA machine appears in figure 12.1. The

three stages are fetch, set-up, and write. During the fetch stage, the instruc-

tion pointed to by the PC (program counter) is retrieved from memory and

placed into latch 1. During the set-up stage, the contents of the source regis-

ters (of the instruction in latch 1) are retrieved from the register file and sent

160

PC Register

Memory Latch
1

Latch
2

File

A
L
U

Figure 12.1: A simple three-stage pipelined machine.

Inst
0 add rb ra ra
1 add ra rb ra

Table 12.1: The contents of memory.

to latch 2 along with the rest of the instruction in latch 1. During the write

stage, the appropriate ALU (arithmetic logic unit) operation is performed and

the result is used to update the value of the target register.

Suppose that the contents of memory are as shown in table 12.1.

When this simple two-line code fragment is executed on the ISA and

MA machines, we get the traces shown in table 12.2.

The rows correspond to steps of the machines, e.g., row Clock 0 corre-

sponds to the initial state, Clock 1 to the next state, and so on. The ISA and

MA columns contain the relevant parts of the state of the machines: a pair

consisting of the PC and the register file (itself a pair consisting of registers ra

and rb). The contents of the register file of the ISA machine are numbers in

161

Clock ISA MA Inst 0 Inst 1
0 〈0, 〈1,1〉〉 〈0, 〈01,01〉〉
1 〈1, 〈1,2〉〉 〈1, 〈01,01〉〉 Fetch
2 〈2, 〈3,2〉〉 〈2, 〈01,01〉〉 Set-up Fetch
3 〈2, 〈01,10〉〉 Write Stall
4 〈 , 〈01,10〉〉 Set-up
5 〈 , 〈11,10〉〉 Write

Table 12.2: ISA and MA traces.

decimal and the contents of the register file of the MA machine are bit-vectors

(we show only the two low-order bits). The final two columns indicate what

stage the instructions are in (only applicable to the MA machine).

In the initial state (in row Clock 0) the PCs of the ISA and MA machines

contain the value 0 (indicating that the next instruction to execute is Inst 0)

and both registers have the value 1. In the next ISA state (in row Clock 1),

the PC is incremented and the add instruction performed, i.e., register rb

is updated with the value ra + ra = 2. The final entry in the ISA column

contains the state of the ISA machine after executing Inst 1.

After one step of the MA machine, Inst 0 completes the fetch phase and

the PC is incremented to point to the next instruction. After step 2 (in row

Clock 2), Inst 0 completes the set-up stage, Inst 1 completes the fetch phase,

and the PC is incremented. After step 3, Inst 0 completes the write-back phase

and the register file is updated for the first time with rb set to 10 (2 in binary).

However, Inst 1 is stalled during step 3 because one of its source registers is rb,

the target register of the previous instruction. Since the previous instruction

has not completed, the value of rb is not available and Inst 1 is stalled for one

cycle. In the next cycle, Inst 1 enters the set-up stage and Inst 2 enters the

162

ISA MA
〈0, 〈1,1〉〉 〈0, 〈1,1〉〉
〈1, 〈1,2〉〉 〈1, 〈1,1〉〉
〈2, 〈3,2〉〉 〈2, 〈1,1〉〉

〈2, 〈1,2〉〉
〈 , 〈1,2〉〉
〈 , 〈3,2〉〉

→
Commit

PC

MA
〈0, 〈1,1〉〉
〈0, 〈1,1〉〉
〈0, 〈1,1〉〉
〈1, 〈1,2〉〉
〈1, 〈1,2〉〉
〈2, 〈3,2〉〉

→
Remove
Stutter

MA
〈0, 〈1,1〉〉
〈1, 〈1,2〉〉
〈2, 〈3,2〉〉

Table 12.3: How to relate the ISA and MA traces.

fetch stage (not shown). Finally, after step 5, Inst 1 is completed and register

ra is updated.

Comparing the partial traces of the ISA and MA machines and thinking

about how to relate them makes it clear that we should stick to one representa-

tion of numbers. In table 12.3 the partial traces of the ISA and MA machines

appear in the first two columns, with numbers represented in decimal.

Notice that the PC differs in the two traces and this occurs because

the pipeline, initially empty, is being filled and the PC points to the next

instruction to fetch. If the PC were to point to the next instruction to commit

(i.e., the next instruction to complete), then we would get the trace shown in

column 3. Notice that in column 3, the PC does not change from 0 to 1 until

Inst 0 is committed in which case the next instruction to commit is Inst 1. We

now have a trace that is the same as the ISA trace except for stuttering; after

removing the stuttering we have, in column 4, the ISA trace.

To state correctness we use a refinement map. In the above example

we mapped MA states to ISA states by transforming bit-vectors into decimal

numbers and by transforming the PC. Proving correctness amounts to relating

MA states with the ISA states they map to under the refinement map and

163

proving a WEB. Proving a WEB guarantees that MA states and related ISA

states have related computations up to finite stuttering. This is a strong notion

of equivalence. As we have seen, a consequence is that the two machines satisfy

the same CTL∗ \X properties e.g., one such property is that the MA machine

cannot deadlock (because the ISA machine cannot deadlock).

Why “up to finite stuttering”? Because we are comparing machines

at different levels of abstraction: the pipelined machine is a low-level imple-

mentation of the high-level ISA specification. When comparing systems at

different levels of abstraction, it is often the case that the low-level system

requires several steps to match a single step of the high-level system.

Why use a refinement map? Because data can be represented in dif-

ferent ways, e.g., the MA machine represents numbers in binary whereas the

ISA machine uses a decimal representation. In addition, there may be compo-

nents in one system that do not appear in the other, e.g., the MA machine has

latches but the ISA machine does not. Yet another reason is that components

present in both systems may have different behaviors, as is the case with the

PC above. Notice that the refinement map affects how MA and ISA states are

related, not the behavior of the MA machine.

Some key observations to keep in mind as you read the chapter follow.

Note that we prove the same theorem for each of the pipelined machine vari-

ants, including the variant with interrupts and exceptions. Other approaches

introduce new notions of correctness to deal with such features [Saw99]. Our

characterization of correctness allows us to prove an MA machine correct with

respect to an ISA machine by considering only single steps of the machines.

For the examples we consider, this leads to dramatically shorter proofs (as

already mentioned, some proofs are automatic) and does not require interme-

164

diate abstractions.

12.3 Pipelined Machine Verification

In this section, we describe various versions of Sawada’s simple pipelined ma-

chine [Saw99, Saw00] and the correctness criteria proved. We discuss correct-

ness, the deterministic variants, and finally the non-deterministic ones.

Machines are modeled as functions in ACL2, e.g., the first machine we

define is ISA and this amount to defining ISA-step, a function that given an

ISA state returns the next state. For all the machines, an instruction is a

four-tuple consisting of an opcode, a target register, and two source registers.

12.3.1 Correctness

In the introduction, we made the case that any notion of correctness can be

thought of as a constraint. Pipelined machines that satisfy the constraint are

“correct” implementations of the ISA, with respect to this notion of correct-

ness. We can judge the merits of a notion of correctness by checking that no

obviously incorrect machine satisfies the related constraint. We argued that

the refinement maps should be understandable, e.g., if we map MA states to

ISA states then there should be a clear relationship between related states.

Applying these criteria to the Burch and Dill variant under consideration, we

find that in both respects, this notion of correctness is incomplete. We discuss

the issues in the next section.

The notion of correctness that we use is simple to state: we show that

the pipelined machine is a refinement of the ISA specification. Notice that any

notion of correctness has to account for stuttering, e.g., a pipelined machine

165

requires several cycles to fill the pipeline, whereas an ISA machine executes an

instruction per cycle; any notion of correctness also has to account for refine-

ment, e.g., a pipelined machine may represent numbers as bit-vectors, whereas

the ISA machine may represent them directly. Our notion of correctness is the

strongest notion that we can think of which accounts for stuttering and re-

finement. We discuss the verification of a number of machines, but, regardless

of the proof details, we always prove the same theorem, viz., that a pipelined

machine has the same infinite paths (up to stuttering and refinement) as an

ISA machine.

12.3.2 Deterministic Machines

The deterministic machines are named ISA, MA, ISA128, MA128, MA128serial,

and MA128net. ISA and MA correspond to the machines in [Saw00] and the

simple machines in [Saw99]. We start with descriptions of ISA and MA and

compare the Burch and Dill approach to correctness with ours.

ISA

An ISA state is a three-tuple consisting of a program counter (pc), a register

file, and a memory. The next state of an ISA state is obtained by fetching

the instruction pointed to by the pc from memory, checking the opcode, and

performing the appropriate instruction. The possible instructions are addition,

subtraction, and noop. In the case of addition, the target register is updated

with the sum of the values in the source registers and the program counter is

incremented. Subtraction is treated similarly. In the case of a noop, only the

program counter is incremented. ISA is the specification for MA.

166

MA

MA is a three-stage pipelined machine. An MA state is a five-tuple consisting

of a pc, a register file, a memory, and two latches. The three stages are the

fetch stage, the set-up stage, and the write-back stage. During the fetch stage,

instructions are fetched from memory and stored in the first latch; during the

set-up stage, the instruction in the first latch is passed to the second latch,

but with the values of the source registers; during the write-back stage the

values and the opcode are fed to the ALU which performs the appropriate

instruction and the result is written into the target register, if the instruction

was not a noop. The MA machine can execute one instruction per cycle once

the pipeline is full, except when there are successive arithmetic instructions

where the second instruction uses the target register of the first instruction as

a source register. In this case, the machine is stalled for one cycle in order for

the target register to be updated.

One difference between MA as defined above and the version given by

Sawada (SMA) is that SMA has an extra input signal which determines whether

the machine can fetch an instruction. With the use of this signal, SMA can be

flushed, whereas we have no way of flushing MA.

Comparison with the Burch and Dill Notion of Correctness

The proof of SMA given in [Saw00, Saw99] uses a variant of the Burch and

Dill notion of correctness. The main theorem proved is that if the SMA starts

in SMA0, a flushed state, and takes n steps to arrive at state SMAn, also a

flushed state, then there is some number m such that stepping the projection

of SMA0 m steps results in the projection of SMAn. The projection of an SMA

167

state is the ISA state obtained from the program counter, register file, and

memory of the SMA state. Since this notion of correctness requires a pipelined

machine that can be flushed, the machine defined by Sawada has an extra

input signal which can be used to flush the machine. We have no way (and no

need) to flush MA.

Sawada also proves the “liveness” theorem that any pipelined state can

be flushed. These two theorems constitute his notion of correctness. We ask

the informal question, “Are there any pipelined machines that are obviously

incorrect but satisfy this notion of correctness?” If you consider deadlock

an abhorrent behavior, the answer if yes. Using Sawada’s proof scripts, we

provide a mechanically checked proof that the trivial pipelined machine with

a next-state function which invalidates the latches and keeps the PC, mem-

ory, and register file intact satisfies this notion of correctness. The proof is

straightforward. The first theorem is established by choosing m to be 0. The

second theorem holds because the next state function invalidates the latches;

therefore, the next state of any state is flushed. More insidious machines also

satisfy this notion of correctness (but we do not provide mechanical proofs).

For example, a machine that sometimes enters a deadlock state can be proven

correct using a similar argument. As a further example, consider a machine

that sometimes enters a livelock cycle by performing the following three oper-

ations forever.

1. The two latches are invalidated and everything else remains the same.

2. The next instruction is fetched, but the program counter is not changed.

After this step latch1 is valid and latch2 is invalid.

3. No new instruction is fetched, but the instruction in latch1 is sent to

168

latch2.

This cycle modifies MA components, but does not make any progress at the

ISA level.

Flushing Proof of MA

Even though there is no way to flush MA, we can use flushing to prove that

MA is a refinement of ISA. This digression allows us to discuss issues related

to refinement maps. One approach is to modify MA so that it can be flushed

(which would give us SMA), but this is a different machine. The approach we

take is to define an auxiliary function that flushes an MA state. Using this

function we show that MA is a refinement of ISA. Notice that in contrast to the

proof of SMA, there is no trivial pipelined machine that satisfies this notion of

correctness. This is because proving a WEB between a pipelined machine and

ISA implies that any ISA behavior can be matched by the pipelined machine;

since ISA has non-trivial behaviors so does the pipelined machine. Even so,

this proof is not entirely satisfactory and this has to do with the use of flushing

as a refinement map.

When we define systems at different levels of abstraction, we often find

that there are inconsistent states, e.g., consider an MA state in which the first

latch contains an instruction that is not in memory. This is usually dealt

with by considering only “good” (reachable) MA states. The flushing-based

refinement imposes no such restriction because pipelined machines are self-

stabilizing: from any state they eventually reach a good state and flushing

guarantees this. As a result, the refinement map—which is supposed to show

us how to view MA states as ISA states—relates inconsistent MA states with

169

consistent ISA states (all ISA states are “good”). Since both MA and ISA are

typed transition systems (see page 48), we can apply lemma 26 to see that

ISA states and related MA states have the same behaviors, up to stuttering,

when the labeling function is restricted to the program counter, this is because

refinement maps based on flushing modify important programmer visible com-

ponents such as the register file. In contrast, the refinement maps based on

our approach only modify the program counter, so that using lemma 26, we

can show that ISA and related MA states satisfy the same behaviors, up to

stuttering, when the labeling function is used to hide the program counter,

but leaves the rest of the ISA visible components untouched. Therefore, we

find the use of refinement maps based on flushing objectionable.

Proof of MA

The approach we take to pipelined machine verification in the rest of this paper

is to prove a WEB where the refinement map relates pipelined machine states

to the ISA states obtained by retaining the programmer visible components

of the committed part of the pipelined state. The definition of the refinement

map is based on the function committed-MA which takes an MA state and re-

turns the MA state obtained by invalidating all partially completed instructions

and moving the program counter back based on the number of partially com-

pleted instructions. As mentioned previously, “good” MA states are the ones

reachable from a committed state. The function good-MA recognizes MA state s

if committed-MA.s, stepped the appropriate number of times, is s. Notice that

as with flushing, this function is easy to define because we can use the defini-

tion of MA. In fact, it is simpler to define than the flushing operation because

we are not trying to get the machine into a special state: we are just stepping

170

it. Notice that the use of good-MA allows us to avoid defining an invariant (an

error prone process), hence, we maintain this methodological feature of the

Burch and Dill approach. We call this approach the “commitment approach.”

ISA128

An ISA128 state is a four-tuple consisting of a program counter (pc), a register

file, a memory, and an exception flag. The next state of an ISA128 state

is obtained by fetching the instruction pointed to by the pc from memory,

checking the opcode, and performing the appropriate instruction. The possible

instructions are addition, multiplication, and noop. In the case of addition, the

program counter is incremented and the target register is modified to contain

sum, the sum of the values in the source registers if the sum is less than 2128.

Otherwise, if an overflow occurs, the exception flag is checked; if it is off, then

the program counter is incremented and the target register is assigned sum

(mod 2128); if the exception flag is on, the exception handler is called. The

exception handler is a constrained function of the program counter, register

file, and memory that returns a new program counter, register file, memory,

and exception flag. (A function about which we know only that it satisfies

some specified properties is called a constrained function. An uninterpreted

function is a special case of a constrained function.) Multiplication is treated

similarly. In the case of a noop, only the program counter is incremented.

ISA128 is the specification for MA128, MA128serial, and MA128net.

MA128, MA128serial, and MA128net

MA128 is a three-stage pipelined machine. An MA128 state is a six-tuple con-

sisting of a program counter, a register file, a memory, two latches, and an

171

exception flag. As with MA, the three stages are the fetch stage, the set-up

stage, and the write-back stage. If an overflow occurs during an arithmetic

operation, then the partially executed instructions are invalidated and the ex-

ception handler is called. The resulting state is constrained to be flushed (i.e.,

both latches are invalid). We prove that MA128 is a refinement of ISA128 using

the commitment approach.

MA128serial is the same as MA128, except that the ALU is defined

in terms of a serial adder and a multiplier based on the adder. The adder,

multiplier, and proof of their correctness are taken from [KMM00b]. We used

the commitment approach to prove that MA128serial refines MA128. Since

the ALU of MA128 operates on bit-vectors, the refinement map used maps the

bit-vectors in the register file and the second latch to numbers. By theorem 11

(composition), we get that MA128serial is a refinement of ISA128. Although

the use of the composition theorem here was not essential, it was nice to be able

to break up the proof into these two logically separate concerns. ACL2 can

take advantage of the structural similarity between MA128serial and MA128,

hence the proof of correctness is pretty fast. This is covered in more detail

later.

MA128net is the same as MA128, except that the ALU is defined in terms

of an adder described in a netlist language. The netlist adder is a 128-bit adder

and is described in terms of primitive functions on bits. We have a function

that generates an adder of any size and we prove that the adder generated

is correct by relating it to the serial adder (as in the FM8501 [Hun94]). We

prove that MA128net is a refinement of MA128serial, hence by composition,

a refinement of ISA128.

172

12.3.3 Non-Deterministic Machines

We now consider the non-deterministic versions of the six deterministic ma-

chines described above. The names of these machines are: ISAint, MAint,

ISA128int, MA128int, MA128intserial, and MA128intnet. They are elabo-

rations of the similarly named deterministic machines, except that they can be

interrupted. Whereas the next state of the deterministic machines is a func-

tion of the current state (even in the presence of exceptions), the next state

of the machines described in this section also depends on the interrupt signal,

which is free. Therefore, the machines in this section are non-deterministic.

The approach in [Saw99] to dealing with interrupts is different. There,

the correctness criterion is: if M0 is a flushed state and if taking n steps where

the interrupts at each step are specified by the list l results in a flushed state

Mn, then there is a number n′ and a list l′ such that stepping the projection of

M0 n′ steps with interrupt list l′ results in the projection of Mn. Notice that

a machine which always ignores interrupts satisfies this specification.

In our approach, we have to show that the pipelined machine is a refine-

ment of the specification, as before. Note that this is the same final theorem

we proved in the deterministic case, as WEBs can be used to relate non-

deterministic systems. Therefore, our notion of correctness cannot be satisfied

by a pipelined machine that ignores interrupts. Another advantage is that our

proof obligation is still about single steps of the machines, as opposed to finite

behaviors. The problem with the finite behaviors approach was highlighted

above: when comparing finite executions of a pipelined machine and of its

specification, there are executions with different lengths; how does one relate

interrupts in one execution with interrupts in the other?

173

ISAint

An ISAint state is a four-tuple consisting of a program counter (pc), a register

file, a memory, and an interrupt register. The next state of an ISAint state is

obtained by first checking the interrupt register. If non-empty, the interrupt

handler is called. The interrupt handler is a constrained function of the register

file, memory, and interrupt register and returns a state with the same pc and

register file, but may modify memory, and clears the interrupt register. If

the interrupt register is empty, we check if an interrupt has been raised. If

so, we record the interrupt type in the interrupt register. If not, we proceed

by fetching the instruction pointed to by the pc from memory, checking the

opcode, and performing the appropriate instruction. The possible instructions

are addition, multiplication, and noop. In the case of addition, the target

register is modified to contain the sum of the values in the source registers

and the program counter is incremented. Multiplication is treated similarly.

In the case of a noop, only the program counter is incremented. ISAint is the

specification for MAint.

MAint

MAint is a three-stage pipelined machine. An MAint state is a six-tuple con-

sisting of a pc, a register file, a memory, two latches, and an interrupt register.

The three stages are the fetch stage, the set-up stage, and the write-back stage,

as before. The next state of an MAint state is obtained by first checking the

interrupt register. If non-empty, partially executed instructions are aborted

and the interrupt handler is called. Otherwise we check if an interrupt has

been raised, in which case we abort partially executed instructions and set the

174

interrupt register. Otherwise, execution proceeds in a fashion similar to the

execution of MA. The refinement map used to show that MAint is a refinement

of ISAint is almost identical to the one used to show that MA is a refinement

of ISA, except that the interrupt register is also retained.

ISA128int

As the name implies this is the ISA-level specification of 128-bit ALU machine

with exceptions and interrupts. Interrupts are given priority, and this machine

is defined the way you would expect: it is similar to ISAint, except that

arithmetic operations are checked for overflows, in which case the exception

handler is called. This machine is the specification used for the machines

MA128int, MA128intserial, and MA128intnet.

MA128int, MA128intserial, and MA128intnet

MA128int, MA128intserial, and MA128intnet are three-stage pipelined ma-

chines analogous to MA128, MA128serial, and MA128net, respectively, but with

exceptions. As before, we show that MA128int is a refinement of ISA128int,

that MA128intserial is a refinement of MA128int (where the refinement map

converts bit-vectors to integers) and finally that MA128intnet is a refinement

of MA128intserial. By the composition theorem, we get that all of these

machines are refinements of ISA128int.

12.4 Proof Decomposition

To reduce the amount of guidance that has to be manually given to the theorem

prover, we develop a methodology with mechanical support which we use to

175

verify the various variants of Sawada’s machine. In section 12.4.1, we describe

some of the supporting books used. In section 12.4.2 we discuss the macros

used to automate the proofs.

12.4.1 Supporting Books

We use several general-purpose books to support automation. These include

the standard "top-with-meta" and "ihs" books for reasoning about arith-

metic as well as the books "nth-thms", "alist-thms", and "defun-weak-sk"

for reasoning about nth and update-nth, alists, and quantification, respec-

tively.

To prove correctness, we define interpreters for the ISA and MA ma-

chines and prove that the MA machine is a refinement of the ISA machine.

Machine states are represented as lists and components of states are accessed

and updated with nth and update-nth, respectively. The proof requires that

we compare components of stepped states and much of this can be done auto-

matically with rewrite rules that simplify and normalize nth and update-nth

expressions. The book "nth-thms" contains the rewrite rules we found use-

ful for this purpose and is based on the approach taken by Greve, Wilding,

and Hardin on page 131 of reference [GWH00]. We also use alists (e.g., reg-

ister files are represented as lists of register name, value pairs) and the book

"alist-thms" contains some simple rules, similar to those in "nth-thms", for

reasoning about alists.

The book "defun-weak-sk" is used to reason about existential quan-

tification. Recall that the macro defun-sk is used to implement quantification

in ACL2 by introducing witness functions and constraints. For example, the

176

quantified formula 〈∃x :: P (x, y)〉 can be rendered in ACL2 as the function EP

with the constraints (P x y) ⇒ (EP y) and (EP y) = (P (W y) y). To see

that this corresponds to quantification, notice that the first constraint gives

us one direction of the argument: it says that if any value of x makes (P x y)

true (i.e., if 〈∃x :: P (x, y)〉) then (EP y) is true. This constraint allows us to

establish an existentially quantified formula by exhibiting a witness, but the

constraint can be satisfied if EP always returns t. The second constraint gives

us the other direction. It introduces the witness function W and requires that

(EP y) is true iff (P (W y) y) is true. As a result, if (EP y) is true, then

some value of x makes (P x y) true. As is mentioned in the ACL2 documen-

tation [KM], this idea was known to Hilbert. An ACL2 script corresponding

to the above follows.1 Notice that the constraints on EP are the constraints on

EP-witness (which corresponds to our W).

(defstub P(x y) t)

(defun-sk EP (y)

(exists (x) (P x y)))

:props EP

:props EP-witness

We wish to use quantification and encapsulation in the following way.

We prove that a set of constrained functions satisfies a quantified formula.

We then use functional instantiation [BGKM91, KM00] to show that a set of

functions satisfying these constraints also satisfies the (analogous) quantified

formula. We want this proof obligation to be generated by macros but have

found that the constraints generated by the quantified formulas complicate the
1Props shows all of the properties in the ACL2 world that are associated with a symbol.

177

design of such macros. The following observation has allowed us to simplify the

process. The quantified formulas are established using witness functions, as is

often the case. Therefore, only the first constraint generated by defun-sk is

required for the proof. We defined the macro defun-weak-sk which generates

only this constraint, e.g., executing the ACL2 script

(defstub P(x y) t)

(defun-weak-sk E (y)

(exists (x) (P x y)))

:props E

shows that the only constraint on E is (P x y) ⇒ (E y). By functional

instantiation, any theorem proven about E also holds when E is replaced by EP

(since EP satisfies the constraint on E). We use defun-weak-sk in our scripts

and at the very end we prove the defun-sk versions of the main results by

functional instantiation (a step taken to make the presentation of the final

result independent of our macros).

12.4.2 Proof Outline

The books specific to the proof are "ISA", "MA", and "MA-ISA". "ISA" and

"MA" contain the definitions of ISA-step and MA-step, the functions to step

(i.e., compute the next state of) the ISA and MA machines, respectively. The

"MA-ISA" book contains the definition of the refinement map, MA-to-ISA,

and the function recognizing “good” MA states, good-MA. These functions are

described in section 12.3. Also included is the definition of a rank function,

MA-rank. The rank function is very simple: it is either 0, 1, or 2 based on how

178

many steps it takes MA to commit an instruction.

To complete the proof it seems we have to: define the machine cor-

responding to the disjoint union of ISA and MA, define a WEB that relates

a (good) MA state s to (MA-to-ISA s), define the well-founded witness, and

prove that indeed the purported WEB really is a WEB. We have implemented

macros which automate this. The macros are useful not only for this exam-

ple, but also for the verification of the rest of the deterministic machines we

present in this paper and can be used to show a WEB between other types of

deterministic systems. (Non-deterministic versions are described later in this

section.) The proof of correctness is completed with the following three macro

calls (in the book "MA-ISA").

(generate-full-system isa-step isa-p ma-step ma-p

ma-to-isa good-ma ma-rank)

(prove-web isa-step isa-p ma-step ma-p ma-to-isa ma-rank)

(wrap-it-up isa-step isa-p ma-step ma-p

good-ma ma-to-isa ma-rank)

The first macro, generate-full-system, generates the definition of B,

the purported WEB as well as R, the transition relation of the disjoint union

of the ISA and MA machines. The macro translates to the following. (Some

declarations and forward-chaining theorems used to control the theorem prover

have been elided. In addition, in the context below, bor is equal to or.)

(progn

(defun B-core (x y) . . .

(and (ISA-p x)

179

(MA-p y)

(good-MA y)

(equal x (MA-to-ISA y))))

(defun B (x y) . . .

(bor (B-core x y)

(B-core y x)

(equal x y)

(and (MA-p x)

(MA-p y)

(good-MA x)

(good-MA y)

(equal (MA-to-ISA x) (MA-to-ISA y)))))

(defun rank (x) . . .

(if (MA-p x) (MA-rank x) 0))

(defun R (x y) . . .

(cond ((ISA-p x) (equal y (ISA-step x)))

(t (equal y (MA-step x)))))

. . .)

What is left is to prove that B—the reflexive, symmetric, transitive

closure of B-core—is a WEB with well-founded witness rank. We do this in

two steps. First, the macro prove-web is used to prove the “core” theorem

(as well as some “type” theorems not shown).

(defthm B-is-a-wf-bisim-core

(let ((u (ISA-step s))

(v (MA-step w)))

180

(implies (and (B-core s w)

(not (B-core u v)))

(and (B-core s v)

(e0-ord-< (MA-rank v) (MA-rank w))))))

Comparing B-is-a-wf-bisim-core with the definition of WEBs, we

see that B-is-a-wf-bisim-core does not contain quantifiers and it mentions

neither B nor R. This is on purpose as we use “domain-specific” information

to construct a simplified theorem that is used to establish the main theorem.

To that end we removed the quantifiers and much of the case analysis. For

example, in the definition of WEBs, u ranges over successors of s and v is

existentially quantified over successors of w, but because we are dealing with

deterministic systems, u and v are defined to be the successors of s and w,

respectively. Also, B-core is not an equivalence relation as it is not reflex-

ive, symmetric, or transitive. Finally, we ignore the second disjunct in the

third condition of the definition of WEBs because ISA does not stutter. The

justification for calling this the “core” theorem is that we have proved in the

book "det-encap-wfbisim" that a constrained system which satisfies a the-

orem analogous to B-is-a-wf-bisim-core (and some “type” theorems) also

satisfies a WEB. Using functional instantiation we can now prove MA correct.

The use of this domain-specific information makes a big difference, e.g., when

we tried to prove the theorem obtained by a naive translation of the WEB

definition (sans quantifiers), ACL2 ran out of memory after 30 hours, yet the

above theorem is now proved in about 11 seconds.

The final macro call generates the events used to finish the proof. We

present the generated events germane to this discussion below. The first step is

to show that B is an equivalence relation. This theorem is proved by functional

181

instantiation of a theorem in the book "det-encap-wfbisim".

(defequiv B

:hints (("goal" :by (:functional-instance

encap-B-is-an-equivalence . . .))))

The second WEB condition, that related states have the same label, is

taken care of by the refinement map. We show that rank is a well-founded

witness.

(defthm rank-well-founded

(e0-ordinalp (rank x)))

We use functional instantiation and theorem B-is-a-wf-bisim-core

as described above to prove the following.

(defun-weak-sk exists-w-succ-for-u-weak (w u)

(exists (v) (and (R w v) (B u v))))

(defun-weak-sk exists-w-succ-for-s-weak (w s)

(exists (v)

(and (R w v)

(B s v)

(e0-ord-< (rank v) (rank w)))))

(defthm

B-is-a-wf-bisim-weak

(implies (and (B s w)

(R s u))

(or (exists-w-succ-for-u-weak w u)

182

(and (B u w)

(e0-ord-< (rank u) (rank s)))

(exists-w-succ-for-s-weak w s)))

:hints

(("goal" :by (:functional-instance b-is-a-wf-bisim-sk . . .)))

:rule-classes nil)

We use defun-weak-sk for these definitions and for the proofs in the

book "det-encap-wfbisim" for the reasons outlined in section 12.4.1. To

make it easier for the general ACL2 community to understand the results, we

state them in terms of the built-in macro defun-sk. The proof is a trivial func-

tional instantiation, since the single constraint generated by defun-weak-sk

is one of the constraints generated by defun-sk.

(defun-sk exists-w-succ-for-u (w u)

(exists (v) (and (R w v) (B u v))))

(defun-sk exists-w-succ-for-s (w s)

(exists (v)

(and (R w v)

(B s v)

(e0-ord-< (rank v) (rank w)))))

. . .

(defthm

B-is-a-wf-bisim

(implies (and (B s w)

(R s u))

(or (exists-w-succ-for-u w u)

183

(and (B u w)

(e0-ord-< (rank u) (rank s)))

(exists-w-succ-for-s w s)))

:hints

(("goal"

:by (:functional-instance B-is-a-wf-bisim-weak

(exists-w-succ-for-u-weak exists-w-succ-for-u)

(exists-w-succ-for-s-weak exists-w-succ-for-s))))

:rule-classes nil))

Theorem Proving Effort

Finally, we compare the complexity of the proofs. We consider only the books

required for the proof; this includes neither the books used to define the ma-

chines nor supporting general-purpose books. We consider the books contain-

ing our macros to be part of the supporting books because they were designed

for general-purpose use and have been used with the dozen or so proofs de-

scribed in this paper. Since we proved the correctness of MA without the use of

any intermediate abstractions, invariants, or user-supplied theorems, the size

of the book containing the definitions required for the proof is about 3K; the

size of the files containing Sawada’s proof is about 94K. The time required

for our proof (including the loading of related books) is about 30 seconds on

a 600MHz Pentium III; the time required for Sawada’s proof is about 460

seconds (on the same machine).

184

Non-Deterministic Machines

Non-determinism has led to new notions of correctness in the literature. For

example, to deal with interrupts, a notion of correctness (still based on the

Burch and Dill notion, but different from the one used for deterministic ma-

chines) is presented by Sawada [Saw99]: if M0 is a flushed state and if taking

n steps where the interrupts at each step are specified by the list l results in

a flushed state Mn, then there is a number n′ and a list l′ such that stepping

the projection of M0 n′ steps with interrupt list l′ results in the projection

of Mn. Notice that a machine which always ignores interrupts satisfies this

specification and is therefore considered correct.

In contrast, since WEBs apply to non-deterministic systems, our notion

of correctness in the presence of interrupts remains the same, i.e., we prove the

pipelined machine is a refinement of its ISA specification. As a consequence, a

pipelined machine which ignores interrupts cannot be proven correct. Another

advantage is that our proof obligation is still about single steps of the machines,

as opposed to finite behaviors. As before, this makes the proof much simpler

as no intermediate abstractions are required.

We end this section by describing a clear, compositional path from the

verification of term-level descriptions of pipelined machines to the verification

of low-level descriptions (e.g., netlist descriptions). In our proof that MA128 is

a refinement of ISA128, the definition of the ALU is “disabled”; the result is

that ACL2 treats the ALU as an uninterpreted function. However, to verify

that MA128net is a refinement of MA128, we “enable” the definition of the ALU

and prove theorems relating a netlist description of the circuit to a serial adder

which is then related to addition on integers. This allows us to relate term-

185

level descriptions of machines to lower-level descriptions in a compositional

way.

12.5 Bibliographic Notes

Various approaches to pipelined machine verification appear in the literature.

Some of the early work on pipelined machine verification was based on skewed

abstraction functions [SB90, Cyr93, SM95]. The Burch and Dill notion of

correctness, based on flushing and commuting diagrams, was introduced later

[BD94]. Theorem-proving approaches include the work by Sawada and Hunt

[SH97, SH98, Saw99, Saw00]. They use an intermediate abstraction called

MAETT to verify some very complicated machines. Our machine is based on

a simple machine described by Sawada [Saw99, Saw00]. We used this machine

because the proof scripts are publicly available and because of the ubiquity

of the Burch and Dill approach to pipelined machine verification. Sawada

uses this machine to explain issues of correctness and proof techniques. It

is a toy version of the FM9801, the final machine verified in Sawada’s the-

sis [Saw99]. The verification of the FM9801 is substantial and impressive.

A line of research that includes both hand proofs and mechanical proofs of

various types of pipelined machines has been conducted by Pneuli and others

[DP97, PA98, AP99, AP00]. Another theorem-proving approach is presented

in [HSG98, HSG99, HGS99], where “completion functions” are used to decom-

pose the abstraction function. Yet another theorem-proving approach where

a synthesizable design is verified at the gate level is [Kro01]. In [WC94],

a related notion of correctness based on state and temporal abstraction is

used to verify a pipelined machine. Model checking approaches include the

186

use of symmetry reductions and compositional model checking [McM98] and

the use of assume-guarantee reasoning [HQR99]. In addition, decision pro-

cedures for Boolean logic with equality and uninterpreted function symbols

[BGV99, PRSS99] have been used to verify pipelined machines [BGV99].

The work reported in this chapter has been published in two papers.

One paper deals with notions of correctness for pipelined machines [Man00a]

and the other discusses the ACL2 techniques and books used to automate the

process [Man00d].

12.6 Summary

We have presented an approach to pipelined machine correctness based on

WEBs and argued that only machines which truly implement the instruction

set architecture satisfy our notion of correctness. In contrast, we showed with

mechanical proof that the Burch-Dill variant of correctness used in [Saw99,

Saw00] can be satisfied by pipelined machines which deadlock. We verified var-

ious extensions to the simple pipelined machine presented in [Saw99, Saw00].

Our extensions include exception handling, interrupts, and ALUs described in

part at the netlist level. In every case, we proved the same final theorem. In

addition, we showed how to use the compositionality of WEBs and ACL2’s

functional instantiation to relate term-level descriptions to netlist-level de-

scriptions. All of the proofs were done within one logical system and we thus

avoided the semantic gaps that could otherwise result. To automate the proofs,

we developed a methodology with mechanical support that is used to generate

and discharge the proof obligations. The main proof obligation generated con-

tains no quantifiers and has minimal case analysis, but once proven is used to

187

automatically infer the WEB. This is done with the functional instantiation

of a decomposition theorem that is part of the mechanical support for WEBs

that we provide. The reasons for the simplicity of our the proofs include:

1. We prove a theorem about a constrained system that is then invoked

with functional instantiation. This allows us to bypass much of the case

analysis and the reasoning about quantifiers that would otherwise be

required.

2. We implemented macros that generate the disjoint union of the ISA and

MA machines and that generate proof obligations which take advantage

of the analysis mentioned immediately above.

3. Our notion of correctness can be proved by reasoning about single steps

of the machines (as opposed to reasoning about an arbitrary number of

steps). This helps us avoid the use of intermediate abstractions.

4. We used the compositionality of WEBs to decompose proofs.

5. We used encapsulation to model exceptions and interrupts. As a result,

we can use functional instantiation to apply our proofs to any specific

exception and interrupt handlers.

All of the proof scripts are available from my Web page [Man00b].

We have also exhibited a clear, compositional path from the verification

of term-level descriptions of pipelined machines to the verification of low-level

descriptions (e.g., netlist descriptions). For example, in the proof that MA128

is a refinement of ISA128, the definition of the ALU is disabled; the result is

that ACL2 treats the ALU as an uninterpreted function. However, to verify

188

that MA128net is a refinement of MA128, we enable the definition of the ALU

and prove theorems relating a netlist description of the circuit to a serial adder

which is then related to addition on integers. This allows us to relate term-

level descriptions of machines to lower-level descriptions in a compositional

way.

189

Chapter 13

Conclusions

In this dissertation we showed how to reduce the effort involved in the mechan-

ical verification of reactive systems. Reactive systems are ubiquitous and often

safety-critical. Thus, it is increasingly crucial for our society that they behave

correctly. Due to the complexity of reactive systems, mechanically checked

proofs are the most reliable way of ensuring correctness. However, mechanical

verification is not in wide use currently, partly because it is a labor-intensive

process. In this dissertation we presented various methods that can be used

to alleviate the problem.

We developed the theory of stuttering simulation and stuttering bisim-

ulation in ways that allowed us to partially automate mechanical verification.

Stuttering simulation and bisimulation are notions of correctness that are used

to relate systems at different levels of abstraction and are therefore insensitive

to finite stuttering. We proved various useful algebraic properties, developed a

compositional theory of refinement, and presented sound and complete proof

rules that are particularly amenable to mechanization. We also added mechan-

ical support for reasoning about stuttering bisimulation to the ACL2 system.

190

The two leading mechanical verification paradigms are theorem prov-

ing and model checking; we presented a novel approach to combining them.

Theorem proving is used to reduce a large (possibly infinite-state) system to

a small, finite-state system by proving a stuttering bisimulation. Algorithms

that we developed are then used to extract the reduced system. We showed

that every stuttering insensitive property that holds in the reduced system

also holds in the original system, thus we can analyze the reduced system

using automatic methods such as model checking and can lift the results to

the original system. The algorithms have been implemented, e.g., we have

implemented and verified a model checker for the Mu-Calculus in the ACL2

system.

We have applied the theory and algorithms by conducting two case

studies with the ACL2 system. One of the case studies is the verification

of a simple communications protocol. This case study highlights the use of

our extraction algorithm and our approach to combining theorem proving and

model checking. The other case study involves the verification of a simple

pipelined machine from the literature and several variants, including machines

with exceptions, interrupts, and netlist (gate-level) descriptions. We argued

that correctness based on stuttering bisimulation is more thorough than other

notions of correctness currently used. In addition, we demonstrated how to

automate much of the process, thereby reducing the effort required for me-

chanical verification.

191

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model checking for real
time systems. In 5th IEEE Symp. on Logic in Computer Science,
1990.

[Acz88] Peter Aczel. Non-Well-Founded Sets. CSLI Publications, Stanford,
1988.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with
unreliable channels. Information and Computation, 127(2):91–101,
June 1996.

[AL91] Mart́ın Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–284, 1991.

[AP99] Tamarah Arons and Amir Pnueli. Verifying tomasulo’s algoithm
by refinement. In Proc. 12th International Conference on VLSI
Design, 1999.

[AP00] Tamarah Arons and Amir Pnueli. A comparison of two verifica-
tion methods for speculative instruction execution. In TACAS00:
Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 487–502, 2000.

[Bas96] Twan Basten. Branching bisimilarity is an equivalence indeed.
Information Processing Letters, 58(3):141–147, 1996.

[BCG88] M. Browne, E. M. Clarke, and O. Grumberg. Characterizing fi-
nite Kripke structures in propositional temporal logic. Theoretical
Computer Science, 59, 1988.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Infor-
mation and Computation, 98(2):142–170, June 1992.

193

[BD94] Jerry R. Burch and David L. Dill. Automatic verification of
pipelined microprocessor control. In Computer-Aided Verification
(CAV ’94), volume 818 of LNCS, pages 68–80. Springer-Verlag,
1994.

[BG94] M. A. Bezem and J. F. Groote. A correctness proof of a one bit
sliding window protocol in mCRL. The Computer Journal, 1994.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communi-
cation protocols with infinite state spaces using QDD’s. In Con-
ference on Computer Aided Verification, volume 1102 of LNCS,
1996.

[BGKM91] Robert Stephen Boyer, D. Goldschlag, Matt Kaufmann, and
J Strother Moore. Functional instantiation in first order logic. In
V. Lifschitz, editor, Artificial Intelligence and Mathematical The-
ory of Computation: Papers in Honor of John McCarthy, pages
7–26. Academic Press, 1991.

[BGV99] Randal E. Bryant, Steve German, and Miroslav N. Velev. Exploit-
ing positive equality in a logic of equality with uninterpreted func-
tions. In Nicolas Halbwachs and Doron Peled, editors, Computer-
Aided Verification–CAV ’99, volume 1633 of LNCS, pages 470–482.
Springer-Verlag, 1999.

[BH97] Bishop Brock and Warren A. Hunt, Jr. Formally specifying and
mechanically verifying programs for the Motorola complex arith-
metic processor DSP. In 1997 IEEE International Conference on
Computer Design, pages 31–36. IEEE Computer Society, October
1997.

[BKM96] Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2
theorems about commercial microprocessors. In M. Srivas and
A. Camilleri, editors, Formal Methods in Computer-Aided Design
(FMCAD’96), pages 275–293. Springer-Verlag, 1996.

[BM99] Robert Stephen Boyer and J Strother Moore. Single-threaded
objects in ACL2, 1999. See URL http://www.cs.utexas.edu/-
users/moore/publications/acl2-papers.html#Foundations.

194

[BP95] Bard Bloom and Robert Paige. Transformational design and im-
plementation of a new efficient solution to the ready simulation
problem. Science of Computer Programming, 24(3):189–220, 1995.

[Bry92] R. E. Bryant. Symbolic Boolean manipulation with ordered binary
decision diagrams. ACM Computing Surveys, 1992.

[BSW69] K. A. Barlett, R. A. Scantlebury, and P. C. Wilkinson. A note on
reliable full duplex transmission over half duplex links. In Com-
munications of the ACM, volume 12, 1969.

[BT00] Piergiorgio Bertoli and Paolo Traverso. Design verification of a
safety-critical embedded verifier. In Kaufmann et al. [KMM00a],
pages 233–245.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing Mathematics with the Nuprl Devel-
opment System. Prentice-Hall, NJ, 1986.

[CBM89] Olivier Coudert, Christian Berthet, and Jean Christophe Madre.
Verification of synchronous sequential machines based on symbolic
execution. In J. Sifakis, editor, Proc. of the Workshop on Auto-
matic Verification Methods for Finite State Systems, volume 407
of LNCS, pages 365–373, 1989.

[CE81] E. M. Clarke and E. Allen Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Logic of Programs:
Workshop, volume 131 of LNCS, pages 52–71. Springer-Verlag,
May 1981.

[CKM+91] D. Craigen, S. Kromodimoeljo, I. Meisels, W. Pase, and
M. Saaltink. Eves: An overview. In VDM’91 Formal Software De-
velopment Methods, volume 551 of LNCS. Springer-Verlag, 1991.

[Coe95] Tim Coe. Inside the Pentium FDIV bug. Dr. Dobb’s Journal of
Software Tools, 20(4):129–135, 1995.

[COR+95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial
introduction to PVS. In Proceedings of the Workshop on Industrial-

195

Strength Formal Specification Techniques. Boca Raton, FL, April
1995.

[Cyr93] David Cyrluk. Microprocessor verification in PVS: A methodol-
ogy and simple example. Technical Report SRI-CSL-93-12, SRI,
December 1993.

[Dev92] Keith Devlin. The Joy of Sets: Fundamentals of Contemporary
Set Theory. Springer-Verlag, second edition, 1992.

[DFH+93] Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet
Murthy, Catherine Parent, Christine Paulin-Mohring, and Ben-
jamin Werner. The Coq proof assistant user’s guide. Technical
Report 154, INRIA, Rocquencourt, France, 1993.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall,
Englewood Cliffs, 1976.

[Dij99] Edsger Wybe Dijkstra. Computing science: Achievements and
challenges, March 1999. EWD 1284.

[Dij01] Edsger W. Dijkstra. Under the spell of Leibniz’s dream. Informa-
tion Processing Letters, 77(2–4):53–61, February 2001.

[DP97] Werner Damm and Amir Pnueli. Verifying out-of-order executions.
In CHARME, pages 23–47, 1997.

[EC80] E. Allen Emerson and E. M. Clarke. Characterizing correctness
properties of parallel programs as fixpoints. In Proceedings 7th
International Colloquium on Automata, Languages, and Program-
ming, volume 85 of LNCS. Springer-Verlag, 1980.

[Ede97] Alan Edelman. The mathematics of the Pentium division bug.
SIAM Review, 39(1):54–67, 1997.

[EJS93] E. Allen Emerson, C. S. Jutla, and A. P. Sistla. On model checking
for fragments of the Mu-Calculus. In Proceedings 5th International
Conference on Computer Aided Verification, volume 697 of LNCS,
pages 385–396. Springer-Verlag, 1993.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient model checking
in fragments of the propositional Mu-Calculus (extended abstract).

196

In Proceedings, Symposium on Logic in Computer Science, pages
267–278, Cambridge, Massachusetts, 16–18 June 1986. IEEE Com-
puter Society.

[Eme81] E. Allen Emerson. Branching time temporal logics and the design
of correct concurrent programs. PhD thesis, Division of Applied
Sciences, Harvard University, August 1981.

[Eme90] E. Allen Emerson. Temporal and modal logic. In van Leeuwen
[vL90], pages 995–1072.

[Eme97] E. Allen Emerson. Model checking and the Mu-Calculus. In N. Im-
merman and P. Kolaitis, editors, Proceedings of the DIMACS Sym-
posium on Descriptive Complexity and Finite Models, pages 185–
214, 1997.

[EN95] E. Allen Emerson and K. S. Namjoshi. Reasoning about rings. In
ACM Symposium on Principles of Programming Languages, 1995.

[Gat98] Bill Gates. Remarks by Bill Gates, June 1998. Presented at
SIGMOD 98 (Special Interest Group on Management of Data).
See URL http://www.microsoft.com/billgates/speeches/-
SIGMOD98.asp.

[Gla01] R. J. van Glabbeek. The linear time – branching time spectrum I;
the semantics of concrete, sequential processes. In J. A. Bergstra,
A. Ponse, and S. A. Smolka, editors, Handbook of Process Algebra,
chapter 1, pages 3–99. Elsevier, 2001.

[GM93] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A Theorem Proving Environment for Higher Order Logic. Cam-
bridge University Press, 1993.

[Gre98] David A. Greve. Symbolic simulation of the JEM1 microprocessor.
In Formal Methods in Computer-Aided Design – FMCAD, LNCS.
Springer-Verlag, 1998.

[GS92] S. German and A. P. Sistla. Reasoning about systems with many
processes. Journal of the ACM, 1992.

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with
PVS. In Computer-Aided Verification, volume 1254 of LNCS, 1997.

197

[GV90] J. Groote and F. Vaandrager. An efficient algorithm for branching
bisimulation and stuttering equivalence. In M. S. Paterson, edi-
tor, ICALP, volume 443 of LNCS, pages 626–638. Springer-Verlag,
1990.

[GWH00] David Greve, Matthew Wilding, and David Hardin. High-speed,
analyzable simulators. In Kaufmann et al. [KMM00a], pages 113–
135.

[HB92] Warren A. Hunt, Jr. and Bishop Brock. A formal HDL and its use
in the FM9001 verification. Proceedings of the Royal Society, 1992.

[HB97] Warren A. Hunt, Jr. and Bishop Brock. The DUAL-EVAL hardware
description language and its use in the formal specification and
verification of the FM9001 microprocessor. Formal Methods in
Systems Design, 11:71–105, 1997.

[HGS99] Ravi Hosabettu, Ganesh Gopalakrishnan, and Mandayam Srivas.
A proof of correctness of a processor implementing Tomasulo’s al-
gorithm without a reorder buffer. In Laurence Pierre and Thomas
Kropf, editors, Correct Hardware Design and Verification Meth-
ods, 10th IFIP WG10.5 Advanced Research Working Conference,
(CHARME ’99), volume 1703 of LNCS, pages 8–22. Springer-
Verlag, 1999.

[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke.
Computing simulations on finite and infinite graphs. In IEEE Sym-
posium on Foundations of Computer Science, pages 453–462. IEEE
Computer Society Press, 1995.

[HJ00] Warren A. Hunt, Jr. and Steven D. Johnson, editors. Formal
Methods in Computer-Aided Design–FMCAD 2000, volume 1954
of LNCS. Springer-Verlag, 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–583, October 1969.

[HQR99] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani.
Assume-guarantee refinement between different time scales. In
Nicolas Halbwachs and Doron Peled, editors, Computer-Aided
Verification–CAV ’99, volume 1633 of LNCS, pages 208–221.
Springer-Verlag, 1999.

198

[HS96] K. Havelund and N. Shankar. Experiments in theorem proving
and model checking for protocol verification. In Formal Methods
Europe (FME), volume 1051 of LNCS. Springer-Verlag, 1996.

[HSG98] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan.
Decomposing the proof of correctness of a pileplined microproces-
sors. In Hu and Vardi [HV98].

[HSG99] Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrish-
nan. Proof of correctness of a processor with reorder buffer us-
ing the completion functions approach. In Nicolas Halbwachs and
Doron Peled, editors, Computer-Aided Verification–CAV ’99, vol-
ume 1633 of LNCS. Springer-Verlag, 1999.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley, 1979.

[Hun89] Warren A. Hunt, Jr. Microprocessor design verification. Journal
of Automated Reasoning, 5(4):429–460, 1989.

[Hun94] Warren A. Hunt, Jr. FM8501: A Verified Microprocessor, volume
795. Springer-Verlag, 1994.

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verifi-
cation – CAV ’98, volume 1427 of LNCS. Springer-Verlag, 1998.

[HWG98] David Hardin, Matthew Wilding, and David Greve. Transforming
the theorem prover into a digital design tool: From concept car
to off-road vehicle. In Hu and Vardi [HV98]. See URL http://-
pobox.com/users/hokie/docs/concept.ps.

[KM] Matt Kaufmann and J Strother Moore. ACL2 homepage. See URL
http://www.cs.utexas.edu/users/moore/acl2.

[KM97] Matt Kaufmann and J Strother Moore. A precise de-
scription of the ACL2 logic. Technical report, Depart-
ment of Computer Sciences, University of Texas at Austin,
1997. See URL http://www.cs.utexas.edu/users/moore/-
publications/acl2-papers.html#Foundations.

[KM00] Matt Kaufmann and J Strother Moore, editors. Proceedings of the
ACL2 Workshop 2000. The University of Texas at Austin, Tech-
nical Report TR-00-29, November 2000.

199

[KM01] Matt Kaufmann and J Strother Moore. Structured theory devel-
opment for a mechanized logic. Journal of Automated Reasoning,
26(2):161–203, February 2001.

[KMM00a] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore, ed-
itors. Computer-Aided Reasoning: ACL2 Case Studies. Kluwer
Academic Publishers, June 2000.

[KMM00b] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic Pub-
lishers, July 2000.

[KMM00c] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Sup-
porting files for “Computer-Aided Reasoning: ACL2 Case Stud-
ies”. See the link from URL http://www.cs.utexas.edu/users/-
moore/acl2, 2000.

[KMM00d] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Sup-
porting files for “Computer-Aided Reasoning: An Approach”. See
the link from URL http://www.cs.utexas.edu/users/moore/-
acl2, 2000.

[Koz83] D. Kozen. Results on the propositional Mu-Calculus. Theoretical
Computer Science, pages 334–354, December 1983.

[KR89] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, second edition, 1989.

[Kro01] Daniel Kroning. Formal Verification of Pipelined Microprocessors.
PhD thesis, Universität des Saarlandes, 2001.

[Kun80] Kenneth Kunen. Set Theory - an Introduction to Independence
Proofs, volume 102 of Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam, 1980.

[Lam83] Leslie Lamport. What good is temporal logic? Information Pro-
cessing, 83:657–688, 1983.

[Man00a] Panagiotis Manolios. Correctness of pipelined machines. In Hunt
and Johnson [HJ00], pages 161–178.

[Man00b] Panagiotis Manolios. Homepage of Panagiotis Manolios, 2000. See
URL http://www.cs.utexas.edu/users/pete.

200

[Man00c] Panagiotis Manolios. Mu-calculus model-checking. In Kaufmann
et al. [KMM00a], pages 93–111.

[Man00d] Panagiotis Manolios. Verification of pipelined machines in ACL2.
In Kaufmann and Moore [KM00].

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[McM98] K. L. McMillan. Verification of an implementation of Tomasulo’s
algorithm by compositional model checking. In Alan J. Hu and
Moshe Y. Vardi, editors, Computer Aided Verification (CAV ’98),
volume 1427 of LNCS, pages 110–121. Springer-Verlag, 1998.

[Mil71] R. Milner. An algebraic definition of simulation between programs.
In In Proceedings of the Second Internation Joint Conference on
Artificial Intelligence, pages 481–489, 1971.

[Mil90] R. Milner. Communication and Concurrency. Prentice-Hall, 1990.

[MLK98] J Strother Moore, T. Lynch, and Matt Kaufmann. A mechanically
checked proof of the AMD5K86 floating-point division program.
IEEE Trans. Comp., 47(9):913–926, September 1998. See URL
http://www.cs.utexas.edu/users/moore/publications/-
acl2-papers.html#Floating-Point-Arithmetic.

[MN95] O. Müller and T. Nipkow. Combining model checking and deduc-
tion for I/O-Automata. In Proceedings of TACAS, 1995.

[MNS99] Panagiotis Manolios, Kedar Namjoshi, and Robert Sumners. Link-
ing theorem proving and model-checking with well-founded bisimu-
lation. In Nicolas Halbwachs and Doron Peled, editors, Computer-
Aided Verification–CAV ’99, volume 1633 of LNCS, pages 369–379.
Springer-Verlag, 1999.

[Moo96] J Strother Moore. Piton : A Mechanically Verified Assembly-Level
Language. Kluwer Academic Press, Dordrecht, The Netherlands,
1996.

[MS95] F. Moller and S. A. Smolka. On the complexity of bisimulation.
ACM Computing Surveys, 27(2):287–289, June 1995.

201

[Nam97] K. S. Namjoshi. A simple characterization of stuttering bisimula-
tion. In 17th Conference on Foundations of Software Technology
and Theoretical Computer Science, volume 1346 of LNCS, pages
284–296, 1997.

[PA98] Amir Pnueli and Tamarah Arons. Verification of data-insensitive
circuits: An in-order-retirement case study. In Ganesh Gopalakr-
ishnan and Phillip Windley, editors, Formal Methodsin Computer-
Aided Design, FMCAD ’98, volume 1522 of LNCS. Springer-
Verlag, 1998.

[Par69] David Park. Fixpoint induction and proofs of program properties.
In Bernard Meltzer and Donald Michie, editors, Machine Intelli-
gence, volume 5, pages 59–78. Edinburgh University Press, 1969.

[Par81] David Park. Concurrency and automata on infinite sequences. In
Theoretical Computer Science, volume 104 of LNCS, pages 167–
183. Springer-Verlag, 1981.

[Pix90] Carl Pixley. A computational theory and implementation of se-
quential hardware equivalence. In CAV’90 DIMACS series, vol-
ume 3, June 1990. Also DIMACS Tech. Report 90-31.

[Pnu77] Amir Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, pages 46–57, Provi-
dence, Rhode Island, 31 October–2 November 1977. IEEE.

[Pnu85] Amir Pnueli. Linear and branching structures in the semantics
and logics of reactive systems. In W. Brauer, editor, Proceed-
ings of 12th International Colloquium on Automata, Languages
and Programming (ICALP), volume 194 of LNCS, pages 15–32.
Springer-Verlag, 1985.

[Pre99] President’s Information Technology Advisory Committee. Infor-
mation technology research: Investing in our future. National
Coordination Office for Computing, Information, and Communi-
cations. See URL http://www.ccic.gov/ac/report/, February
1999.

[PRSS99] Amir Pnueli, Yoav Rodeh, Ofer Shtrichman, and Michael Siegel.
Deciding equality formulas by small domain instantiations. In

202

Nicolas Halbwachs and Doron Peled, editors, Computer-Aided
Verification–CAV ’99, volume 1633 of LNCS, pages 455–469.
Springer-Verlag, 1999.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement
algorithms. SIAM Journal on Computing, 16(6):973–989, 1987.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of con-
current systems in CESAR. In Proc. of the 5th International Sym-
posium on Programming, volume 137 of LNCS, 1982.

[RF00] David M. Russinoff and Arthur Flatau. RTL verification: A
floating-point multiplier. In Kaufmann et al. [KMM00a], pages
201–231.

[RGA+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S. -T. Cheng, S. Edwards, S. Khatri, Y. Kuki-
moto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple,
G. Swamy, and T. Villa. VIS: a system for verification and synthe-
sis. In Rajeev Alur and Thomas A. Henzinger, editors, Proceedings
of the Eighth International Conference on Computer Aided Veri-
fication CAV, volume 1102, pages 428–432. Springer-Verlag, July
1996.

[Rud92] P. Rudnicki. An overview of the MIZAR project. In 1992 Workshop
on Types for Proofs and Programs, 1992.

[Rus97] David M. Russinoff. A mechanically checked proof of correctness
of the AMD5K86 floating-point square root microcode. Formal
Methods in System Design Special Issue on Arithmetic Circuits,
1997.

[Rus98] David M. Russinoff. A mechanically checked proof of IEEE com-
pliance of a register-transfer-level specification of the AMD-K7
floating-point multiplication, division, and square root instruc-
tions. London Mathematical Society Journal of Computation and
Mathematics, 1:148–200, December 1998.

[Rus99] David M. Russinoff. A mechanically checked proof of correctness of
the AMD-K5 floating-point square root microcode. Formal Meth-
ods in System Design, 14:75–125, 1999.

203

[Saw99] Jun Sawada. Formal Verification of an Advanced Pipelined Ma-
chine. PhD thesis, University of Texas at Austin, December
1999. See URL http://www.cs.utexas.edu/users/sawada/-
dissertation/.

[Saw00] Jun Sawada. Verification of a simple pipelined machine model. In
Kaufmann et al. [KMM00a], pages 137–150.

[SB90] Mandayam Srivas and Mark Bickford. Formal verification of a
pipelined microprocessor. IEEE Software, pages 52–64, September
1990.

[SH97] Jun Sawada and Warren A. Hunt, Jr. Trace table based ap-
proach for pipelined microprocessor verification. In Computer
Aided Verification (CAV ’97), volume 1254 of LNCS, pages 364–
375. Springer-Verlag, 1997.

[SH98] Jun Sawada and Warren A. Hunt, Jr. Processor verification with
precise exceptions and speculative execution. In Alan J. Hu and
Moshe Y. Vardi, editors, Computer Aided Verification (CAV ’98),
volume 1427 of LNCS, pages 135–146. Springer-Verlag, 1998.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time. In STOC: ACM Symposium on Theory of Computing
(STOC), pages 1–9, 1973.

[SM95] Mandayam K. Srivas and Steven P. Miller. Formal verification
of an avionics microprocessor. Technical Report CSL-95-04, SRI
International, 1995.

[Ste90] G. L. Steele, Jr. Common Lisp The Language, Second Edition.
Digital Press, Burlington, MA, 1990.

[Sum00] Rob Sumners. An incremental stuttering refinement proof of a
concurrent program in ACL2. In Kaufmann and Moore [KM00].

[Tar55] A. Tarski. A lattice theoretic fixpoint theorem and its applications.
Pacific Journal of Mathematics, 55:285–309, 1955.

[Tho01] Wolfgang Thomas. Logic for computer science: The engineering
challenge. In Reinhard Wilhelm, editor, Informatics - 10 Years
Back. 10 Years Ahead., volume 2000 of Lecture Notes in Computer
Science, pages 257–267. Springer, 2001.

204

[TSL+90] H. J. Touati, H. Savoj, B. Lin, R. S. Brayton, and A. Sangiovanni-
Vincentelli. Implicit state enumeration of finite state machines
using BDD’s. In IEEE /ACM International Conference on CAD,
pages 130–133, 1990.

[vGW96] Rob J. van Glabbeek and W. Peter Weijland. Branching time
and abstraction in bisimulation semantics. Journal of the ACM,
43(3):555–600, 1996.

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science:
Volume B: Formal Models and Semantics. Elsevier, Amsterdam,
1990.

[WC94] Phillip J. Windley and Michael L. Coe. A correctness model for
pipelined microprocessors. In Theorem Provers in Circuit Design,
volume 901 of LNCS, pages 33–52. Springer-Verlag, 1994.

[WGHar] Matthew Wilding, David Greve, and David Hardin. Efficient sim-
ulation of formal processor models. Formal Methods in System
Design, to appear. Draft TR available as http://pobox.com/-
users/hokie/docs/efm.ps.

[Wol86] P. Wolper. Expressing interesting properties of programs in propo-
sitional temporal logic. In Proceedings of the 13th ACM Symposium
on Principles of Programming Languages, pages 184–193. ACM
Press, 1986.

205

Index

ε0, 104
*, 100
+, 15, 22, 133, 137, 140, 145, 156
+, 100
-, 100
=<, 114
==, 115

Abadi, Mart́ın, 31, 50, 66, 69
abstraction, viii, 8, 75
ACL2, viii, ix, 4, 7, 9–11, 15–17,

24, 30, 71, 76, 77, 93–98,
102–104, 107, 108, 110–116,
119–122, 126, 127, 129, 134,
137, 140, 143, 145–147, 149,
151–155, 157–159, 165, 172,
176–178, 181, 183, 185, 187,
188, 190, 191

alist, 96, 123
ampersand markers, 106
atoms, 95
backquote notation, 105
book, 110
certified book, 110
characters, 95
comments, 98
congruence-based reasoning, 115
conses, 95
constrained function, 108
constrained functions, 121
constrained system, 181

definitional principle, 16, 104
efficient execution, 94
encapsulation, 108, 121
evaluator, 129
events, 94
functional instantiation, 109, 121,

135
functions, 102
guards, 102
history, 96
include book, 110
load book, 110
local event, 110
logical world, 107
macros, 15, 98, 104
measure, 104
model, 126
Mu-Calculus semantics, 129
Mu-Calculus syntax, 127
numbers, 95
package name, 95
relation, 123
strings, 95
symbol name, 95
symbols, 95
theorems, 107
true list, 95
undefined function, 108

acl2-numberp, 99
ACTL, 22

206

ACTL∗, 22, 23
ACTL\X, 22
ACTL∗ \ X, 22, 38, 49
Aczel, Peter, 25
Adams, Will, v
add, 124
algorithmic complexity, 70
alternating bit protocol, 10, 143
Amla, Nina, v
and, 100
antisymmetric, 13
append, 100
applyf, 122
atom, 99
automata theory, 133
automata, finite-state, 134
axioms, 16

B, 180
B-core, 179
basic-m-calc-formulap, 128
BDD, 22, 133, 134, 137
binary decision diagram, 133
binary-append, 99
bisimilar, 23
bisimulation, 23, 29, 67, 70

algorithm for deciding, 24
branching, 70
stuttering, see stuttering bisim-

ulation, 70
weak, 70

bisimulation relation, 23
bisimulation, equivalence stuttering,

56–59, 61–64
bisimulation, stuttering, 52–57, 62–

65
bisimulation, well-founded, 56, 62
bisimulation, well-founded equivalence,

57–59, 61–66, 71, 75, 76, 78–

81, 84, 85, 87, 88, 90, 92,
149, 151–153, 155–159, 164,
169, 170, 173, 179–182, 185,
187, 188

bor, 179
Boyer, Bob, 111
branching-time logic, 17
Browne, M., 9, 38, 50, 55, 70
Burch, Jerry, 11, 143, 158, 160, 165–

167, 171, 185–187

C, 16, 94
caar, 100
cadr, 100
calculus of thought, 7
Camahort, Emilio, v
car, 99
cardinality, 12
cardinality, 119, 121
cdar, 100
cddr, 100
cdr, 99
Clarke, E., 9, 38, 50, 55, 70, 137
clock rate, 70
closed interval, 12
Common Lisp, 15, 16

applicative, 15
communications protocol, viii
completeness, 50
composition, 13, 17, 49, 65
compositional proof rules, viii, 9
compositional reasoning, 119
compositionality, 187
compress, 150
computation tree, 43, 67
compute-fix-point, 132
concatenation, 14
cond, 100
cons, 99

207

consp, 99
constrained functions, 135
constrained system, 181
correctness, 160

notions, 29
CTL, 17, 20, 22, 23, 113, 134, 137–

140
semantics, 21
syntax, 22

ctl-2-muc, 139
ctl-formulap, 138
CTL∗, 17, 20–23, 137

semantics, 21
syntax, 20

CTL∗ \ X, 22, 55, 64, 65, 92, 164
CTL \X, 22

deadlock, 11, 168
defabbrev, 122, 129
defcong, 116
defequiv, 115
defthm, 107
defun, 102
defun-sk, 176, 178
defun-weak-sk, 178
Devlin, Keith, 25
Dijkstra, Edsger W., v, 7, 15
Dill, David, 11, 143, 158, 160, 165–

167, 171, 185–187
disjoint union, 12
domain, 12

ECTL, 22
ECTL∗, 22
ECTL\X, 22
ECTL∗ \ X, 22
elength, 60
Emerson, E. Allen, v, 137
encapsulation, 121, 135

endp, 99
equal, 99
equivalence relation, 13
equivalence stuttering bisimulation,

see bisimulation, equivalence
stuttering, see ESTB, 56

ESTB, 56–59, 61–64
etree, 60
evaluator, 129
exception handling, 187
exceptions, ix, 11
execution, 119
exists-w-succ-for-s, 183
exists-w-succ-for-s-weak, 182
exists-w-succ-for-u, 183
exists-w-succ-for-u-weak, 182
extraction algorithms, viii

f, 121
fairness

strong, 154
weak, 154

FDIV bug, 6
finite invisible nondeterminism, 66
finite sequence, 13
finite-state automata, 134
finite-state system, 22
first, 100
fixpoint, 17, 18, 113, 121, 134, 135,

140
greatest, 18, 20, 122, 123, 129,

134, 136
least, 18, 20, 122, 129, 134, 136
post-fixpoint, 18
pre-fixpoint, 18

fixpointp, 135
flushing, 169
fullpath, 14

suffix, 14

208

fullpaths
matching, 31

function, see relation
application, 12
currying, 12
domain, 12

Gödel, Kurt, 7
Gates, Bill, 6
generate-full-system, 179
gfpf, 122
GNU General Public License, 111
good-model, 135
good-s2r, 150
good-val, 135
good-var, 135
graph

labeled, 14
Groote, J., 71
Grumberg, O., 9, 38, 50, 55, 70
Gunnels, John, v

half-open interval, 12
Havlicek, John, v
Henzinger, Monika, 24
Henzinger, Thomas, 24
hereditarily finite, 88
Hilbert’s program, 7
Hilbert, David, 7
history variable, 66
Hoare logic, 4
Hunt, Warren Jr., vi, 186

if, 99
image, 13
image, 124
image-aux, 124
implementation, 29, 47
implies, 99

in, 114
infinite sequence, 13
infinite-state system, 75, 76
integerp, 99
Intel, 6
internally continuous, 66, 69
interrupts, ix, 11, 158, 159, 187
intersect, 117, 120
intersect-aux, 120
interval

closed, 12
half-open, 12
open, 12

inverse, 13
inverse, 124, 125
inverse-aux, 125
inverse-relation, 127
inverse-step, 125
inverse-step-aux, 125
ISA, 159
iteration, 17

Joshi, Rajeev, v

Kaufmann, Matt, vi, 7, 76, 93, 94,
111

Knaster, B., 18, 122
Kopke, Peter, 24
Krug, Robert, v

labeled graph, 14
labeling function, 14
lambda, 101
lambda notation, 13
Lamport, Leslie, 31, 50, 66, 69
left-total, 14
Leibniz, Gottfried Wilhelm, 7

rule of, 93
len, 99

209

length, 44
let, 101
lexicographic ordering, 104
lfpf, 122
linear-time logic, 17
list, 100
livelock, 168
liveness, 69, 154, 168
LTL, 17, 20–23, 137

semantics, 21
syntax, 21

m-calc-sentencep, 127
MA, 160
machine closed, 66, 69
macros, 15
make-model, 127
Manolios, Emmanuel, 215
Manolios, Emmanuel Aristotelis, v,

vi, 215
Manolios, Fay, vi
Manolios, Helen, v, vi, 215
Manolios, Panagiotis, 76, 93, 94, 215
Manolios, Sofia, 215
match, 32
mechanical verification, vii, 5
Meyer, A., 24
microprocessor verification, 6
Microsoft, 6
minus, 118, 120
Misra, Jayadev, v
model, 126
model checking, viii, 4, 6, 9, 22, 75,

133, 134, 137, 140, 153
extensional, 133
global, 133
local, 133
state explosion, 133
symbolic, 22, 133, 134

modelp, 127
Moller, F., 25
monotonic, 13, 127, 134

function, 18, 121
monotonicity

syntactic, 20
Moore, J Strother, v, 7, 76, 93, 94,

111
Mu-Calculus, viii, 10, 17–19, 22–24,

76, 77, 113, 127–129, 131–
134, 137, 139, 140, 153, 191

semantics, 19, 129
syntax, 19, 127

mu-semantics, 132
mu-symbolp, 128
mutual-recursion, 129, 132

Namjoshi, Kedar, v, 9, 30, 50, 64
netlist, ix, 11, 159, 187, 188
nil, 95
non-determinism, 11
non-terminating programs, 160
non-well-founded sets, 25
not, 99
notions of correctness, 29, 158
Nqthm, 111
number

natural, 12
ordinal, 14

open interval, 12
or, 100
ordered pair, 12
ordinals, 14
overflow, 159
overflow (stack), 119

package, 114
FAST-SETS, 114, 119
MODEL-CHECK, 126

210

RELATIONS, 123
SETS, 114, 121

Paige, Robert, 24
partial order, 13
path, 14

concatenation, 14
Pentium, 6
performance, 70
pipelined machine, viii, 11, 158, 188
Pnueli, Amir, 5, 24, 25, 140, 186
polymorphic type systems, 6
post-fixpointp, 135
powerset, 12
pre-fixpointp, 135
preorder, 13, 38
process algebra, 5
programming language, 15
proof checkers, 15
prophecy variable, 66
prophecy variables, 30
protocol, see alternating bit proto-

col
communications, 10

prove-web, 179
PSPACE-complete, 24, 134

quantification, 13
Queille, J.P., 137
quotient extraction, 78, 152

complexity, 83, 89
procedure, 88
procedures, 76
state representative functions, 81

quotient structure, 10, 63, 87

R, 180
r2s-state, 150
range, 124
range-aux, 124

rank, 180
rationalp, 99
reactive systems, vii, 3–5, 22, 140
recursive function theory, 4
refinement, viii, 9, 64, 66, 149, 165

simulation, 47
WEB, 65

refinement map, 47, 69
reflexive, 13
rel-domain-subset, 126
rel-range-subset, 126
relation, 113, 123–126, 140

antisymmetric, 13
composition, 13
equivalence relation, 13
image, 13
inverse, 13
labeling, 127
left-restricted, 13
left-total, 14
partial order, 13
preorder, 13
reflexive, 13
symmetric, 13
transition, 127
transitive, 13

relation, 127
relationp, 123
relevant-r2s, 150
relevant-s2r, 150
remove-dups, 118, 121
rep, 151

S, 122
s-labeling, 127
s2r-state, 150
s<, 119
safety-critical systems, 3
Samoladas, Vasilis, v

211

Sawada, Jun, v, 10, 11, 143, 158,
159, 165, 167, 168, 176, 184–
186

second, 100
Sem-mon-f, 135
sem-mon-f, 135
semantics, 131
semantics-AND, 130
semantics-EVAL, 130
semantics-EVAL-aux, 129
semantics-EX, 130
semantics-fix, 130
semantics-MU, 131
semantics-NOT, 130
semantics-NU, 131
semantics-OR, 130
sentence, 20
set representative function, 10, 84,

85
set theory, 25, 113, 114, 119, 140

flat, 113
non-well-founded, 25

set-complement, 118
set-theory

ZFC, 25
set-union, 116, 119
Shankar, Natarajan, vi
Sifakis, J., 137
SIGMOD, 6
similar, 23
simulation, 23, 29, 67, 70

algorithm for deciding, 24
stuttering, see stuttering simu-

lation
simulation refinement, 47
simulation relation, 23
simulation, stuttering, 34–36, 38–

41, 43, 45–47, 49, 50, 52,

54–57
simulation, well-founded, 40, 41, 45,

46, 56, 58, 59
size, 127
Smaragdakis, Yannis, v
Smolka, S., 25
soundness, 50
specification, 29, 47
stack

overflow, 119
state representative function, 10, 78
states, 127
static analysis, 6
STB, 52–57, 62–65

composition, 54
greatest, 54
intersection, 55
negation, 55
union, 54

stobj, 94
Stockmeyer, L., 24
strong fairness, 154
STS, 34–36, 38–41, 43, 45–47, 49,

50, 52, 54–57
composition, 36
greatest, 34, 36, 38
intersection, 38
negation, 38
union, 35

stuttering, 9, 50
stuttering bisimulation, 9, see bisim-

ulation, stuttering, see STB,
52

stuttering bisimulation checking, 155
stuttering simulation, 9, see simu-

lation, stuttering, see STS,
34

Sumners, Rob, v, 50, 72

212

symmetric, 13
syntactic monotonicity, 20
systems

safety-critical, see safety-critical
systems

transformational, 4

t, 95
Tarjan, Robert, 24
Tarski, Alfred, 18, 122
Tarski-Knaster theorem, 17, 18, 122
temporal calculus, 17
temporal logic, 5, 17, 134, 137

ACTL, 22
ACTL∗, 22, 23
ACTL∗ \ X, 22, 38, 49
ACTL\X, 22
branching-time, 17, 29, 66
CTL, 17, 20, 22, 23, 113, 134,

137–140
CTL∗, 17, 20–23, 137
CTL∗\X, 22, 55, 64, 65, 92, 164
CTL \X, 22
ECTL, 22
ECTL∗, 22
ECTL\X, 22
ECTL∗ \ X, 22
linear-time, 17, 29, 66
LTL, 17, 20–23, 137

theorem proving, viii, 4, 9, 15, 75
Thomas, Wolfgang, 7
total, 94
trace congruence, 29
trace containment, 24, 29, 67
trace equivalence, 24, 29
transformational systems, 4
transition relation, 14
transition system, 14

typed, 48, 65

transitive, 13
translate-f, 127
tree

computation, 43
tree, 43
Trefler, Richard, v
Turing, Alan, 7
type checking, 6

u-formulap, 138
union

disjoint, 12

Vaandrager, F., 71
valuation, 19
value-of, 123
verification

mechanical, see mechanical ver-
ification

weak fairness, 154
weakest precondition calculus, 4
WEB, 57–59, 61–66, 71, 75, 76, 78–

81, 84, 85, 87, 88, 90, 92,
149, 151–153, 155–159, 164,
169, 170, 173, 179–182, 185,
187, 188

completeness, 61
equivalence, 62
soundness, 58

WEB equivalence checker, 155
WEB refinement, 65
well-founded bisimulation, see bisim-

ulation, well-founded, see WFB,
55

well-founded equivalence bisimula-
tion, see bisimulation, well-
founded equivalence, see WEB,
57

213

well-founded simulation, see simu-
lation, well-founded, see WFS,
40

well-founded structure, 13
well-founded witness, 58
WFB, 56, 62

equivalence, 56
greatest, 56

WFS, 40, 41, 45, 46, 56, 58, 59
completeness, 45
equivalence with STS, 46
soundness, 41

work stealing algorithm, 50
workload, 70
wrap-it-up, 179

Yuan, Yu, vi

ZFC, 25
zp, 99

214

Vita

Panagiotis Manolios was born in Athens, Greece on December 22, 1967 to

Emmanuel and Sofia Manolios. Panagiotis spent the first seven years of his

life in Karpathos, an island at the southeastern tip of Greece. In 1974, his

family moved to Brooklyn, New York. Panagiotis received a Bachelor of Sci-

ence degree from Brooklyn College in 1991. In 1992, he received a Master of

Arts degree, again from Brooklyn College. He entered the PhD program at the

University of Texas at Austin in 1994. In 1995, he married Helen Nikolopou-

los and in 2000, their first child, Emmanuel Aristotelis Manolios, was born.

In August 2001, Panagiotis will join the faculty at the Georgia Institute of

Technology as an assistant professor in the College of Computing.

Permanent Address: Panagiotis Manolios

3365 Lake Austin Blvd, D

Austin, TX 78703

This dissertation was set by the author using the LATEX2ε typesetting system.

215

