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Abstract. We present techniques that enable designers to algorithmi-
cally synthesize cyber-physical architectural models with real-time con-
straints. We do this by providing a meta-architectural specification lan-
guage that allows designers to specify what properties their architectural
models should have, not how to achieve them. This provides designers
with a qualitatively new level of abstraction that enables the exploration
of design spaces at the earliest stages of design, when doing so provides
the most benefit. Our key technical contribution is the development of
an Integer linear programming Modulo Theories (IMT) solver along with
a scheduling theory solver. Our solver was used to automatically synthe-
size cyber-physical architectural models with hard real-time constraints
from a large-scale industrial design.

1 Introduction

The complexity of cyber-physical systems, such as ground, air, space, and sea
vehicles, continues to increase at an exponential rate, independent of any rea-
sonable metric used. These systems tend to be distributed and consist of nu-
merous interconnected components that share resources, interact in complex,
safety-critical ways, and have real-time constraints. Real-time constraints are
particularly important because cyber-physical systems interface with the phys-
ical world and have to respond to physical events in real-time; if they do not,
collision and loss of life are possible outcomes. The design of such systems is a
major challenge, e.g., the verification and validation of critical avionics software
is estimated to cost seven times as much as its software development costs.

There is wide consensus that the design of complex systems requires raising
the level of discourse by utilizing high-level modeling. The highest-level models
commonly used are architectural models: they describe the structural properties
of components and the connections between components. Many architecture de-
scription languages (ADLs), such as AADL [8], have been proposed to describe
and reason about this structure [12]. Even such high-level modeling languages
require users to specify what components are to be used and how they are to be
connected. The effort required to do this can be significant, e.g., the current ap-
proach used by our industrial partner required several engineering teams closely
working together over a considerable amount of time to develop an architectural
model for the case study we consider.



In this paper, we revisit synthesis with the goal of enabling designers to work
at a higher level of abstraction and to algorithmically synthesize cyber-physical
architectural models that are correct by construction. Designers should only
specify what they want, not how to achieve it. The emphasis on what not how
is a departure from current high-level design methods. Such a shift will enable
designers to rapidly explore the design space during the earliest stages of design.
This is when the benefits of design exploration are greatest, as it is well known
that errors tend to become exponentially more expensive to correct the further
along the life-cycle they are discovered.

To solve the synthesis problem, in Section 4, we introduce the idea of Integer
linear programming Modulo Theories (IMT) solvers. An IMT solver resembles an
SMT (Satisfiability Modulo Theories) solver, except that instead of using a SAT
solver at the core, we use an ILP (Integer Linear Programming) solver. To our
knowledge, this is the first time that the combination of ILP with background
theories appears in the literature. We believe that the IMT approach has the
potential to be widely applicable, as many practical problems from Operations
Research and Engineering are routinely expressed using mathematical program-
ming tools such as CPLEX. If one wants to consider the combination of such
problems with other theories, then the IMT approach has the potential to enable
the kinds of advances enabled in verification by SMT.

For cyber-physical systems, dealing with real-time constraints is of paramount
importance. We consider static cyclic scheduling, an industrially-relevant and
particularly demanding type of real-time scheduling problem in Section 3. We
show how to solve multi-processor static-cyclic scheduling constraints using a
theory solver that can be used in our IMT approach and which is parameterized
by a decision procedure for the uniprocessor static-cyclic problem. Not surpris-
ingly, care is needed in the generation of theory lemmas, as discussed in section 5.
With synthesis problems, the expectation is that constraints are satisfiable. In
Section 6 we show how to take advantage of this by using a general-purpose
resource limit mechanism that tends to bias the solver towards parts of the state
space that are easier to reason about, often leading to dramatic performance
improvements.

We successfully implemented and used our approach on an industrial case
study from a very complex state-of-the-art aerospace design provided to us by our
industrial partners. Section 2 presents a high-level overview of the class of non-
scheduling constraints appearing in our case study and how they are modeled
in CoBaSA, our modeling language. CoBaSA and how it solves architectural
synthesis problems that do not include scheduling constraints was introduced in
previous work [11, 10]. In section 8, we experimentally evaluate our work using
the above mentioned case study. We were able to quickly and fully automatically
synthesize cyber-physical architectural models with real time constraints for very
complex aerospace designs.



2 Models and Constraints

In this section, we describe the system assembly constraints, the class of non-
scheduling constraints found in our case study, and how they are modeled in
CoBaSA [11], our modeling language. The case study is based on a real, pro-
duction design provided by an industrial partner in the aerospace domain. We
use terms consistent with the ARINC standards 651-1 and 664-7 [1]. A more
detailed description of the constraints is also available [10].

We considered a number of models during the course of several years. The
basic components of the models included: anywhere from 8 to 22 cabinets (cab-
inets provide various resources such as processors and battery backup units),
anywhere from 177 to 257 applications (we also refer to applications as hosted
functions or jobs), and anywhere from 70 to 288 global memory spaces (GMSs)
(GMSs allow applications to share memory). Other components include mes-
sages (for communicating between applications, sensor, and other components)
and virtual links (virtual links are part of a publish-subscribe network and are
used to aggregate and multicast messages). The models had between 1,000 and
2,000 virtual links and between 10,000 and 20,000 messages.
Resource Utilization: Cabinets provide various resources, including CPU time,
RAM memory, ROM memory, non-volatile memory, buffers, and send and re-
ceive bandwidth for virtual links. Cabinets also have limits on how many virtual
links they can receive and transmit. Hosted functions, global memory spaces,
virtual links, and messages consume these resources. Our meta models include
constraints stating that the sum of any resource used does not exceed the amount
of the resource that we have available.
Hosted Function Allocation: Hosted functions have to be mapped to cabi-
nets subject to the resource utilization constraints above, but we also have to
satisfy constraints of the following types. (a) Fixed cabinet constraints specify
that a particular hosted function has to be mapped to a particular cabinet.
(b) Separation constraints state that no pair of hosted functions in a given set
can reside on the same cabinet. (c) Co-location constraints state that given a
non-empty sequence of non-empty sets of hosted functions, we have to create
m groups, where m is the maximum of the cardinalities of the sets in the se-
quence. Furthermore, each hosted function in a set has to be assigned to one of
the m groups, no two hosted functions in the same set can be assigned to the
same group, and all hosted functions in a group have to be assigned to the same
cabinet.
Spare Cabinets and Hosted Functions: Spare cabinets allow us to operate
safely in the presence of a small number of cabinet failures. To that end, spare
cabinets are only allowed to run spare hosted functions. We are given a non-
empty set of hosted functions and are allowed to map at most one hosted function
from the set to a spare cabinet. Hosted functions that do not appear in such
constraints cannot be mapped to spare cabinets. If a non-spare cabinet fails, the
idea is to migrate its jobs to a spare cabinet.
Global Memory Spaces and Hosted Functions: Constraints between GMSs
and hosted functions include. (a) Fixed cabinet constraints specify that a par-



ticular global memory space has to be mapped to a particular cabinet. (b) Co-
location constraints specify that a particular global memory space and all hosted
functions in a given non-empty set have to be mapped to the same cabinet.
(c) Read-only constraints specify that a particular global memory space has to
be allocated to all of the cabinets that a given set of hosted functions map to.
Note that read-only GMSs can be arbitrarily replicated.

Virtual links: Hosted functions publish and subscribe to virtual links. Virtual
links have exactly one publisher, but can have multiple subscribers. The sum of
the bandwidth required for the virtual links that the hosted functions located
on a cabinet publish or subscribe to cannot exceed the available outgoing or
incoming bandwidth, respectively. For the incoming bandwidth constraints, if
multiple hosted functions located on the same cabinet subscribe to the same
virtual link, then the cost of the virtual link is only counted once.

Message buffering: A virtual link is comprised of a non-empty set of messages.
Hosted functions are only really interested in messages, not virtual links. There-
fore, they only read the messages they care about from the virtual links they
subscribe to. Hosted functions buffer a given number of bytes for each message;
this can differ among subscribers of the same message. Each cabinet provides a
single buffer that is used for both message transmission and reception. The sum
of the buffering requirements for the messages that the hosted functions located
in the cabinet publish or subscribe to cannot exceed the capacity of the buffer.
When multiple hosted functions on the same cabinet subscribe to the same mes-
sage with different buffer requirements, they share space, so only incur the cost
of the maximum number of bytes buffered. Finally, each hosted function that
subscribes to a message uses either a queue buffer, or a sampling buffer for it
and hosted functions that subscribe to the same message but use different buffer
types cannot reside on the same cabinet.

Objective Functions: Our framework also allows for objective functions, which
we have used for load balancing, minimizing the maximum bandwidth used per
cabinet, etc.

Figure 1 shows simplified snippets of CoBaSA code for modeling a small sub-
set of the constraints. CoBaSA includes an object-oriented modeling language,
e.g., the cabinet entity above can be thought of a class with three fields, where
the last two correspond to resources and have default values. C_1 is an instance
of the cabinet entity, and cabs is an array of cabinets. Similarly, we define an
array of jobs, jobs (though the entity definition is not shown).

CoBaSA also includes a declarative language for describing constraints. For
example the line starting with map defines a map, jobs-to-cabs from jobs to
cabs. The next five lines constrain jobs-to-cabs by requiring that cabinets
have enough CPU and RAM resources to satisfy all jobs mapped to them.

The constraint starting with for_all is a separation constraint: it states that
jobs J_1 and J_2 have to reside on different cabinets. The example demonstrates
the high-level, declarative way in which we describe the system. We specify only
what properties our model should have, not how to connect jobs and cabinets to
achieve these properties. Figure 2 visualizes one of the solutions we synthesized.



entity cab {

; id STRING

; cpu-time-avail 1000000

; ram-memory-avail 4294967296

}

var

; cab C_1 = { ; "C_1"; ; }

; cab[12] cabs =

[C_1, C_2, ..., C_12]

; job[200] jobs =

[J_1, J_2, ..., J_200]

// mapping jobs to cabinets

map jobs-to-cabs jobs cabs

constraint jobs-to-cabs

((cpu-time-req,

ram-memory-req))

((cpu-time-avail,

ram-memory-avail))

// jobs J_1 and J_2 separated

for_all c in cabs

{ jobs-to-cabs(J_1, c) implies

(not jobs-to-cabs(J_2, c)) }

Fig. 1. CoBaSA Modeling Language Examples

Fig. 2. One of the architectural models we synthesized, visualized as a graph. Pink
rectangles correspond to hosted functions, and green ovals to memory spaces. The
grey containers are cabinets. Edges between hosted functions visualize communication
through virtual links. The orange octagon is the external network.



We end this section by noting that many other cyber-physical systems (e.g.,
consider the automotive industry) will have similar types of constraints, thus,
we expect that our approach will be applicable to these systems as well.

3 Static Cyclic Scheduling

While our approach is independent of the types of real-time scheduling con-
straints used, in this paper, we consider static cyclic scheduling constraints.
Static cyclic scheduling is non-preemptive and periodic; it is easy to describe,
difficult to satisfy, and is used in industry.

We first describe uniprocessor static cyclic scheduling (USCS). Time is di-
vided into infinitely many slots. A job is defined as a triple (p, c, i). The period,
p, is the number of slots between successive executions of the job. The cost, c, is
the number of slots each execution takes. The identifier, i, is a natural number
that uniquely identifies the job. Given a set of jobs, a schedule is simply a start-
ing time t for each job such that t < p and no two jobs occupy the same slot.
The slots occupied by a job are slots of the form t + k · p + m, for k ∈ N and
0 ≤ m < c. That is, if a job is scheduled to start during slot t, then it occupies
c consecutive slots starting with slot t and this process repeats at slot t + p,
t + 2 · p, . . . .

Given a set of jobs, the USCS problem is to determine whether there exists
a schedule.

Theorem 1. The USCS problem is NP-complete.

Proof. We reduce the NP-complete set partition problem to the USCS problem.
Given a multiset S = {n1, n2, . . . , nk} of natural numbers, we construct a set of
jobs

J = {(s, ni, i) | 1 ≤ i ≤ k} ∪ {(s/2, 1, k + 1)}

where s = 2 +
∑

S. It is not hard to see that S can be partitioned into S1 and
S2 such that

∑
S1 =

∑
S2 = (

∑
S)/2 iff J is schedulable. To see that USCS

is in NP, notice that we can verify a schedule by checking than no pair of jobs
leads to a collision. With a little bit of analysis, this can be done by checking
for all pairs of jobs (p1, c1, i1) and (p2, c2, i2) starting at t1 and t2 respectively
that if i1 6= i2 then t1 6= t2, so without loss of generality assume t1 < t2, and we
have c1 ≤ t2 − t1 ≤ gcd(p1, p2)− c2.

In Multiprocessor Static Cyclic Scheduling (MSCS), we have multiple proces-
sors that run in different speeds. The number of slots per cycle (e.g., per second)
is processor-dependent; a processor is defined as a pair (s, i) where s ∈ N is the
number of slots that the processor provides per cycle and i ∈ N is an identifier
unique among processors. In MSCS, we denote a job by a triple (r, c, i), where
r is the rate of the job, c is the cost, and i is the identifier. The period of a job
depends on the processor: a job (r, c, i) has period s/r on a processor that pro-
vides s slots per cycle. We assume that for each job and each processor, the rate
of the job r divides the number of slots per cycle s that the processor provides.



Given a set of jobs, J , and a set of processors, P , the multiprocessor static
cyclic scheduling (MSCS) problem is to determine whether there exists a map-
ping from J to P such that for each processor, the set of jobs mapped to that
processor are schedulable. As USCS is a special case of MSCS, the following
corollary follows trivially:

Corollary 1. The MSCS problem is NP-complete.

We conclude this section by noting that given a static cyclic schedule, we
can statically determine the exact slots allocated to any job. On the one hand,
this makes static cyclic scheduling hard.1 On the other hand, this makes the
schedule very predictable, which in turn dramatically simplifies the analysis of
the system as a whole. This advantage is why static-cyclic scheduling is used for
complex cyber-physical systems.

4 ILP Modulo Theories

Our models include both system assembly constraints (as described in section 2)
and static cyclic scheduling constraints (as described in section 3). We cannot
simply run the ILP solver to assemble the components, and then run the sched-
uler, as the solution provided by the ILP solver might not be schedulable even
if a solution to the system assembly and scheduling constraints exists. To solve
this problem, we develop an ILP Modulo Theories (IMT) solver that combines
a background decision procedure with an ILP solver in much the same way that
SMT allows for the integration of theory solvers with SAT solvers [2, 4, 14].

We explored SAT as an alternative to ILP for our class of problems. We tried
different encodings of the system assembly constraints into SAT and different
SAT solvers. Performance was always at least three orders of magnitude worse
than using an ILP solver. We conjecture that the reason for this is that our
resource constraints are heavily arithmetic. Therefore, in this paper, we assume
an ILP solver as our core solver, but note that our work can also be used in an
SMT framework or with a pseudo-Boolean core solver.

4.1 Formal Preliminaries

Let J be a set of jobs and P be a set of processors. Let VJ,P = {V(j,p) | j ∈ J, p ∈
P} be a set of propositional variables. Note that we can represent any mapping,
M , from J to P as an assignment to VJ,P . The variable V(j,p) is true iff M maps
j to p. The variables in VJ,P are called map variables.

Definition 1. Let J be a set of jobs, P a set of processors, VJ,P a set of map
variables, and A an assignment to the variables in VJ,P . We say that the assign-
ment A is consistent with respect to a scheduling theory iff〈

∀p ∈ P :: sched({j ∈ J | A(V(j,p)) = true}, p)
〉

1 For example, for many scheduling problems, if the processor utilization is less than
some constant, then there exists a polynomial-time algorithm that is guaranteed to
find a schedule; alas this is not true for static cyclic scheduling.



where sched(J, p) is a predicate that evaluates to true iff J is schedulable on p.

Let F be an ILP formula (a conjunction of linear equalities and inequalities)
over a set of integer and Boolean variables VF , such that VF ⊇ VJ,P , where
VJ,P is a set of map variables for a set of jobs J and processors P , as described
above. We say that an assignment A T -entails G = F ∧ Schedulable(J, P, VJ,P )
(written as A |=T G) iff A satisfies the linear constraints of F , and A is consistent
with respect to the scheduling theory. We say G is T -satisfiable iff there is an
assignment A such that A |=T G. The problem of determining whether G is
T -satisfiable is called the ILP Modulo (Scheduling) Theory problem.

Note that an IMT solver allows us to tackle the MSCS problem as described
in section 3. In this case, the formula F has constraints over VJ,P that force each
job to be mapped to exactly one processor.

4.2 Lazy IMT Approach

Our IMT solver (algorithm 1) involves an ILP solver and a specialized decision
procedure for scheduling. The ILP solver suggests assignments which are checked
by the scheduler. Each failed attempt to produce a schedule from an assignment
results in the learning of some theory lemmas. In analogy to [14], we call this
approach the lazy IMT approach, because it learns lemmas only when necessary.

We did try to express the scheduling and system assembly constraints as a
monolithic problem, thus following a more eager approach. The time required
by the solver was unreasonable. We believe that the clean separation between
the real-time and the architectural constraints was one of the reasons why we
were successful: a specialized solver works best for the former, an ILP encoding
for the latter, and IMT allows for efficient coordination between the two.

Algorithm 1 The IMT algorithm

1: procedure imt-top-level(J, P, F )
2: Lemmas ← true
3: while true do
4: Ans ← ILPSolver(F ∧ L)
5: if Ans = UNSAT then
6: return UNSAT
7: else
8: A← Assignment from Ans
9: Schedulable ← true

10: for all p ∈ P do
11: Jp ← {j ∈ J |A(V(j,p)) = true}
12: if ¬sched(Jp, p) then
13: Lemmas ← Lemmas ∧ learn(Jp)
14: Schedulable ← false

15: if Schedulable then
16: return Ans



5 Theory Lemmas

To prevent the ILP solver from wasting its time on assignments that will not lead
to valid schedules, we generate theory lemmas that rule out as many assignments
as possible. Observe that when a set of jobs J is unschedulable on some processor
p, it is possible that some strict subset J ′ of J is also unschedulable on p. By
identifying such subsets, we can generate “good” theory lemmas that preclude
the allocation of any set of jobs that are “at least as hard” as J ′ on processors
that are “at most as powerful” as p.

5.1 Unschedulable Cores

Given an unschedulable set of jobs J , we identify the unschedulable subsets of
J that do not contain any unschedulable proper subset themselves. We call such
subsets unschedulable cores.

Definition 2. C is an unschedulable core of a set of jobs J , if (a) C ⊆ J , (b) C
is unschedulable, and (c) every proper subset of C is schedulable.

Property 1. Let J be an unschedulable set of jobs. ∀j ∈ J , if J \ {j} is schedu-
lable, then j must be in every unschedulable core of J .

Given a set of jobs, J , that has been found to be unschedulable on processor
p, the recursive function all-cores(J, p) shown in algorithm 2 returns the set
of all unschedulable cores. To acquire all cores, we consider all possible ways
of removing jobs from J . Some jobs will be in any unschedulable core of J by
property 1, so we only try to remove the remaining jobs (set D). If none of the
jobs in J can be removed, then J is an unschedulable core. Otherwise we recurse
on all sets J \ {d} for d ∈ D.

The algorithm can be thought of as performing search on a tree: if a node
corresponds to a set of jobs J , the children of the node are the |J | subsets of J
with cardinality |J | − 1 (one of the jobs removed). Note that instead of finding
all possible cores we can terminate the search after finding some given number
of cores.

We can make algorithm 2 more efficient by using a DAG instead of a tree,
since the tree may have distinct nodes annotated with the same set. In addition,
jobs with the same rate and cost can be aggregated and handled separately.
Space constraints prohibit a full accounting.

5.2 Subsumption

Given an unschedulable core, we want to introduce a lemma that precludes
the co-location of sets of jobs “harder” than the core. To this end, we need to
formalize the notion of “hard” with respect to jobs and sets thereof, and the
notion of “powerful” with respect to processors.

Definition 3 (Measurement of Difficulty for Jobs). �J is a partial order
on jobs: (r1, c1, i1) �J (r2, c2, i2) iff r1 divides r2 and c1 ≤ c2.



Algorithm 2 Finding all unschedulable cores

1: procedure all-cores(J, p)
2: D ← {j ∈ J | ¬sched(J \ {j}, p)}
3: if D = ∅ then
4: return {J}
5: else
6: A← ∅
7: for all d ∈ D do
8: A← A ∪ all-cores(J \ {d}, p)

9: return A

Definition 4 (Measurement of Difficulty for Sets). �S is a partial order
on sets of jobs: S �S T iff |S| ≤ |T | and there exists an injective mapping F
from S to T such that ∀j ∈ S, j �J F (j). We say that T is subsumed by S.

Intuitively, given an unschedulable set of jobs J , if we replace each job j in J
with a job j′ such that j �J j′ (j′ is “at least as hard” as j) then the resulting
set of jobs (J \ {j}) ∪ {j′} will also be unschedulable. Similarly, given a set of
jobs J which is schedulable, if we replace each job j in J with a job j′ such
that j′ �J j, then the resulting set of jobs will be schedulable as well. Thus, the
following property holds:

Property 2. For sets of jobs S, T such that S �S T , (a) if S is unschedulable,
then T is unschedulable, and (b) if T is schedulable then S is schedulable.

Definition 5 (Measurement of Power for Processors). �P is a partial
order on processors: (s1, i1) �P (s2, i2) iff s1 divides s2.

5.3 Lemma Generation

Given a set of jobs, J , and a set of processors, P , ∀j ∈ J, ∀p ∈ P , let the map
variable V(j,p) denote that job j is allocated to processor p. Let C = {h1, ..., hm}
be an unschedulable core on some processor q ∈ P . We generate theory lemmas
for each processor p ∈ P where p �P q.

Non-Exhaustive Lemmas

For each processor p where p �P q, and for each job hi ∈ C we construct a
bucket B(i,p) that contains jobs that are “at least as hard” as hi: B(i,p) ⊆ {j ∈
J | hi �J j}. The buckets do not overlap (B(i,p) ∩ B(j,p) = ∅ for i 6= j). Each
job j that can be mapped to processor p2 and is harder than one of the jobs hi

(hi �J j) has to be included in one of the buckets. If we replace any hi ∈ C
with a job in the corresponding bucket, we get an unschedulable set of jobs. We

2 If we can deduce that j cannot be mapped to p, we record this fact and use it to
determine which jobs can be mapped to which processors.



generate the lemma ¬
∧

1≤i≤m

(∨
j∈B(i,p)

V(j,p)

)
, which states that if we allocate

at least one job from each bucket to processor p, p will be unschedulable.

We attempt to construct buckets in a way that gives rise to useful lemmas.
Whenever a job j can go to multiple buckets, we choose (1) the bucket cor-
responding to the job itself, if the job is in the core; otherwise (2) randomly
among the buckets corresponding to jobs that have the same rate and cost as
j; if there are no such jobs, (3) among the buckets corresponding to jobs that
have the same rate as j; if there are no such buckets, (4) among the remaining
buckets. The rationale behind these choices is to ensure that we rule out the
allocation of the exact unschedulable set of jobs (and sets very similar to it) to
any processor. This guarantees that we make progress towards a solution and
ensures termination.

Notice that the lemmas we generate are non-exhaustive. It is possible that
an assignment A maps a set of jobs S such that C �S S to a processor p such
that p �P q, and A is consistent with our lemmas. This is because some of the
jobs of S could have gone to multiple buckets, but our choices when building
the lemma resulted in a bucket not being “inhabited” by any j ∈ S. We use
non-exhaustive lemmas because their encoding is small.

Exhaustive Lemmas

We can also construct buckets that include the map variables for all jobs that
are “at least as hard” as a job hi ∈ C and can be mapped to processor p:
B′(i,p) = {j ∈ J | hi �J j}. Now a job can be in more than one bucket. For each

set of jobs {j1 ∈ B′(1,p), j2 ∈ B′(2,p), . . . , jm ∈ B′(m,p)} such that ∀i, k, 1 ≤ i < k ≤
m : ji 6= jk we can introduce the clause

∨
1≤i≤m ¬V(ji,p). If all ji were mapped

to a processor p such that p �P q, we would have allocated a set harder than
the core C, which is therefore unschedulable.

With this encoding, we need
∏

1≤i≤m |B′(i,p)| clauses in the worst case. The
lemma allows us to rule out all sets of jobs S such that C �S S. We use
exhaustive lemmas for cores below a certain size, because smaller cores are more
frequently applicable and the product above remains manageable.

The recursive function exhaustive-lemma (algorithm 3) generates all clauses
for a list of buckets B′ and a processor p. The argument c is a partial clause (ini-
tially empty) that corresponds to finding a job jk for each bucket B′(k,p), where

1 ≤ k ≤ |c|; c it is of the form
∨

1≤k≤|c| ¬V(jk,p). We use suffixes that the clauses
share to keep the encoding more compact. Assume that we have constructed a
partial clause c of length l, and that the jobs j, j′ ∈ B′(l+1,p) do not appear in any
subsequent bucket. The clauses with prefixes c∨¬V(j,p) and c∨¬V(j′,p) share the
suffixes corresponding to the buckets B′(i,p), where i > l+ 1. We use an auxiliary
variable for the disjunction V(j,p) ∨ V(j′,p), instead of generating a separate set
of clauses for each of j, j′.



Algorithm 3 Exhaustive lemma generation

1: procedure exhaustive-lemma(p, c, B′)
2: if B′ = ∅ then
3: output clause c
4: else
5: L← {j ∈ first(B′) | ∀b ∈ rest(B′), j /∈ b}
6: if L 6= ∅ then
7: v ←

∨
j∈L V(j,p)

8: exhaustive-lemma(p, c ∨ ¬v, rest(B′))

9: for all j ∈ (first(B′) \ L) do
10: B′

new ← {b \ {j} | b ∈ rest(B′)}
11: exhaustive-lemma(p, c ∨ ¬V(j,p), B

′
new)

5.4 Memoization

The purpose of memoization is to avoid making expensive calls to the scheduler
when the (un)schedulability of a set of jobs can be inferred from the result of a
previous call. For sets S and T such that S �S T , if we have memoized that S is
unschedulable, T is also unschedulable by property 2 and we don’t have to call
the scheduler. Similarly, if we know that T is schedulable we can immediately
infer that S is schedulable. The result of each call to the scheduler is memoized
in a list as a pair containing the set of jobs on which it was called and the
corresponding (un)schedulability. Note that we can decide whether S �S T in
polynomial time by reducing the problem to matching in a bipartite graph.

When the (un)schedulability of a set of jobs is questioned, we access the
memoization list sequentially from its head until we find an element from which
we can infer (un)schedulability. To speed this operation up we eliminate redun-
dant elements: if the (un)schedulability of some set S in the memoization list
becomes inferable from the result of a new call to the scheduler for some set
T , then we memoize the (un)schedulability of T , and also remove S from the
memoization list. In addition, we keep sets ordered by their success rate (number
of successful inferences), so that the most frequently used sets are towards the
beginning of the list. If the list becomes too long, we can forget the least useful
sets.

The memoization list is complementary to lemmas. For example, the mem-
oization list allows us to quickly infer that a set of jobs is schedulable, whereas
lemmas only rule out certain assignments. Even for unschedulable assignments
the memoization list can complement lemmas. For example, (1) we can infer
unschedulability before a lemma is introduced, say during core generation (algo-
rithm 2) and (2) we catch instances subsumed by a core but not caught by the
corresponding non-exhaustive lemma.



6 Resource Limits

It is possible that a query to the theory solver takes a long time to complete or
uses too much of some other resource (like memory). Since we expect that our
synthesis problems have solutions, it make sense to avoid such queries and to
instead bias our solver towards solutions that are easier to justify. To that end,
we introduce resource-limit lemmas that allow us to quickly rule out difficult-
to-solve (but potentially satisfiable) scheduling instances in the hope that the
ILP solver will find instances that require fewer resources to justify. In order
to maintain completeness, we have to sometimes undo resource-limit lemmas
to prevent the ILP solver from becoming over-constrained. When resource-limit
lemmas are undone, we allow the exploration of previously blocked parts of
the search space with increased resource limits. Due to space limitations, we
informally describe how resource-limit lemmas work.

We set resource limits for both the scheduler and the ILP solver. In our class
of problems, it makes the most sense to restrict time, since that is the bottleneck.
If the scheduler times out on some instance, we consider that instance to be
unschedulable and generate lemmas to prevent the ILP solver from generating
similar scheduling problems. These lemmas are called resource-limit lemmas.
They are used in the same way as regular lemmas during ILP solving and will
be kept as long as the resulting ILP problem is satisfiable. However, when the ILP
problem becomes unsatisfiable, resource-limit lemmas will be removed and the
resource limit for the scheduler will be increased. The rationale behind this is that
the previous resource-limit lemmas might have over-constrained the search space
of the ILP solver and might have led to unsatisfiability. Therefore, removing the
lemmas and increasing the resource limit will give the ILP solver a chance to
explore a potentially bigger search space. When the ILP solver times out, not
only will we remove resource-limit lemmas and increase the resource limit for
the scheduler, but we will also increase the resource limit for the ILP solver.

The idea of resource-limit lemmas can also be used in the context of SMT
as a technique to manage the balance of resources used by the SAT solver and
theory solvers. The technique is likely to be useful in applications like synthesis,
where we expect a satisfying assignment to exist. In this case, steering the core
solver towards an area of the search space where we can find solutions and
justify them easily makes sense. In contexts where we expect the problem to be
unsatisfiable, the technique may be counterproductive since resource limits will
eventually have to be made large enough to fully explore the search space. On
the other hand, purging resource-limit lemmas is somewhat similar to a restart
and may exhibit similar benefits.

Note that we can use resource-limit lemmas selectively. For example, if the
last round of scheduling attempts led to the discovery of regular lemmas, we can
decide to not use any resource-limit lemmas. In this way we make progress (new
regular lemmas), but do not needlessly constrain the ILP (or SAT) problem with
resource-limit lemmas. Other options for selectively using resource-limit lemmas
include filtering the lemmas or using some small number of them per round.



7 Related Work

Architecture Description Languages (ADLs), such as AADL, can be used to
model and reason about safety-critical systems [12, 8]. There has been work on
ADLs that takes scheduling into account. However, these approaches check that
a particular architectural model satisfies scheduling and other constraints [6].
In contrast, we synthesize the architectural models, and they are correct by
construction.

Different kinds of real-time constraints have been studied. Liu and Layland [9]
laid out the basis for the real-time scheduling theory by studying the Rate-
Monotonic (RM) and Earliest Deadline First (EDF) algorithms. Sha et al. [17]
provide a historical overview of the topic. In contrast to these kinds of scheduling,
static cyclic is non-preemptive. In addition, Liu and Layland proved that if
utilization is below a specific bound then a rate-monotonic schedule exists. Thus,
there is a simple schedulability test for RM. This is not the case for static cyclic
scheduling.

There is recent work on allocating jobs to processors with using multi-
dimensional bin-packing algorithms, in the presence of scheduling, and other
constraints [5, 7]. The scheduling policy in these cases is rate-monotonic. Un-
der restrictions on CPU utilization, rate-monotonic schedulability is ensured.
Therefore, such scheduling problems can be turned into bin-packing problems.
Unfortunately, this approach is not complete, e.g., there are schedulable prob-
lems for which this approach will not find solutions. In addition, the approach
does not work for static-cyclic scheduling. Finally the approach is too restric-
tive to express the constraints we need and has not been shown to scale to the
complexity of designs our work handles.

There are many task allocation algorithms for distributed real-time systems
that have been studied. This includes, but is not limited to, branch and bound
algorithms [15], SAT solving [13], and linear programming [3]. However, the
scheduling constraints studied in these cases are not as demanding as static
cyclic, and the class of constraints that can be handled is limited.

8 Experimental Evaluation

We summarize our experiences in synthesizing architectural models from the con-
straints provided by our industrial partner. We only focus on the most complex
problem we considered.

Our framework can be parameterized in many ways. We used a 0.1-second
CPU resource-limit for the scheduler and, in the presence of resource-limit lem-
mas, a 1 minute CPU resource-limit for the core solver. If either the scheduler or
the core solver time out, then we increase the CPU limit by 40%. We specified a
minimum load of 80% per processor, and we limited the search for cores to one
per unschedulable processor. If the scheduler timed out while trying to determine
the schedulability of a particular processor, we only generated resource-limit
lemmas when we failed to extract regular cores from any processor.



We ran our framework with both CPLEX and bsolo [16] as the core ILP
solvers. The experiments were run on an eight-core, 3.2 GHz Intel Xeon EM64T
server with 96GB of memory (we never needed more than 1GB of memory for
any experiment). Our decision procedure for scheduling and the IMT solver were
implemented in OCaml. With the set of parameters described above, CPLEX
provided a solution after 103 seconds and required 13 iterations. bsolo required
1834 seconds and 23 iterations.

To evaluate the importance of resource-limits, we also ran the above exper-
iment with resource-limits disabled. Both CPLEX and bsolo fail to provide an
answer after two hours. CPLEX goes through 5 iterations and bsolo goes through
4 iterations. Analysis shows that the reason for this failure is that we spend lots
of time trying to determine the schedulability of processors. The resource-limit
mechanism works because it steers CoBaSA towards parts of the search space
with easier scheduling problems. We get the same failures (for both CPLEX and
bsolo) if we only disable scheduler resource-limits. On the other hand, if we only
disable solver resource-limits, then this has no effect on CPLEX (since it does
not timeout), but bsolo goes through 22 iterations and times out.

CoBaSA interacts with a collection of tools that our group has developed and
with off-the-shelf solvers. In order to increase our confidence in the validity of
the solutions CoBaSA generates, we implemented an independent checker that
validates solutions. The independent checker helped us identify several bugs in
our handling of constraints. Also, our industrial partner checks our solutions in
several independent ways. This has also been useful because there were cases
where we received incorrect specifications and constraints, or there was miscom-
munication between different groups.

The experiments show that our approach is capable of synthesizing industrial-
scale cyber-physical architectural models with real-time constraints. According
to our industrial partner, the current process by which architectural models are
created requires significant iteration between multiple engineering teams. Our
experiment evaluation clearly shows that our IMT approach leads to significant
performance and cost improvements.

9 Conclusions and Future Work

We showed how to algorithmically synthesize cyber-physical architectural models
by using a meta-architectural specification language that allows designers to
specify what constraints their architectural models must satisfy, not how to
achieve them. We did this by developing an ILP Modulo Theories (IMT) solver
with a resource-limit capability and a theory solver for static cyclic scheduling.
We successfully implemented and used our approach on an industrial case study
from a very complex state-of-the-art aerospace design. We believe that the IMT
approach has the potential to be widely applicable, as many practical problems
are routinely handled using ILP solvers, and the IMT approach allows one to
combine the power of ILP with specialized solvers for background theories. For
future work, we plan to further develop and explore the IMT approach.
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