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We present a data definition framework that enables the convenient specification of data types in
ACL2s, the ACL2 Sedan. Our primary motivation for developing the data definition framework was
pedagogical. We were teaching undergraduate students how to reason about programs using ACL2s
and wanted to provide them with an effective method for defining, testing, and reasoning about data
types in the context of an untyped theorem prover. Our framework is now routinely used not only for
pedagogical purposes, but also by advanced users.

Our framework concisely supports common data definition patterns, e.g., list types, map types,
and record types. It also provides support for polymorphic functions. A distinguishing feature of
our approach is that we maintain both a predicative and an enumerative characterization of data
definitions.

In this paper we present our data definition framework via a sequence of examples. We give a
complete characterization in terms of tau rules of the inclusion/exclusion relations a data definition
induces, under suitable restrictions. The data definition framework is a key component of counterex-
ample generation support in ACL2s, but can be independently used in ACL2, and is available as a
community book.

1 Introduction

Data definitions are an essential part of crafting programs and modeling systems. Whereas most pro-
gramming languages provide rich mechanisms for defining datatypes, ACL2 only really provides a lim-
ited collection of built-in types and cons [6].

This state of affairs presented us with a challenge when we started teaching undergraduates how to model,
specify and reason about computation, because even freshmen students have a type-centric view of the
world. This led to us squandering class time, a very limited resource, teaching students how to encode
types using cons, how to debug such encodings, and how to reason about them.

We introduced the defdata framework in ACL2s in order to provide a convenient, intuitive way to
specify data definitions. A version of defdata has appeared in ACL2s since at least August 2009 (in
version 0.9.7), and we have been extending and improving it since then.

Data definitions are critical to how we currently teach students to model, specify and reason about com-
putation. They provide recursion templates that students use to define recursive functions over datatypes.
Students define functions using the ACL2s macro defunc, which supports function definitions with in-
put and output contracts. In contrast to guards, defunc’s input contracts allow users to specify the input
and output types of functions in a way that affects the logical meaning of function definitions. Data
definitions also provide induction schemes that are used to reason about such functions.
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Specifying properties that programs and models satisfy is an art that takes time to learn. One way of
helping beginners master this skill is to provide them with counterexamples to their conjectures quickly.
Here too, data definitions play a key role because almost all specifications include hypotheses speci-
fying the datatypes of the variables. Finding a counterexample to a conjecture requires satisfying the
hypotheses, which requires finding instantiations of the variables that satisfy their data definitions. Our
defdata framework maintains both a predicative characterization, via a predicate recognizing elements
of the datatype, and an enumerative characterization, via a function that can be used to enumerate all the
elements of the datatype. ACL2s picks out the recognizers in a conjecture and can use the datatype enu-
merators to generate “random” elements of the datatype. This is a key part of counterexample generation
in ACL2s [2, 3]. We have found that the automatic generation of counterexamples to invalid student
conjectures (the common case) is a very effective way of training students to correctly specify properties
of programs and models. This training happens whenever they use ACL2s, not just during class.

The defdata framework also allows us to increase the amount of automation ACL2s provides for rea-
soning about data definitions. This increase in automation allows us to reclaim class time and to use it
for more interesting topics. For example, our framework generates useful theorems, with appropriate
rule-classes, for list types; it generates accessor and constructor functions for records with a suitable
theory for reasoning about compositions of these functions; it generates theorems that characterize the
type relations such as inclusion and exclusion; and it generates events that support polymorphic type
reasoning.

While the original motivation was pedagogical, we now routinely use the defdata framework in our
work, as do other advanced users. In order to make defdata more widely available, we have released it
as a community book. This makes it very easy for regular ACL2 users to take advantage of defdata.

The paper is organized as follows. We present a number of examples illustrating the use of the defdata
form in Section 2; the section is detailed enough to serve as a rough user guide. We describe the syntax
and semantics of the defdata language in Section 3. We show how to characterize the type relations
induced by a defdata command in Section 4. We show how polymorphic functions are supported within
our framework in Section 5. We compare with related work in Section 6 and conclude in Section 7.

2 Defdata – Usage and Examples

The defdata macro is the primary method for defining a new data type.1 It provides a convenient and
intuitive language to specify type combinations. The defdata macro names certain “type expressions”
whose syntax will be evident from examples below. A precise description of defdata type expressions and
the defdata form appears in Section 3. It suffices for now to assume that a defdata form is an event whose
syntax is (defdata M body), where M is a symbol and body a type expression (usually representing
some type combination). When submitted, the event introduces a new typename (M), predicate and
enumerator definitions for the type, and a host of other events that support a “typed” language setup.

We call M a defdata type if it is a name (symbol) that has been introduced by a defdata event or is a
primitive or custom type registered2 by the user.

We present a running example to showcase most of the features of defdata. Let us suppose we are

1In ACL2 one cannot add new objects to the universe, one can only partition the existing universe in new ways.
2Using the register-type macro, as is explained in Section 3.
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doing systems-level modeling. We will see how parts of a processor, filesystem, etc. can be specified
in the defdata language. The reader, if she so wishes, can also submit the following commands in an
ACL2 session, but the first two events should be skipped in an ACL2 Sedan session.

(include-book "cgen/defdata" :dir :system)

(include-book "cgen/base" :dir :system)

The first event sets up the data definition framework (defines defdata and other macros). The second
causes all primitive types in ACL2 to be preregistered as defdata types: this means you can use them
in the body of a defdata form. A good question the user might ask now: how does one refer or use a
primitive type, in other words, how do we find the typename corresponding to a recognizer/predicate?
Following the ACL2 (and Common Lisp) convention, we try to stick to the following syntactic rule of
thumb. Each typename is the symbol obtained after dropping suffix “p” from the predicate name, and
vice versa, i.e., given typename M, the predicate name, Mp, is obtained by adding suffix “p”3.

(defdata inode nat)

In the above example, we created an alias type for natural numbers whose recognizer is natp; quite
naturally, we used nat as the typename.

The most common combinations of primitive types (i.e., basic ACL2 data types) have been predefined
using defdata (in “cgen/base”).4 There is also a defdata type called all which represents the entire
ACL2 universe. Every defdata type is thus a subtype (subset) of all. Now that we have a “base”, of
typenames, we can proceed to use them to build new types.

Product Types In ACL2, the primary way to define (complex) structured data is to use the primitive
data constructor cons.

Suppose that as part of modeling a filesystem, we want to define the type file that consists of an inode
and content, modeled by a string. We can compound these types using cons, to encode a file.

(defdata file (cons inode string))

Union types Very often, one wants to define a type predicate which is a disjunction of other predicates.
Continuing with our example, let’s say we defined a function that returns either well-formed files or the
constant nil, signifying an error. To specify the return type of such a function using defdata, we use
the built-in type combinator oneof.

(defdata er-file (oneof file nil))

This definition also illustrates an important feature of defdata: singleton types. Quoted objects and
objects that normally evaluate to themselves, such as nil, represent types that contain only that single
object.

3An exception is atom; it shares the same name as its predicate name. In general, the typename and its recognizer need not
be related syntactically.

4The command (table-alist ’defdata::types-info-table (w state)) shows the list of all types and associated
metadata.
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Note: The members or constituents of the union type expression need not be disjoint. In this regard the
oneof combinator is closer to the untyped view of things, rather than the traditional “sum” type which
is usually a disjoint union. In the above example, however, the constituents, file and nil are disjoint,
i.e., the objects satisfying file are distinct from nil.

Union and product type definitions can be arbitrarily nested. Here is a contrived example:

(defdata UPNest

(oneof (oneof (cons (oneof 11 7) pos-list) ’ok symbol-alist)

(cons symbol (complex integer -1))

(oneof (oneof 42 (cons pos file) er-file) t 7/6)

"nice"))

In the above example, notice the use of constructors cons and complex, primitive typenames pos and
symbol, basic typenames symbol-alist,pos-list and integer (which are available in the ground
theory), previously defined typenames file and er-file and constants (singleton types) 11, 7, ’ok etc.

Recursive types Recursive (or inductive) type expressions involve the oneof combinator and product
combinations, where additionally there is a (recursive) reference to the typename being defined. In
general, well-formed recursive types have a particular form:

(defdata M (oneof b1 . . .bm r1 . . .rn)

where bi are base type expressions containing only references to existing defdata types and ri are recur-
sive type expressions that contain a reference to M inside a product type expression. As an example,
integer-list and symbol-alist can be defined as follows.

(defdata loi (oneof nil (cons integer loi)))

(defdata symb-alist (oneof nil (cons (cons symbol all) symb-alist)))

Mutually-recursive types are also supported. As an example, we can specify the structure of a directory
in a filesystem as follows; a dir is a list of named dir-entries and a dir-entry is either a file or a directory.

(defdata

(dir (oneof nil (cons (cons string dir-entry) dir)))

(dir-entry (oneof file dir)))

Range types Range types are such a common occurrence that defdata supports these natively.5 To
define a range types, we need to provide a domain, lower and upper bounds, and inequality relations. We
only support integer and rational domains. Both <,<= are allowed as inequality relations. One of
the lower or upper bounds can be omitted, in which case the corresponding value is taken to be negative
or positive infinity (with a strict relation).

The following two examples show how to define the rational interval (0..1) and the integers greater than
232, say in order to use the Cgen framework [2] to test exceptional cases involving numbers that do not
fit into a 32 bit machine word.

5These are a recent addition and are implemented using the infrastructure provided by the Tau-system.
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(defdata cache-miss-ratio (range rational (0 < _ < 1)))

(defdata big-unsigned-num (range integer ((expt 2 32) < _)))

The constructs introduced so far form the core defdata language. Now we look at some convenient type
combinations that could be expressed using the core defdata constructs. These additional constructs
thus can be seen as syntactic sugar. The motivation for these is not mere typing convenience; some of
these “syntactic sugar” constructs capture commonly occurring data definition patterns, and we take the
opportunity to automate the corresponding reasoning patterns.

Macros Macros are freely allowed in the body of defdata. The meaning is what you get after macro
expansion.

(defdata 3d-point (cons rational (cons rational (cons rational nil))))

The above can be defined equivalently and more concisely using the list macro.

(defdata 3d-point (list rational rational rational))

List types Nil-terminated lists are so common that we reserve a special combinator, listof, for defin-
ing list types. Here is how we define a list of files:

(defdata files (listof file))

The List type combinator is the quintessential polymorphic type operator in typed functional program-
ming languages; moreover due to their ubiquitous presence in ACL2, list type definitions are subjected
to some automation, e.g., a number of theorems are generated to make reasoning about the recently
introduced list type as automated as possible.

Association lists are also very common in ACL2. It is easy to define an alist type using cons and listof;
however, we plan to introduce an alistof combinator, for the same reasons we introduced listof.

(defdata symbol-alist2 (listof (cons symbol all)))

Enumeration types If your type is a finite list of ACL2 data objects, then the enum keyword can be
used to define enumerated types. Let us define a subset of opcode instructions, from the MIPS ISA, that
use immediate offsets.

(defdata opcode (enum ’(lw sw addi subi beqz jr)))

Notice that we could have just used the oneof combinator to achieve the same effect. But the enum key-
word adds much convenience; instead of enumerating all the data objects, one can specify an expression
which will evaluate to the finite list of enumerated objects. For the above example, here is an alternative
definition.

(defdata opcode (enum (generate-instruction-opcodes ’mips-risc-model)))

This last specification style is particularly handy if the number of enumerated objects is very large.
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Record (Struct) types Records are just product data, but the convenience and ease of use obtained
from named fields deserves special treatment. We can define a MIPS instruction as a record, consisting
of an opcode, destination and source register numbers, and the immediate value fields (16 bits).

(defdata reg-num (range integer (0 <= _ < 32)))

(defdata immediate-range (range integer (0 <= _ < (expt 2 16))))

(defdata inst (record (op . opcode)

(rd . reg-num)

(rs1 . reg-num)

(imm . immediate-range)))

One can also define recursive records; an illustrative example appears in Section 3.

Map types Maps are objects representing finite partial functions. They can be encoded using alists,
but their ubiquity and utility motivates us to treat them specially. For example, we can define instruction
memory to be a map from physical addresses to instructions:

(defdata p-addr (range integer (0 <= _ < (expt 2 32))))

(defdata imem (map p-addr inst))

The advantage of defdata’s map types over alist types is that the underlying implementation guarantees
that maps are sorted and have no duplicate entries; this is quite useful when we are generating instruction
memories for testing purposes. The implementation details (semantics) of both record and map types are
given in Section 3. But we cannot defer the explanation of how objects of these types are constructed
and destructed.

Using record and map data objects For the inst definition, a 4-arity constructor, inst, accessors
inst-op, inst-rd, inst-rs1, inst-imm, and modifiers set-inst-op, set-inst-rd,set-inst-rs1,
set-inst-imm are generated. For maps, the accessor and modifier functionality is provided via func-
tions mget,mset. We briefly note here that for both records and maps, we make available a useful theory
for reasoning about compositions of these functions (constructor, accessor, modifier etc).

The following code illustrates how to use these functions.

(let* (;; generate a "random" imemory using imem’s enumerator

(I (nth-imem 834546))

;; fix a program counter value

(pc 1)

;; get the instruction pointed to by pc

(instr (mget pc I))

;; get the immediate value field of instr

(im (inst-imm instr))

;; set the immediate value field and the pc entry

(I1 (mset pc (set-inst-imm (1+ im) instr) I))

;; an alternative way of getting the immediate value field

(im2 (mget :imm (mget pc I))))

...)
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Note: The listof,enum,record,map combinators cannot be arbitrarily nested and have strict syntax
restrictions. In some instances, the limitation is due to our lack of support for expressing anonymous
recursive types and anonymous functions; in others, it was a cost-benefit design decision.

Custom Types Sophisticated users may want to define types that are more complex than a union or
product combination of existing types. We call such types custom types, and allow the user to define
them manually by providing details that defdata would generate automatically. Once a custom type is
defined, it can be used just like any other type to define new types.

For example, suppose you would like to define an instruction memory but would like the physical ad-
dresses to be uniformly ordered from some address down to 0 . We could define a custom enumerator
and predicate for that purpose:

(defun make-descending-addresses (n)

(if (zp n)

nil

(cons (1- n) (make-descending-addresses (- n 1)))))

(defun nth-imem-custom (n) ;enumerator

(let* ((m (nth-imem n))

(vals (strip-cdrs m))

(keys (make-descending-addresses (len m))))

(pairlis$ keys vals)))

(defun imem-customp (x) ;recognizer

(or (null x)

(and (consp x) (consp (car x))

(imem-customp (cdr x))

(instp (cdar x))

(p-addrp (caar x))

(or (and (null (cdr x)) (equal 0 (caar x)))

(> (caar x) (caadr x))))))

We can now register our custom instruction memory type:

(register-type imem-custom

:predicate imem-customp

:enumerator nth-imem-custom)

Advanced Note: Instead of defining a new type and polluting the type name space, we could alterna-
tively have “attached” our custom enumerator to the existing type imem, using the following form. This
arranges for imem to be sampled/tested (by Cgen) using the custom enumerator we defined above, but
for theorem proving purposes, the logical predicate definition of imem is as before. This situation can be
compared with the :mbe paradigm, where one can “attach” different logical and execution behaviors to
a function name.6

(defdata-attach imem :test-enumerator nth-imem-custom)

6Here the word “attach” should not be confused with the defattach command in ACL2.
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3 Defdata Language

In this section we will present the syntax and semantics of the defdata language, i.e., defdata type ex-
pressions used in the body of the defdata form. To do this precisely, we need to explain two additional
macros, register-type, register-data-constructor.

3.1 Registering a type

We previously saw an example of how to register any custom type as a defdata type, using the register-type
macro. We describe its syntax below.

(register-type name

:predicate pred

:enumerator enum

optional args )

(defun nth-odd (n)

(if (evenp n)

(1+ n)

(- n)))

(register-type odd

:predicate oddp

:enumerator nth-odd)

Odd numbers are a basic data type available in the ACL2 ground theory. They are registered in “cgen/base.lisp”
as shown above. The predicate and enumerator arguments are mandatory; the rest are optional.7

This macro, apart from storing relevant metadata in a table (in the ACL2 world), maintains the following
invariants.

1. The predicate name is a 1-arity predicate function identified by the Tau-system i.e., it must have
an entry in the Tau-database.8

2. The enumerator is a 1-arity function that takes a natural number and returns a value of the correct
type.9

Let H represent the command history of the current ACL2 session. We say symbol d is a registered
type name in history H if there exists a command of the form (register-type d . . .) in H .

3.2 Registering a data constructor

We have seen various examples of forming compound data types using cons. Although cons has a
unique status in ACL2, it is not natively available in the defdata language unlike built-in combinators

7We do not expose these extra arguments now to the user, as they might change in the future.
8An exception is the type all.
9This check is skipped currently. In the current implementation, we also maintain an additional 2-arity enumerator function.
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such as oneof and range. In fact, advanced users can introduce custom notions of product data by using
the register-data-constructor macro, whose usage and semantics we now present.

Consider the symbol-alist type. We could have registered acons as a data constructor, and alterna-
tively defined symbol-alist using acons.

(defun aconsp (x)

(and (consp x) (consp (car x))))

(register-data-constructor (aconsp acons)

((allp caar) (allp cdar) (allp cdr)))

(defdata symb-alist (oneof nil (acons symbol all symb-alist)))

In fact, this is how we setup the base environment in “cgen/base.lisp”: we use register-data-constructor
to preregister all the primitive data constructors in ACL2. In particular, the following (primitive) con-
structors are available to build product types: cons, intern$, / and complex.

The syntax of register-data-constructor is shown below.

(register-data-constructor (recognizer constructor )

((destructor-pred1 destructor1 ) ...)

[:proper bool ]

[:hints hints ]

[:rule-classes rule-classes ])

We now explain its semantics. A (register-data-constructor (R C) ((D1 d1) . . .(Dn dn))) com-
mand axiomatizes (checks) certain properties of the recognizer function R, the n-ary constructor C, the
n destructors (selectors) di and the corresponding destructor predicates Di. In particular it generates the
following properties as defthm events.

[∧
j

(D j x j)
]
⇒ (R (C x1 . . .xn)) (Recognizer)

for each i (R x)⇒ (Di (di x)) (Destructor predicate)

If :proper is true (this is the default), then the following two properties are also generated.

(R x)⇒ x = (C (d1 x) . . .(dn x)) (Elim [proper])

for each i
[∧

j

(D j x j)
]
⇒ xi = (di (C x1 . . .xn))) (Destructing a constructor [proper])

Usually, these properties already exist in the ground ACL2 theory as theorems with appropriate rule-
classes for the primitive data constructors, so for these we default to :rule-classes nil.
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Finally, a register-data-constructor command also stores relevant metadata (e.g., pairs the con-
structor with its destructors), to be used in particular by the defdata implementation.

We say symbol C is a registered data constructor in history H if there exists a command of the form
(register-data-constructor (R C) . . . ) in H .

Note: Although acons is not a primitive data constructor, because it uses cons, we nevertheless register
it. We implement record types in a similar manner (explained later). The ACL2 logic does not allow
us to truly define a new constructor, unlike in NQTHM which provided this capability via add-shell.
However, by using cons trees and hiding the internal implementation, we pretend to define new data
constructors. As in NQTHM, we would like for all our constructors to be disjoint with each other:

for distinct C,K: (C x1 . . .xn) 6= (K y1 . . .ym) (disjoint C,K)

In ACL2 this is true for all the primitive constructors, but we cannot always enforce this property for the
reasons explained above. We do enforce this property to the extent that we can, e.g., when we implement
records, we tag a unique name to constructed objects so that the objects constructed from different record
types are disjoint with one another, if not with cons.

3.3 Core Defdata - Syntax and Semantics

Now we present the core defdata language; in particular, we describe the syntax and semantics of the
core type expressions used in the body of a defdata form. The syntax of a defdata form is as follows:

(defdata M type-expression )

For a mutually-recursive clique of types, we use a syntax similar to defuns:

(defdata (M1 type-expression1) ...)

We now explain the syntax of a core defdata type expression. In the following, we use syntactic (meta)
variables s, t to range over type expressions, a,b,c to range over constant symbols and also to range over
objects of the ACL2 universe, P,Q to range over monadic predicates and A,B to range over typenames,
both primitive/custom types registered by register-type and typenames introduced by defdata itself.
Let M be the name of a defdata type being defined. To avoid introducing a recursive binding operator (µ)
and type variables to express anonymous recursive types, we assume below that M is registered. We have
opted for clarity over completeness, so the syntax we present is abstract; our implementation performs
additional syntactic checks not mentioned here.
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(Type expressions)

t ::= c (quoted) constant

| A registered type name

| all top

| (range dom r) dom ∈ {integer, rational} range

| (oneof t1 . . . tm) m > 1 union

| (C t1 . . . tn)

C is a registered constructor with ((D1 d1) . . .(Dn dn)) and
∧

i

ti v Di product

| (oneof s1 . . .sm t1 . . . tn) m > 0,n > 0

ti is product, M ∈ ti,M 6∈ s j, where ∈ is “occurs in” recursive

(range expressions)

r ::= (l < < h) | (l < <= h) | (l <= < h) | (l <= <= h) l,h eval to objects in dom

| ( < h) | ( <= h) negative infinity

| (l < ) | (l <= ) positive infinity

The subtype relation, v, is the subset relation among the set of objects satisfying the type expressions;
its precise meaning will be given shortly.

We now touch upon the semantics of core defdata type expressions and of the defdata command. What
happens when a (defdata M s) event is submitted is not easy to capture neatly, due to the fact that it has
been engineered over many years to satisfy sometimes very different goals between specification conve-
nience and test data generation (Cgen) efficacy. Nevertheless, we try to give a reasonably good model
of what happens, and hope that future refactorings and design changes do not render our explanation
obsolete.

Apart from syntax checking, there are, broadly, four things that a core defdata command (defdata M s)
accomplishes.

1. Introduces a predicate definition event (defun Mp (x) P(s)(x)) (or a defuns clique, in case of
a mutually-recursive type definition), if Mp is not defined. If the predicate named Mp is already
defined, it checks the equivalence of the new and old definitions.

2. Introduces an enumerator definition event (defun nth-M (n) E (s)(n)). For infinite domains, we
would ideally like for this function to be a bijection from the natural numbers to the domain of M.
At the very least we would like its range to be adequate for Cgen. The current implementation also
defines a second enumerator function of arity 2, whose second argument is a random seed that is
threaded through nested enumerator calls.10

3. Introduces rules (:tau-system and others) that capture the type relations induced by the com-
mand between the defined type M and the typenames in s (see Section 4 for details).

10We might add/remove alternative enumerative characterizations of a type in the future; but we are confident we will
maintain at least one such characterization.
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4. For use by subsequent calls to defdata, it registers the typename M with its predicate and enumer-
ator names and records other relevant metadata.

We now give the predicative characterization of type expressions. Each core defdata type expression
denotes a subset of the ACL2 universe and is characterized by a predicate lambda expression. The pred-
icate interpretation P shows how to compile type expressions to ACL2s code. Given a type expression,
P generates a lambda expression in ACL2 that takes one argument and returns either t or nil.

P(a) = λx.(x = a)

P(A) = λx.(Q x) A is registered with predicate name Q

P(all) = λx.t symbol t in ACL2 stands for true

P((oneof t1 . . . tm)) = λx.
m∨
i

P(ti)(x)

P((C t1 . . . tn)) = λx.(R x)∧
n∧
i

P(ti)(di x) C is registered with recog R and dest di

We add the definitional event (defun Mp (x) P(s)(x)), assuming M is registered when computing
P(s). When generating code for (mutually-)recursive types, P generates (mutually-)recursive defi-
nitions. Such definitions are not necessarily well-defined. ACL2s uses its CCG termination analysis
engine [10] to check for termination and only accepts a defdata form if CCG can prove termination.

Note: The subtype relation among type expressions stands for the inclusion relation between their pred-
icate interpretations. We also abused notation (in the syntax of product type expressions) using predicate
Di as a type expression, instead of using the typename of Di.

I(t v s) := P(t)⇒P(s)

Now we turn to the enumerative characterization of type expressions. By the same reasoning as before,
each core defdata type expression can be characterized by some enumerator function on N. The enu-
merator interpretation E takes a type expression and generates an ACL2 lambda expression that take a
natural number as an argument and returns an object of the right type.

E (a) = λn.a

E (A) = λn.(EA n) A is registered with enumerator EA

E (all) = λn.(nth-all n) nth-all enumerates the ACL2 universe

E ((oneof t1 . . . tm)) = λn.(mv-let (i n′) (switch m n) E (ti)(n′))

E ((C t1 . . . tk)) = λn.(mv-let (n1 . . . nk) (split k n)(C E (t1)(n1) . . . E (tk)(nk)))

We add the definitional event (defun nth-M (n) E (s)(n)), assuming M is registered when computing
E (s). Notice that the definition of nth-M generated by E might be recursive. As before, ACL2s depends
on the CCG termination analysis engine to prove that such definitions make sense.

The helper functions switch and split11, are used in defining enumerator expressions for union and prod-
uct type expressions respectively. We refer to n above as an indicial, an index into the type domain.

11The actual functions are named defdata::switch-nat and defdata::split-nat.
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Given m choices and indicial n, the expression (switch m n) returns i, a number between 0 and m− 1
denoting which type to “switch” to, and n′, a new indicial to pass on. Given number k and indicial n, the
expression (split m n) “splits” n into k indicials. Both functions are designed to be bijective. Thus, if the
constituent types have bijective enumerators, a valuable meta-property, then switch and split, preserve
that property for the type combination. Not all primitive and basic enumerators defined and registered in
“cgen/base.lisp” are bijective; in particular nth-all only heuristically enumerates (interesting portions
of) the ACL2 universe.

The Cgen library uses a pseudo-geometric random distribution to generate (usually small) indicials,
which are used to randomly sample test data. For nested product types, the split indicials obtained
after multiple levels of splitting usually end up as a bunch of 0s; this is natural, λn.(split k n) is a
bijection between natural numbers and k-tuples of natural numbers. This skews the test data generation
for complex product types. To get around this, we also generate a more complex, accumulator-based
enumerative characterization very similar to the one documented above. Instead of one argument, the
enumerator function carries a (pseudo-random) seed as a second argument, and threads it through the
sequence of enumerator calls. This results in a more uniform distribution of test data for product types.
Instead of switch, it uses the 2-arity random-index function, that takes numbers m and seed and returns
a number between 0 and m− 1 and a new random seed. It avoids split altogether by using the 2-arity
random-natural function directly, that returns a random indicial and a new seed.

We use the above semantics of type expressions to mechanically generate the predicate and enumerator
functions for each type defined using defdata.12 The Cgen library can be set to use either of the
enumerators.

3.4 Full defdata language

We will now fill in the rest of the combinators that defdata supports. We only briefly discuss macros
and enum types. Macro names that occur in the position of a combinator or constructor are expanded
away using the function macroexpand1. Enum types, though expressible using oneof combinator, are
treated natively; in (defdata M (enum list-expr)) the list-expr is evaluated and defined separately as a
defconst, that is then used to define the predicate and enumerator.

List types For list data definitions we have the following expansion, where s can be any core defdata
type expression.

(defdata M (listof s)) = (defdata M (oneof nil (cons s M)))

Whereas this suffices to take care of the four things a core defdata command accomplishes (as per the
previous section), the listof combinator does a lot more. In particular, defdata installs some useful
list reasoning theorems that are commonly needed in a proof development using lists. It also performs
some processing to support polymorphic list type reasoning, whose discussion we postpone to Section 5.

Record types Record data definitions are simulated by a combination of register-data-constructor
and (core) defdata commands. Record type expressions have named fields; their syntax is as follows:

12Range type expressions currently cannot be nested and are implemented using make-tau-interval and
in-tau-intervalp and enumerator functions for rational and integer.
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(record (f1 . t1) ...(fk . tk)) where f1,...,fk are symbols (field names) and t1,...,tk

are typenames. One can also have records that have a fresh constructor name (C (f1 . t1) ...);
these are usually combined with the oneof combinator.13 We will explain their semantics using an ex-
ample. The general case can be easily extrapolated. Let us define a binary tree, as a (recursive) record,
with non-leaves having three fields, val storing data associated with that node, left for the left subtree
and right for the right subtree.

(defdata tree (oneof ’Leaf

(node (val . all)

(left . tree)

(right . tree))))

Let us assume that node is a fresh logical name. The above definition can be expanded to the following
form that is almost in the core defdata language.

(defdata tree (oneof ’Leaf

(node all tree tree)))

This is “almost” in the language because node is not a registered data constructor so defdata can-
not generate the predicate and enumerator functions for tree. We need to get our hands on at least
two things, a constructor and the accessors. It is natural to use node as the constructor name and to
use the field names in the accessor names. To avoid name-clashes, we use node-val, node-left and
node-right as the accessor/destructor function names. For the above (core) defdata form to have mean-
ing, we first register node as a new constructor.

(register-data-constructor (nodep node)

((allp node-val) (treep node-left) (treep node-right)))

But there is a chicken-and-egg problem. To submit this command, we need the predicates nodep and
treep to be defined and to generate nodep, treep, we need this command to be in the history. We get
around this by assuming the metadata that a register-data-constructor command usually records,
generating the predicate definitions first and then submitting the above command.

There is still the issue of how to define the constructors and accessors, i.e., how do we implement the
layout of the record? Efficient reasoning of compositions of these functions motivates our decision
to implement records as “good” maps [9, 8, 5]. A good-map is an ordered alist with non-nil value
components (see definition in file: defexec/other-apps/records/records).14

Non-recursive records use a special keyword record, as we saw in the examples. For the above seman-
tics to apply to it, we need to come up with a name for the constructor; defdata reuses the name of the
type being defined, e.g., the inst data definition, we saw earlier, is equivalent to the following.

(defdata inst (inst (op . opcode) ...))

13Readers familiar with ML, will notice the similarity to the syntax of datatype facility.
14Implementation note (subject to change): Each record of k fields is implemented as a good-map containing k+ 1 entries.

The extra entry (’DEFDATA::CONSTRUCTOR . name) stores the name of the constructor and thus allows easy disjointedness
(with other records) theorems. Each field sel has the corresponding entry with key :sel and thus is accessed by the expression
(mget :sel r), where r is the record object.
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Map types Map data definitions, or finite functions types, are expanded using the following equation,
where s, t are restricted to be defdata type names.

(defdata M (map s t)) = (defdata M (oneof nil (mset s t M)))

For map types, the defdata macro directly reuses the implementation of good-map [5]. The constructor
mset is registered in cgen/base; here is the relevant excerpt:15

(defun non-empty-good-map (x)

(and (consp x)

(good-map x)))

(defun all-but-nilp (x)

(not (equal x ’nil)))

(register-data-constructor (non-empty-good-map mset)

((wf-keyp caar) (all-but-nilp cdar) (good-map cdr)))

Both record and map definitions additionally introduce useful theorems that help in termination proofs
and type-like reasoning (in particular involving constructor, accessor and updater functions).

4 Characterizing type relations induced by defdata

A number of queries to the ACL2 theorem prover, especially in guard verification, involve establishing
inclusion (subtyping) among types (monadic predicates) and proving that certain terms satisfy given
types. This sort of type-checking has received a boost in automation by the addition of Tau-system to the
ACL2 proof arsenal [7]. Due to the impossibility of automatically inferring relations among arbitrarily
defined recursive predicates, it is up to the user to inform the Tau-database by stating theorems (called
tau-rules) describing the subtype relationships and function signatures. In a perfectly informed Tau-
database, the Tau-system can, in theory, turn into a “complete” procedure, type-checking all queries
in its domain correctly and automatically. In this section, we describe how defdata programs Tau to
maintain this goal of (relative) completeness.

Given a core defdata definition (defdata M s), we would like to compute the set of tau rules (see
:doc tau-system) that completely characterize the inclusion/exclusion type relationship between M
and typenames in s.16 This is very useful as it leads to a more systematic and profitable use of the Tau-
system, enabling automated type-like reasoning. With such a scheme in effect, one need not worry about
manually determining and proving all relationships between the newly defined type and those used in its
definition. Thus, if the type relations among base (and custom) types are completely captured in Tau,
then extending the Tau-database by types specified using defdata preserves this meta-property (under
a suitable restriction on the form of the types).

After the defdata form (defdata M s) is successfully admitted, a predicate P = P(s) is defined. The
idea is quite simple: we decompose the definition into two implications and reduce each implication into

15The guard declarations have been removed for readability.
16At the time of writing, the given scheme has only been partially implemented.
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a collection of tau rules. If we show that each reduction scheme is sound and complete then the final set
of formulas will completely characterize the type relations induced by the defdata command.

P(s)(x)⇒ (P x):

Let C1, . . . ,Cm be the conjunctive clauses of the disjunctive normal form (DNF) of P(s)(x).

C1⇒ (P x) · · · Cm⇒ (P x)

P(s)(x)⇒ (P x)
(ELIM OR)

The above reduction scheme is clearly an equivalent transformation.

The following scheme performs one level of destructor-elimination to reduce destructor nesting in the
antecedent (Ci) in exchange for constructor nesting in the succedent. The expression (Q x) either stands
for (Q x) (where Q is a tau predicate) or another destructor nest (R′x)∧(Q′1 (d′1x))∧·· ·∧(Q′n(d′n x)). We
say the head of Q is Q in the former and R′ in the latter case.

{C is registered with R d1 . . .dn} (Q1 x1)∧·· ·∧ (Qn xn)⇒ (P (C x1 . . .xn))

(R x)∧ (Q1 (d1 x))∧·· ·∧ (Qn (dn x))⇒ (P x)
(DEST ELIM)

This transformation is sound and complete, because syntactically valid defdata product expressions sat-
isfy the type signature of the constructor, i.e., the head of Qi implies (is a subtype of) Di, where Di is
the corresponding destructor predicate for di in C. Therefore adding/dropping (R x) does not change the
truth-value.

We can only apply these reductions finitely often. After doing so we obtain implications that are either
simple rules, signature rules, or neither. Any implications that are simple or signature rules can be turned
into tau rules. All other implications have to consist of nested constructor calls; such implications cannot
be directly turned into tau rules.

Consider the example of files, whose definition has been expanded to a core defdata expression.

P((oneof nil (cons file files)))(x) ⇒ (filesp x)

−→ {Def. of P, DNF form }
(or (= nil x) (and (consp x) (filep (car x)) (filesp (cdr x)))) ⇒ (filesp x)

−→ {Elim OR}
(= nil x) ⇒ (filesp x) [Simple Rule]

(and (consp x) (filep (car x)) (filesp (cdr x))) ⇒ (filesp x)

−→ {Dest Elim}
(and (filep x1) (filesp x2)) ⇒ (filesp (cons x1 x2)) [Signature Rule]

Next, consider the definition of symb-alist, which gives rise to a formula with nested constructor calls,
i.e., it does not conform to a tau rule. We will use P for symb-alistp.

P((oneof nil (cons (cons symbol all) M)))(x) ⇒ (P x)

−→ {Def. of P, DNF form }
(or (= nil x) (and (consp x) (consp (car x)) (symbolp (caar x)) (P (cdr x))) ⇒ (P x)

−→ {Elim OR}
(= nil x) ⇒ (P x) [Simple Rule]

(and (consp x) (and (consp (car x)) (symbolp (caar x)) (P (cdr x))) ⇒ (P x)

−→ {2 applications of Dest Elim}
(and (symbol x12) (P x2)) ⇒ (P (cons (cons x11 x12) x2)) [Not a tau rule]
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We say s is a flat type expression, if product type expressions in s have only typename arguments. Simi-
larly, if s is flat, we say that (defdata M s) is a flat definition and M is a flat type, e.g., files is a flat
type, but symb-alist is not. Since flat types lead to only valid tau rules, in this direction, we obtain a
characterization of the type relations induced by defdata in terms of tau rules.

In general, the problem of nested constructor calls can be taken care of either by (1) extending the Tau-
system to handle such cases, or by (2) introducing intermediate data definitions that name nested union
and product combinations and thus getting rid of the nesting (i.e., making the definition flat). The latter
scheme fails when a recursive reference to the typename is nested more than one level deep in a product
expression. But this is not common, and we feel flat definitions are a suitable restriction that covers the
majority of data definitions of interest and utility.

(P x)⇒P(s)(x):

In the other direction, we can symmetrically try the dual approach: let D1, . . . ,Dm be the disjunctive
clauses of the conjunctive normal form (CNF) of P(s)(x).

(P x)⇒ D1 · · · (P x)⇒ Dm

(P x)⇒P(s)(x)
(ELIM AND)

The above reduction scheme is an equivalent transformation too. For flat definitions with an additional
restriction of having at most one occurrence of a product type expression, one can check that the final
(irreducible) formulas will be valid tau rules and we complete the characterization in both directions.

But the above scheme precludes some useful data definitions, such as those with two recursive product
expressions; in this case even intermediate naming does not help. We are currently working on an
alternative approach that avoids this difficulty.

5 Supporting Polymorphism

Polymorphic reasoning can significantly increase automation. Consider a typical example. A user of
ACL2s has proved some rewrite rules about lists of files (filesp), but the rules are not firing as expected.
After some investigation the user discovers the problem: they did not explicitly prove that append is
closed over lists of files, hence, ACL2s was not able to determine that filesp holds for (append x

y), even though x and y satisfy filesp. The solution is simple: the user has to prove that append is
closed over lists of files. But, why should the user have to do that? After all, this is really a property
of append, not filesp. Polymorphic reasoning solves this problem. The idea is that the user tags
certain theorems mentioning true-listp in their conclusion as “polymorphic” and ACL2s will treat
such theorems as schemas that hold for all predicates of the same shape. All useful examples of such
polymorphic theorems, that we are aware of, are type signatures of (polymorphic) functions. So instead
of modifying the syntax of defthm-like events and defdata, we need only provide a syntax extension to
defun-like forms (e.g., defunc, define, etc.) to allow polymorphic type signatures. We also need to
change the semantics of defdata events to provide the invariant that all instances of the polymorphic type
signatures are present in the current theory. These two changes suffice to simulate a form of “parametric
polymorphism” in ACL2s.
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5.1 Expressing polymorphic signatures

The polymorphic support in ACL2s depends on encapsulation and functional instantiation. We use
macros to hide this from the end-user. The sig macro expresses polymorphic signatures. In the fu-
ture, we would like to integrate it with the defunc macro. The syntax and usage of sig is best explained
by examples.

(sig nthcdr (nat (listof :a)) => (listof :a))

(sig zip ((listof :a) (listof :b)) => (listof (cons :a :b)))

(sig assoc-equal (:a (listof (cons :a :b))) => (oneof nil (cons :a :b)))

(sig binary-append ((listof :a) (listof :b)) => (listof (oneof :a :b)))

General Form:

(sig fun-name arg-types => return-type)

Type variables are represented by keyword symbols, :a, :b, ... and types of arguments are given
using defdata type expressions, with special handling of keyword symbols (type variables).

We show by example how the semantics of sig is implemented in ACL2s.

(sig binary-append ((listof :a) (listof :b)) => (listof (oneof :a :b)))

==>

(encapsulate

(((Ap *) => *) ((Bp *) => *))

(local (defun Ap (v)

(declare (ignore v))

t))

(local (defun Bp (v)

(declare (ignore v))

t))

(defthm Ap-is-predicate

(booleanp (Ap x)))

(defthm Bp-is-predicate

(booleanp (Bp x))))

(defun LoAp (xs)

(if (endp xs)

t

(and (Ap (car xs))

(LoAp (cdr xs)))))
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(defun LoBp (xs)

(if (endp xs)

t

(and (Bp (car xs))

(LoBp (cdr xs)))))

(defun LoCp (xs)

(if (endp xs)

t

(and (or (Ap (car xs)) (Bp (car xs)))

(LoCp (cdr xs)))))

(defthm binary-append-polymorphic-sig

(implies (and (LoAp x)

(LoBp y))

(LoCp (binary-append x y)))))

The names of constrained functions are chosen appropriately and we reuse existing names if possible.
The predicate bodies are generated using the predicate interpretation of type expressions given in Sec-
tion 3.

5.2 Putting polymorphism to use (behind the scenes)

So we can express polymorphic type signatures, but how do we make use of them? The answer is via
functional instantiation. We want to hide this from the user for pedagogical and usability reasons. We
accommodate this by ensuring the following:

1. Every time the user introduces a new defdata type that is an instance of a parameterized type
used in a polymorphic type signature, we immediately use functional instantiation to submit the
corresponding instantiated type signature for the newly introduced type as a rewrite rule. The
following example illustrates this.

(defdata even-list (listof even))

==>

...

(defthm binary-append-even-listp-sig

(implies (and (even-listp x)

(even-listp y))

(even-listp (binary-append x y)))

:hints (("Goal"

:use

((:functional-instance

binary-append-polymorphic-sig

;; Instantiate the generic functions:

(Ap evenp)
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(Bp evenp)

;; Instantiate the other relevant functions:

(LoAp even-listp)

(LoBp even-listp)

(LoCp even-listp))))))

...

2. For every sig event, we look into the Tau-database, collecting all similar shape instances of the
polymorphic type expressions used in the signature, that have not already been instantiated. For
each such instance we introduce the corresponding instantiated type signature as a rewrite rule. As
an example, as soon as the polymorphic signature for binary-append is introduced, the macro
also generates the following events (where nat-listp, pos-listp, . . . are types already present
in the Tau-database).

(sig binary-append ((listof :a) (listof :b)) => (listof (oneof :a :b)))

==>

...

(defthm binary-append-nat-list-sig

(implies (and (nat-listp x)

(nat-listp y))

(nat-listp (binary-append x y)))

:hints (("Goal"

:use

((:functional-instance

binary-append-polymorphic-sig

(Ap natp)

(Bp natp)

(LoAp nat-listp)

(LoBp nat-listp)

(LoCp nat-listp))))))

(defthm binary-append-pos-list-sig

(implies (and (pos-listp x)

(pos-listp y))

(pos-listp (binary-append x y)))

:hints (("Goal"

:use

((:functional-instance

binary-append-polymorphic-sig

(Ap posp)

(Bp posp)

(LoAp pos-listp)

(LoBp pos-listp)

(LoCp pos-listp))))))

...

Our approach can wind up generating a lot of events, especially if there are many signatures with multiple
type variables. All of the rules that we generate in support of polymorphic reasoning are tau rules, so
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they are automatically added to the Tau-database by ACL2. A consequence of this is that for datatypes
that are completely characterized by tau rules, we maintain that completeness even in the presence of
polymorphic reasoning.

6 Related Work

There are a number of macro libraries in the ACL2 Community books that specify data definitions
and capture common reasoning patterns. The oldest of these libraries are defstructure by Bishop
Brock [1] and deflist,defalist by Bill Bevier. These libraries can be found in the community books
data-structures directory of the ACL2 distribution.

Towards mechanizing the proof of soundness of typed lambda calculus [12], Sol Swords developed the
defsum macro (found in tools/defsum.lisp) that provides a convenient syntax for specifying mutually-
recursive types.

Jared Davis has contributed a number of useful macros for specifying typed lists, alists, enums, unions
and records that can be found in std/util [4].

All of these libraries, like defdata generate a lot of events, and in particular, install an extensive set of
theorems that automate reasoning about the defined types and functions operating on them. In fact, we
believe these libraries are more advanced than defdata with regard to theorem proving automation. A
distinguishing feature is that we are integrated with the Cgen library and we maintain an enumerative
characterization of the type definitions.

More recently, Sol Swords has written a macro library (FTY) [11] for supporting a particular discipline
of using types in ACL2. It associates a fixing function (e.g., nfix) and an equivalence relation with each
type predicate in addition to providing the usual constructs to define mutually-recursive types.

Acknowledgments

This research was supported in part by DARPA under AFRL Cooperative Agreement No. FA8750-10-2-
0233 and by NSF grants CCF-1117184 and CCF-1319580.

7 Conclusion and Future Work

We presented the defdata type definition framework. Our framework provides a convenient mechanism
for defining, testing, and reasoning about datatypes in ACL2s. We have used defdata to teach about
1,000 undergraduate students at Northeastern University how to reason about programs. In conjunction
with the defunc macro, which allows one to define functions with input and output contracts, defdata
provides type-like capabilities in ACL2s. We provided a partial characterization of data definitions using
Tau, hence, reasoning about data definitions is highly automated. We also showed how to support poly-
morphic reasoning in ACL2s. Our framework is also used by experts and is available to regular ACL2
users as a community book.

For future work, we would like to further integrate defunc, defdata and Tau for increased automation,
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efficiency, and debugging capabilities. We plan to provide a flexible API to the defdata framework and
to work with the ACL2 community to help create a standardized data definition framework. We plan
to provide support for more advanced forms of data definitions such as dependent types, quotient types,
predicate subtypes, and intersection types.
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