
Enhanced Probabilistic Verification with 3Spin and
3Murphi

Peter C. Dillinger and Panagiotis Manolios

College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332-0280������������	�
�����������������������������������! "����	�#

Abstract. 3Spin and 3Murphi are modified versions of the Spin model checker
and the Murϕ verifier. Our modifications enhance the probabilistic algorithms
and data structures for storing visited states, making them more effective and
more usable for verifying huge transition systems. The tools also support a veri-
fication methodology designed to minimize time to finding errors, or to reaching
desired certainty of error-freedom. This methodology calls for bitstate hashing,
hash compaction, and integrated analyses of both to provide feedback and advice
to the user. 3Spin and 3Murphi are the only tools to offer this support, and do so
with the most powerful and flexible currently-available implementations of the
underlying algorithms and data structures.

1 Introduction

Explicit-state model checking is a popular and effective verification technique em-
ployed by numerous tools, including Murϕ, TLC, Java PathFinder, and Spin. To ame-
liorate the memory demands of state explosion, most of these tools include algorithms
that have a small probability of overlooking errors. One such probabilistic algorithm
is bitstate hashing, developed in Spin [6]. The other major probabilistic technique is
hash compaction, which was mostly developed in Murϕ [8, 9] (building on previous
work [10]). We have modified these two tools into releases called 3Spin [3] and 3Mur-
phi [2] that each incorporate a set of features designed to maximize the effectiveness
and efficiency of probabilistic verification (see Table 1). This novel set of features is

Table 1. This table shows the capabilities of four probabilistic explicit-state verification tools,
Murϕ 3.1, Spin 4.2.2, 3Murphi 3.2, and 3Spin 3.2.

Tool Bitstate Hash Memory Hashing Feedback
hashing compaction sizes

Murϕ no yes, with any univ.+diff. H.C. omission analysis
wasted bit (probability only)

Spin enhanced yes, but powers of Jenkins B.H. recommendations$�%
4 & 2 & 0 ' inflexible 2 only

$(%
4 & 2 & 0 '

3Spin, enhanced yes any Jenkins; recommendations (both algs);
3Murphi univ.+diff. omission analysis (both algs)



2 P. C. Dillinger and P. Manolios

utilized by our probabilistic verification methodology, which was introduced in [4] but
we review here in Section 2. Sections 3 and 4 then discuss how the features of 3Spin or
3Murphi and our methodology enable the user to more efficiently reach her verification
goal while preserving all existing functionality of Spin and Murphi (respectively).

2 Methodology

In previous work [4] we describe a methodology for utilizing both bitstate hashing and
hash compaction that attempts to minimize the time to finding errors (if present) or to
reaching whatever certainty the user considers adequate to concluding that the model
satisfies the desired properties.

Bitstate hashing and hash compaction are probabilistic data structures used to repre-
sent sets. They support the standard add and query operations, but a query on an element
that is not in the set may return true, yielding a false positive. Their probabilistic na-
ture allows for memory-efficient representations of large sets, a crucial requirement for
model checkers which have to keep track of very large sets of visited states. Bitstate
hashing identifies states with a chosen number of addresses of a bit-vector; when a state
is visited the corresponding bits are set. Hash compaction stores hashed states in a table
with a fixed number of cells. Figure 1 emphasizes the key difference between the data
structures, which we expand upon in our methodology description below.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 3.16228e+07  1e+08  3.16228e+08pr
ob

ab
ili

ty
 o

f a
ny

 o
m

is
si

on
s 

(lo
g 

sc
al

e)

Actual size of state space (log scale)

Hash compaction
Bitstate (k=24)

Supertrace (k=3)  0

 20

 40

 60

 80

 100

 3.16228e+07  1e+08  3.16228e+08

%
 o

f s
ta

te
s 

om
itt

ed

Actual size of state space (log scale)

Hash compaction
Bitstate (k=24)
Supertrace (k=3)

Fig. 1. These graphs show the accuracy of three probabilistic verification tech-
niques/configurations for various state space sizes. In both graphs, lower is better. The
data points for “Hash compaction” and “Bitstate (k=24)” are obtained with data structures
optimized for a state space size of 108, using 400MB of memory. The graphs show the accuracy
of the data structures as the size of the state space varies. In both graphs, lower is better according
to the respective criterion. The left graph shows the probability that any omissions occur,
while the right graphs shows the expected percentage of states omitted. “Bitstate (k=24)” and
“Supertrace (k=3)” are instances of bitstate hashing setting 24 and 3 bits per state respectively.
“Hash compaction” shows the expected results of using 32-bit hash compaction, which in this
case has a maximum visitable size of about 105 million states. The results are obtained mostly
analytically, as in [4].



Enhanced Probabilistic Verification with 3Spin and 3Murphi 3

When the state space size is completely unknown, as when first attempting to ver-
ify a model, use supertrace, which is bitstate hashing configured to set a small number
of bits per state, such as Holzmann’s recommendation of three. In such cases, supertrace
is the best choice because of its low percentage of omitted states over a wide range of
state space sizes (see right graph in Figure 1). Supertrace tends to find errors quickly if
they exist, but is not the most productive technique for demonstrating error-freedom [5].

When we know the size of the state space rather accurately, as when iteratively
building confidence of error-freedom in a model, use hash compaction, because of its
superior accuracy when tuned for a known state space size. The left graph of Figure 1
shows that when the actual state space size is 80–100% of the maximum size, hash
compaction is the most accurate. The graphs also show that if the table ends up far
from full (left 1/3rd of left graph) or if it overflows (right half of right graph), hash
compaction is not the best choice.

When we have a rough estimate of the state space size, as when verifying a
modified version of a previously-verified model, use bitstate hashing configured to set
a number of bits per state optimized for that estimate (shown in [4]). When that number
is significantly larger than supertrace’s 3 bits, this approach is likely to be much more
accurate. Furthermore, it can tolerate much more deviation from the estimate than hash
compaction can, because hash compaction becomes pretty useless if its table fills up.
Making a small change to a model can easily change its state space size by a factor of
2 or more, which bitstate hashing tolerates much better than hash compaction.

In the following sections, we explain how among currently-available tools, 3Spin
and 3Murphi best support this unified approach in terms of features, performance, and
ease of use.

3 Feedback

3Spin/3Murphi’s most notable feature that supports our methodology is feedback after a
verification run fails to find an error. These two are the only tools to report both omission
analysis and recommendations, and do so in both bitstate mode and hash compaction
mode.

The omission analysis uses formulas and algorithms described in previous [4] and
related work [8] to compute either a probability of omitting any states or an expected
number of states omitted [4]. In the latter case, the estimate is rough, but looking at the
connectivity of the graph allows us to report the reliability of that result. Overall, the
omission analysis helps the user understand the degree to which he can be certain the
model satisfies the desired properties.

Because the configuration of the algorithms can make a big impact on accuracy,
3Spin and 3Murphi also incorporate analyses for predicting the best settings for rever-
ifying the same (or a similar) model [4]. Pursuant to our methodology, the tools give
advice on whether to follow-up with hash compaction or with bitstate hashing, along
with recommended settings for each. The latest versions of these tools return the rec-
ommendations not in terms of low-level settings, but in terms of visitable state space
size estimates. Perhaps the greatest benefit from this new form of recommendations is



4 P. C. Dillinger and P. Manolios

that they are not closely tied to a particular memory setting, enabling users to easily
benefit from the recommendations even if they change the memory settings.

As Table 1 shows, only 3Spin and 3Murphi support this rich set of feedback fea-
tures. In fact, Spin’s support for recommendations in bitstate mode is derived from
earlier versions of 3Spin.

4 Other Improvements or Features

This section discusses the rest of 3Spin/3Murphi’s core features, following Table 1 from
left to right.

Bitstate hashing. The first release of 3Spin focused on improvements to bitstate
hashing that have since been integrated into Spin, starting with version 4.2.0. Prior to
our work, it was believed that if memory was not terribly constrained (say 8 or more
bits per state) the bitstate hashing configuration with the best accuracy was inherently
slow—too slow to be more productive than iteratively using a suboptimal but fast con-
figuration [6]. Our improvement [5, 4] eliminates most of that overhead by reusing hash
information in an intelligent, accuracy-preserving way.

This improvement has allowed our methodology to utilize fast and accurate bitstate
hashing configurations, when one has a rough estimate of the state space size.

Hash compaction. Spin’s implementation of hash compaction is very limited. It
only supports compacted state sizes of 32 to 64 bits per state in 8 bit increments, and
the size of the table must be a power of 2 (discussed in Memory sizes below). Both
limitations inhibit Spin’s ability to take advantage of available memory in minimizing
the possibility of overlooking an error.

As of version 2.0, 3Spin has its own implementation of hash compaction, which has
also been put in to 3Murphi. Our implementation and Murϕ’s support all compacted
state sizes from 4 bits to 64 bits. The extent of this range is justified as follows: when
fewer than about 10 bits per state are available, bitstate hashing is superior to hash
compaction; 3Spin/3Murphi makes recommendations accordingly. On the high end,
using a compacted state size of 64 bits is so accurate that, even if the table is almost
full, the probability of any omissions is on the order of one in trillions. At this level
of accuracy, random hardware errors are probably more likely to cause error omission
than algorithmic losses.

Our implementation actually improves upon Murϕ’s (which is better than Spin’s) in
the way it determines whether a cell in the table is occupied. In addition to the memory
dedicated to the compacted state, Murϕ allocates a single-bit flag with each cell of the
compacted table to indicate whether the cell has a state stored in it. We instead reserve
the compacted state “0” to indicate that a cell is not used. As a result, we can use the
bit saved to increase the compacted state size and nearly cut in half the probability of
omitting an error when using the same amount of memory as Murϕ.

Memory sizes. An informed choice to use a probabilistic technique is motivated
by memory constraints with respect to state space size, but Spin limits the user to only
power-of-2 sizes for its probabilistic data structures. 3Spin and 3Murphi allows their
data structures to be of any size addressable on a 32-bit machine. Keep in mind that
allocating more memory to either data structure always makes it more accurate—and



Enhanced Probabilistic Verification with 3Spin and 3Murphi 5

the impact is significant. For example, when using 1024MB of memory for k ) 21
bitstate hashing on 300 million states, the search expects to omit about 20 states. Using
3Spin with 1750MB instead leads to less than a 1% chance of omitting any states. If
you also increase k to 35, there is less than 1 in 1000 chance of omitting any states.

Hashing. In the first release of 3Spin, we showed how to get more hash information
from the hash function used by Spin, the Jenkins LOOKUP2 hash function [7], with
no observable impact on coverage/accuracy. Incorporating this improvement into Spin
reduced its execution time by about 25% [5] in common scenarios, because it could
make just one call to Jenkins where it used to make two. 3Murphi adds support for this
hash function, which can be faster than Murϕ’s.

Murϕ uses a different hash function that enables an optimization called differen-
tial hashing [1]. The hash function, H3, also has the advantage of being a universal
hash function. Since version 3.0, 3Spin has included this hash function and similar
optimizations as an alternative to Jenkins, and in many cases, the differential hashing
optimization makes the universal hash function faster than Jenkins.

We include both hash functions as options in both tools because they are fundamen-
tally different: Jenkins is always competitively fast but only heuristically accurate; H3
is only heuristically fast but provably accurate.

5 Conclusion

Earlier versions of 3Spin have already made an impact by introducing features that
eventually made their way into Spin itself, and here we have introduced version 3.2
of 3Spin and its new cousin 3Murphi. These tools offer a more effective verification
environment to users of Spin and Murphi.

References

1. B. Cousin and J. Hélary. Performance improvement of state space exploration by regular and
differential hashing functions. In 6th CAV, pages 364–376, 1994.

2. P. C. Dillinger. 3Murphi Home Page. http://www.cc.gatech.edu/ * peterd/3murphi/.
3. P. C. Dillinger. 3Spin Home Page. http://www.cc.gatech.edu/ * peterd/3spin/.
4. P. C. Dillinger and P. Manolios. Bloom filters in probabilistic verification. In Formal Methods

in Computer-Aided Design, volume 3312 of LNCS. Springer-Verlag, November 2004.
5. P. C. Dillinger and P. Manolios. Fast and accurate bitstate verification for SPIN. In 11th

SPIN Workshop, volume 2989 of LNCS. Springer-Verlag, April 2004.
6. G. J. Holzmann. An analysis of bitstate hashing. In Proc. 15th Int. Conf on Protocol Speci-

fication, Testing, and Verification, INWG/IFIP, pages 301–314. Chapman & Hall, 1995.
7. B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal, September 1997.
8. U. Stern and D. L. Dill. Improved probabilistic verification by hash compaction. In

CHARME, volume 987 of LNCS, pages 206–224. Springer-Verlag, 1995.
9. U. Stern and D. L. Dill. A new scheme for memory-efficient probabilistic verification. In

FORTE/PSTV, pages 333–348, 1996.
10. P. Wolper and D. Leroy. Reliable hashing without collision detection. In 5th International

Conference on Computer Aided Verification, pages 59–70, 1993.


