
Five Types of Review / 21

Five Types of Review

Pros and cons of formal, over-the-shoulder, e-

mail pass-around, pair-programming, and

tool-assisted reviews.

There are many ways to skin a cat. I can think of four right off the
bat. There are also many ways to perform a peer review, each with
pros and cons.

Formal inspections

For historical reasons, “formal” reviews are usually called “inspec-
tions.” This is a hold-over from Michael Fagan’s seminal 1976
study at IBM regarding the efficacy of peer reviews. He tried many
combinations of variables and came up with a procedure for
reviewing up to 250 lines of prose or source code. After 800
iterations he came up with a formalized inspection strategy and
whom to this day you can pay to tell you about it (company name:
Fagan Associates). His methods were further studied and ex-
panded upon by others, most notably Tom Gilb and Karl Wiegers.

22 / Best Kept Secrets of Peer Code Review

In general, a “formal” review refers to a heavy-process review
with three to six participants meeting together in one room with
print-outs and/or a projector. Someone is the “moderator” or
“controller” and acts as the organizer, keeps everyone on task,
controls the pace of the review, and acts as arbiter of disputes.
Everyone reads through the materials beforehand to properly
prepare for the meeting.

Each participant will be assigned a specific “role.” A “re-
viewer” might be tasked with critical analysis while an “observer”
might be called in for domain-specific advice or to learn how to do
reviews properly. In a Fagan Inspection, a “reader” looks at
source code only for comprehension – not for critique – and
presents this to the group. This separates what the author in-
tended from what is actually presented; often the author himself is
able to pick out defects given this third-party description.

When defects are discovered in a formal review, they are usu-
ally recorded in great detail. Besides the general location of the
error in the code, they include details such as severity (e.g. major,
minor), type (e.g. algorithm, documentation, data-usage, error-
handling), and phase-injection (e.g. developer error, design
oversight, requirements mistake). Typically this information is
kept in a database so defect metrics can be analyzed from many
angles and possibly compared to similar metrics from QA.

Formal inspections also typically record other metrics such as
individual time spent during pre-meeting reading and during the
meeting itself, lines-of-code inspection rates, and problems
encountered with the process itself. These numbers and com-
ments are examined periodically in process-improvement meetings;
Fagan Inspections go one step further and requires a process-
rating questionnaire after each meeting to help with the improve-
ment step.

Five Types of Review / 23

Figure 1: Typical workflow for a "formal" inspec-
tion. Not shown are the artifacts created by the
review: The defect log, meeting notes, and met-
rics log. Some inspections also have a closing
questionnaire used in the follow-up meeting.

A Typical Formal Inspection Process

If additional
defects found,
the inspection
repeats.

If no defects
are found, the

review is
complete.

Readers and
reviewers inspect
the code privately.

Planning
- Verify materials meet entry criteria.
- Schedule introductory meeting.

Introductory Meeting
- Materials presented by author.
- Moderator explains goals, rules.
- Schedule inspection meeting.

Inspection Meeting
- Materials reviewed as a group.
- Defects logged.
- Metrics collected by recorder.

Rework
- Author fixes defects alone.
- Metrics collected by author.
- Verification meeting scheduled.

Verification Meeting
- Reviewer verifies defects fixed.

Complete
- Done!

Follow-Up Meeting
- How could the inspection process be
improved?

24 / Best Kept Secrets of Peer Code Review

Formal inspections’ greatest asset is also its biggest drawback:
When you have many people spending lots of time reading code
and discussing its consequences, you are going to identify a lot of
defects. And there are plenty of studies that show formal inspec-
tions can identify a large number of problems in source code.

But most organizations cannot afford to tie up that many
people for that long. You also have to schedule the meetings – a
daunting task in itself and one that ends up consuming extra
developer time1. Finally, most formal methods require training to
be effective, and this is an additional time and expense that is
difficult to accept, especially when you aren’t already used to doing
code reviews.

Many studies in the past 15 years have come out demonstrat-
ing that other forms of review uncover just as many defects as do
formal reviews but with much less time and training2. This result –
anticipated by those who have tried many types of review – has put
formal inspections out of favor in the industry.

After all, if you can get all the proven benefits of formal
inspections but occupy 1/3 the developer time, that’s clearly better.

So let’s investigate some of these other techniques.

Over-the-shoulder reviews

This is the most common and informal of code reviews. An
“over-the-shoulder” review is just that – a developer standing over
the author’s workstation while the author walks the reviewer
through a set of code changes.

Typically the author “drives” the review by sitting at the key-
board and mouse, opening various files, pointing out the changes
and explaining why it was done this way. The author can present
the changes using various tools and even run back and forth
between changes and other files in the project. If the review sees

1 See the Votta 1993 case study detailed elsewhere in this collection.
2 See the case study survey elsewhere in this collection for details.

Five Types of Review / 25

something amiss, they can engage in a little “spot pair-
programming” as the author writes the fix while the reviewer
hovers. Bigger changes where the reviewer doesn’t need to be
involved are taken off-line.

With modern desktop-sharing software a so-called “over-the-
shoulder” review can be made to work over long distances. This
complicates the process because you need schedule these sharing
meetings and communicate over the phone. Standing over a
shoulder allows people to point, write examples, or even go to a
whiteboard for discussion; this is more difficult over the Internet.

The most obvious advantage of over-the-shoulder reviews is
simplicity in execution. Anyone can do it, any time, without
training. It can also be deployed whenever you need it most – an
especially complicated change or an alteration to a “stable” code
branch.

As with all in-person reviews, over-the-shoulders lend them-
selves to learning and sharing between developers and gets people
to interact in person instead of hiding behind impersonal email and
instant-messages. You naturally talk more when you can blurt out
and idea rather than making some formal “defect” in a database
somewhere.

Unfortunately, the informality and simplicity of the process
also leads to a mountain of shortcomings. First, this is not an
enforceable process – there’s nothing that lets a manager know
whether all code changes are being reviewed. In fact, there are no
metrics, reports, or tools that measure anything at all about the
process.

Second, it’s easy for the author to unintentionally miss a
change. Countless times we’ve observed a review that completes,
the author checks in his changes, and when he sees the list of files
just checks in he says “Oh, did I change that one?” Too late!

26 / Best Kept Secrets of Peer Code Review

Figure 2: A typical Over-the-shoulder code walk-
through process. Typically no review artifacts are
created.

Third, when a reviewer reports defects and leaves the room,
rarely does the reviewer return to verify that the defects were fixed
properly and that no new defects were introduced. If you’re not
verifying that defects are fixed, the value of finding them is
diminished.

There is another effect of over-the-shoulder reviews which
some people consider to be an advantage but others a drawback.
Because the author is controlling the pace of the review, often the
reviewer is lead too hastily through the code. The reviewer might
not ponder over a complex portion of code. The reviewer doesn’t
get a chance to poke around in other source files to confirm that a
change won’t break something else. The author might explain

Over-the-Shoulder Review Process

Preparation
- Developer finds available reviewer in person or
through shared-desktop meeting.

Inspection Meeting
- Developer walks reviewer through the code.
- Reviewer interrupts with questions.
- Developer writes down defects

Complete
- When developer deems himself finished, he
checks code into version control.

Rework
- Developer fixed defects in code.

Five Types of Review / 27

something that clarifies the code to the reviewer, but the next
developer who reads that code won’t have the advantage of that
explanation unless it is encoded as a comment in the code. It’s
difficult for a reviewer to be objective and aware of these issues
while being driven through the code with an expectant developer
peering up at him.

For example, say the author was tasked with fixing a bug
where a portion of a dialog was being drawn incorrectly. After
wrestling with the Windows GUI documentation, he finally
discovers an undocumented “feature” in the draw-text API call
that was causing the problems. He works around the bug with
some new code and fixes the problem. When the reviewer gets to
this work-around, it looks funny at first.

“Why did you do this,” asks the reviewer, “the Windows GUI
API will do this for you.”

“Yeah, I thought so too,” responds the author, “but it turns
out it doesn’t actually handle this case correctly. So I had to call it
a different way in this case.”

 It’s all too easy for the reviewer to accept the changes. But
the next developer that reads this code will have the same ques-
tion, and might even remove the work-around in an attempt to
make the code cleaner. “After all,” says the next developer, “the
Windows API does this for us, so no need for this extra code!”

On the other hand, not all prompting is bad. With changes
that touch many files it’s often useful to review the files in a
particular order. And sometimes a change will make sense to a
future reader, but the reviewer might need an explanation for why
things were changed from the way they were.

Finally, over-the-shoulder reviews by definition don’t work
when the author and reviewer aren’t in the same building; they
probably should also be in nearby offices. For any kind of remote
review, you need to invoke some electronic communication. Even

28 / Best Kept Secrets of Peer Code Review

with desktop-sharing and speakerphones, many of the benefits of
face-to-face interactions are lost.

E-mail pass-around reviews

This is the second-most common form of informal code review,
and the technique preferred by most open-source projects. Here,
whole files or changes are packaged up by the author and sent to
reviewers via e-mail. Reviewers examine the files, ask questions
and discuss with the author and other developers, and suggest
changes.

The hardest part of the e-mail pass-around is in finding and
collecting the files under review. On the author’s end, he has to
figure out how to gather the files together. For example, if this is a
review of changes being proposed to check into version control,
the user has to identify all the files added, deleted, and modified,
copy them somewhere, then download the previous versions of
those files (so reviewers can see what was changed), and organize
the files so the reviewers know which files should be compared
with which others. On the reviewing end, reviewers have to
extract those files from the e-mail and generate differences
between each.

The version control system can be of some assistance. Typi-
cally that system can report on which files have been altered and
can be made to extract previous versions. Although some people
write their own scripts to collect all these files, most use commer-
cial tools that do the same thing and can handle the myriad of
corner-cases arising from files in various states and client/server
configurations.

The version control system can also assist by sending the e-
mails out automatically. For example, a version control server-side
“check-in” trigger can send e-mails depending on who checked in
the code (e.g. the lead developer of each group reviews code from
members of that group) and which files were changed (e.g. some

Five Types of Review / 29

files are “owned” by a user who is best-qualified to review the
changes). The automation is helpful, but for many code review
processes you want to require reviews before check-in, not after.

Figure 3: Typical process for an e-mail pass-
around review for code already checked into a
version control system. These phases are not this
distinct in reality because there’s no tangible “re-
view” object.

E-Mail Pass-Around Process: Post Check-In Review

Code Check-In
- Developer checks code into SCM.
- SCM server sends emails to reviewers based
on authors (group leads) and files (file owners).

Inspections
- Recipients examine code diffs on their own
recognizance.
- Debate until resolved or ignored.

Complete
- Nothing special to do because code is already
checked into version control.
- Don’t really know when in this phase because
there’s no physical “review” that can complete.

Rework
- Developer responds to defects by making
changes and checking the code in.
- Nothing special to do because code is already
checked into version control.

If no problems,
review fades into
“Complete.”

30 / Best Kept Secrets of Peer Code Review

Like over-the-shoulder reviews, e-mail pass-arounds are easy
to implement, although more time-consuming because of the file-
gathering. But unlike over-the-shoulder reviews, they work equally
well with developers working across the hall or across an ocean.
And you eliminate the problem of the authors coaching the
reviewers through the changes.

Another unique advantage of e-mail pass-arounds is the ease
in which other people can be brought into the review. Perhaps
there is a domain expert for a section of code that a reviewer wants
to get an opinion from. Perhaps the reviewer wants to defer to
another reviewer. Or perhaps the e-mail is sent to many people at
once, and those people decide for themselves who are best
qualified to review which parts of the code. This inclusiveness is
difficult with in-person reviews and with formal inspections where
all participants need to be invited to the meeting in advance.

Yet another advantage of e-mail pass-arounds is they don’t
knock reviewers out of “the zone.” It’s well established that it
takes a developer 15 minutes to get into “the zone” where they are
immersed in their work and are highly productive3. Even just
asking a developer for a review knocks him out of the zone – even
if the response is “I’m too busy.” With e-mails, reviewers can
work during a self-prescribed break so they can stay in the zone for
hours at a time.

There are several important drawbacks to the e-mail pass-
around review method. The biggest is that for all but the most
trivial reviews, it can rapidly become difficult to track the various
threads of conversation and code changes. With several discus-
sions concerning a few different areas of the code, possibly inviting
other developers to the fray, it’s hard to track what everyone’s
saying or whether the group is getting to a consensus.

3 For a fun read on this topic, see “Where do These People Get Their (Unorigi-

nal) Ideas?” Joel On Software. Joel Spolsky, Apr 29, 2000.

Five Types of Review / 31

Figure 4: Typical process for an e-mail pass-
around review for code already checked into a
version control system. These phases are not this
distinct in reality because there’s no tangible “re-
view” object.

This is even more prominent with over-seas reviews; ironic
since one of the distinct advantages of e-mail pass-arounds is that
they can be done with remote developers. An over-seas review
might take many days as each “back and forth” can take a day, so it
might take five days to complete a review instead of thirty minutes.
This means many simultaneous reviews, and that means even more
difficulties keeping straight the conversations and associated code
changes.

E-Mail Pass-Around Process: Pre Check-In Review

Preparation
- Developer gathers changes together.
- Developer sends emails with changes.

Inspections
- Recipients examine code diffs on their own
recognizance.
- Debate until resolved.
- Developer keeps it going (“Are we done yet?”)

Complete
- Developer checks changes into version control.
- Participants could get notified via server email.

Rework
- Developer responds to defects by making
changes and re-emailing the results.

If no problems,
no rework
required.

32 / Best Kept Secrets of Peer Code Review

Imagine a developer in Hyderabad opening Outlook to dis-
cover 25 emails from different people discussing aspects of three
different code changes he’s made over the last few days. It will
take a while just to dig though that before any real work can begin.

For all their advantages over over-the-shoulder reviews, e-
mail pass-arounds share some disadvantages. Product managers
are still not sure whether all code changes are being reviewed.
Even with version control server-side triggers, all you know is that
changes were sent out – not that anyone actually looked at them.
And if there was a consensus that certain defects needed to be
fixed, you cannot verify that those fixes were made properly. Also
there are still no metrics to measure the process, determine
efficiency, or measure the effect of a change in the process.

With e-mail pass-arounds we’ve seen that with the introduc-
tion of a few tools (i.e. e-mail, version control client-side scripts for
file-collection and server-side scripts for workflow automation) we
were able to gain several benefits over over-the-shoulder reviews
without introducing significant drawbacks. Perhaps by the
introduction of more sophisticated, specialized tools we can
continue to add benefits while removing the remaining drawbacks.

Tool-Assisted reviews

This refers to any process where specialized tools are used in all
aspects of the review: collecting files, transmitting and displaying
files, commentary, and defects among all participants, collecting
metrics, and giving product managers and administrators some
control over the workflow.

There are several key elements that must be present in a re-
view tool if it is going to solve the major problems with other types
of review4:

4 In the interest of full-disclosure, Smart Bear Software, the company that

employs the author of this essay, sells a popular peer code review tool called
Code Collaborator for exactly this purpose. This product is described in a

Five Types of Review / 33

Automated File Gathering
As we discussed in the e-mail pass-around section, you can’t

have developers spending time manually gathering files and
differences for review. A tool must integrate with your version
control system to extract current and previous versions so review-
ers can easily see the changes under review.

Ideally the tool can do this both with local changes not yet
checked into version control and with already-checked-in changes
(e.g. by date, label, branch, or unique change-list number). Even if
you’re not doing both types of review today, you’ll want the option
in the future.

Combined Display: Differences, Comments, Defects
One of the biggest time-sinks with any type of review is in

reviewers and developers having to associate each sub-
conversation with a particular file and line number. The tool must
be able to display files and before/after file differences in such a
manner that conversations are threaded and no one has to spend
time cross-referencing comments, defects, and source code.

Automated Metrics Collection
On one hand, accurate metrics are the only way to understand

your process and the only way to measure the changes that occur
when you change the process. On the other hand, no developer
wants review code while holding a stopwatch and wielding line-
counting tools.

A tool that automates collection of key metrics is the only
way to keep developers happy (i.e. no extra work for them) and get
meaningful metrics on your process. A full discussion of review
metrics and what they mean appears in another essay, but your tool
should at least collect these three rates: kLOC/hour (inspection

different essay in this collection; this section will discuss general ways in which
tools can assist the review process.

34 / Best Kept Secrets of Peer Code Review

rate), defects/hour (defect rate), and defects/kLOC (defect
density).

Review Enforcement
Almost all other types of review suffer from the problem of

product managers not knowing whether developers are reviewing
all code changes or whether reviewers are verifying that defects are
indeed fixed and didn’t cause new defects. A tool should be able
to enforce this workflow at least at a reporting level (for passive
workflow enforcement) and at best at the version control level
(with server-side triggers that enforce workflow at the version
control level).

Clients and Integrations
Some developers like command-line tools. Others prefer in-

tegrations with IDE’s and version control GUI clients.
Administrators like zero-installation web clients. It’s important
that a tool supports many ways to read and write data in the
system.

Developer tools also have a habit of needing to be integrated
with other tools. Version control clients are inside IDE’s. Issue-
trackers are correlated with version control changes. Similarly,
your review tool needs to integrate with your other tools –
everything from IDE’s and version control clients to metrics and
reports. A bonus is a tool that exposes a public API so you can
make customizations and detailed integrations yourself.

If your tool satisfies this list of requirements, you’ll have the

benefits of e-mail pass-around reviews (works with multiple,
possibly-remote developers, minimizes interruptions) but without
the problems of no workflow enforcement, no metrics, and
wasting time with file/difference packaging, delivery, and inspec-
tion.

The drawback of any tool-assisted review is cost – either in
cash for a commercial tool or as time if developed in-house. You

Five Types of Review / 35

also need to make sure the tool is flexible enough to handle your
specific code review process; otherwise you might find the tool
driving your process instead of vice-versa.

Although tool-assisted reviews can solve the problems that
plague typical code reviews, there is still one other technique that,
while not often used, has the potential to find even more defects
than standard code review.

Pair-Programming

Most people associate pair-programming with XP5 and agile
development in general, but it’s also a development process that
incorporates continuous code review. Pair-programming is two
developers writing code at a single workstation with only one
developer typing at a time and continuous free-form discussion
and review.

Studies of pair-programming have shown it to be very effec-
tive at both finding bugs and promoting knowledge transfer. And
some developers really enjoy doing it.

There’s a controversial issue about whether pair-programming
reviews are better, worse, or complementary to more standard
reviews. The reviewing developer is deeply involved in the code,
giving great thought to the issues and consequences arising from
different implementations. On the one hand this gives the
reviewer lots of inspection time and a deep insight into the
problem at hand, so perhaps this means the review is more
effective. On the other hand, this closeness is exactly what you
don’t want in a reviewer; just as no author can see all typos in his
own writing, a reviewer too close to the code cannot step back and
critique it from a fresh and unbiased position. Some people
suggest using both techniques – pair-programming for the deep
review and a follow-up standard review for fresh eyes. Although

5 Extreme Programming is perhaps the most talked-about form of agile

development. Learn more at http://www.extremeprogramming.org.

36 / Best Kept Secrets of Peer Code Review

this takes a lot of developer time to implement, it would seem that
this technique would find the greatest number of defects. We’ve
never seen anyone do this in practice.

The single biggest complaint about pair-programming is that
it takes too much time. Rather than having a reviewer spend 15-30
minutes reviewing a change that took one developer a few days to
make, in pair-programming you have two developers on the task
the entire time.

Some developers just don’t like pair-programming; it depends
on the disposition of the developers and who is partnered with
whom. Pair-programming also does not address the issue of
remote developers.

A full discussion of the pros and cons of pair-programming in
general is beyond our scope.

Conclusion

Each of the five types of review is useful in its own way. Formal
inspections and pair-programming are proven techniques but
require large amounts of developer time and don’t work with
remote developers. Over-the-shoulder reviews are easiest to
implement but can’t be instantiated as a controlled process. E-mail
pass-around and tool-assisted reviews strike a balance between
time invested and ease of implementation.

And any kind of code review is better than nothing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

