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Abstract Writing functions over complex user-defined datatypes can be tedious and

error prone. Generic (or polytypic) programming and higher order functions like foldr

have resolved some of these issues, but can be too general to be practically useful for

larger collections of data types. In this paper we present a traversal-based approach

to generic programming using function sets. Our traversal is an adaptive, higher-order

function that employs an asymmetric type-based multiple dispatch to fold over arbi-

trarily complex structures. We introduce our approach in the context of our Scheme

library implementation, present a typed model of our system, and provide a proof of

type soundness, showing that our flexible, adaptive approach is both useful and safe.

Keywords Traversals · Functional Programming · Data Structures · Generic

Programming

1 Introduction

Writing functions over complex user-defined data structures is tedious and error prone,

but often unavoidable. Using built-in, higher order, structurally recursive functions such

as map and foldr can alleviate some of this tedium for commonly used data structures,

but these are of little use for more complex datatypes. Generalized folds [28,31] were

introduced to provide a blueprint for fold abstractions over user-defined datatypes by

describing how such functions can be written (or generated) from data definitions.

Polytypic programming [16,27,14,3] provides a similar service, allowing programmers

to define functions that are applicable to all datatypes. Neither of these approaches is

a perfect solution for user-defined structures and functions.

Generalized folds provide recursion operators that replace value constructors, like

cons, with user provided functions. With more complex datatypes containing multiple
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or mutually recursive types, the number and order of functions that must be passed

can quickly become overwhelming. On the other hand, polytypic functions work for

all datatypes, usually by defining the function over a universal recursive datatype

consisting of binary sum and product types. The universal nature of these definitions

makes writing functions that operate on high level datatype notions impossible.

As an example, consider a typical implementation of foldr over proper lists, written

in Scheme [18]1:

;; Fold list elements, to the right
(define (foldr func base lst)

(if (null? lst) base
(func (car lst)

(foldr func base (cdr lst )))))

One obvious use of this function might be to sum a list of numbers:

;; Sum elements in a list-of numbers
(define (sum lon)

(foldr + 0 lon))

The function contains no explicit recursion, but as we add new datatypes or attempt to

implement more complex functions foldr quickly becomes difficult to use or obsolete.

Polytypic programming provides a means to implement fold-like functions over more

classes of data with a single definition. Consider the implementation of a sum function

over arbitrary structures in Generic Haskell [27]:

-- Sum integers in any data structure
deepsum {| t |} :: t -> Int

deepsum {|Int|} i = i
deepsum {|Unit|} u = 0
deepsum {|Sum a b|} (Inl aa) = deepsum {|a|} aa
deepsum {|Sum a b|} (Inr bb) = deepsum {|b|} bb
deepsum {|Prod a b|} (aa :*: bb) = (( deepsum {|a|} aa) +

(deepsum {|b|} bb))

The generic function deepsum is defined by cases on a universal datatype: base types

(e.g., Int and Unit) and binary Sum and Prod types. Since any Haskell datatype can be

encoded as binary sums and products, deepsum can be called on any datatype. However,

unlike our use of foldr, structural recursion is no longer implicit and programmers

must reason about datatypes at a much lower level. This low level reasoning limits the

functions that can be written and the types of results they can return.

In this paper we present a traversal-based approach to generic programming that

uses sets of functions to fold over a data structure. We propose the use of a generic,

adaptive traversal function that walks a structure guided by control declarations. The

traversal folds recursive results by selecting from a set of user-defined functions using a

type-based multiple dispatch. Our traversal provides a flexible, adaptive form of generic

programming that can be specialized using programmer-defined functions, control, and

contexts.

Getting back to our example, using the Scheme implementation of our approach

we can define a function to sum all the numbers in a possibly nested and possibly

improper (but non-circular) list:

1 In later examples we will use both parentheses ( ) and square brackets [ ] within Scheme
code for readability.
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;; Sum the elements of nested lists of numbers
(define (deep-sum lst)

(traverse lst
(funcset [( number) (n) n]

[(empty) (e) 0]
[(cons number number) (c n m) (+ n m)])))

The funcset form builds a set from a list of typed functions. Each declares its formal

argument types, followed by argument names and a body expression. The symbols

number, empty, and cons represent the types of Scheme numbers, the empty list, and

non-empty lists respectively. The traverse form is used to recursively traverse the

structure of a given value. During the walk it combines recursive results by selecting

and applying a matching function from the given set based on the formal and actual

argument types. In this case, when a number or the empty list is reached, the traversal

selects and applies the first or second function from the set. When a cons is reached

with numbers as recursive results from its car and cdr, then the third function is

applied. Any other case, e.g., a symbol, causes a runtime/dispatch error.

Our deep-sum function is considered generic because the traversal automatically

adapts to different data structures (here different list depths) and applies elements

from the given set of functions. Is this function safe, in the sense that the traversal

will never induce a runtime error? The answer is yes, as long as the given value is

constructed only of lists (i.e., cons or ()) and numbers. More precisely, the function

set safely handles Scheme values that can be finitely derived by the following grammar:

List ::= (cons Any Any) | ()

Any ::= List | Number

Supporting this style of traversal-based generic programming while providing guaran-

tees of dispatch safety is the topic of this paper. Our contributions can be summarized

as follows:

– We present a new, flexible approach to traversal-based generic programming that

uses sets of functions and an adaptive traversal to recursively fold over structures

(Section 3). Our approach is called functional adaptive programming (or AP-F),

and is implemented as a library and collection of macros in PLT Scheme [1]. It is

useful for implementing generic functions over complex data hierarchies and uses

an asymmetric multiple dispatch that avoids ambiguities and supports function

overloading. AP-F improves on other generic approaches like generalized folds [31,

28] and Scrap Your Boilerplate (SYB) [21,22] by supporting extensible functions,

traversal control, contexts, and more flexible traversal return types.

– We introduce a corresponding model, semantics, and type system (Sections 4

and 5) that describe the essential features of AP-F: data structures, traversals,

and dispatch using functions sets. Our model datatypes are an extension of sum-

of-products and function sets are like multi-entry closures, similar to function ob-

jects in object-oriented languages. Our type system is more flexible than other

approaches and confirms the safe application of a function set over the traversal of

a data structure.

– We give a proof of type soundness for our model (Section 6), showing that type

correct traversals and function sets can be executed without runtime dispatch er-

rors. Soundness relies on a special case of multi-method checking, that we refer to

as the leaf-covering problem, allowing function overloading while maintaining safe

and complete dispatch. Proving soundness may seem superfluous for a library in
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a dynamically typed language like Scheme, but the results presented here are also

applicable to our other implementations of traversal-based generic programming in

Java and C#.

Our goal is to provide a safe form of extensible functions over traversals while main-

taining the flexibility and safety of separate, hand-coded functions. We take strides

in this direction by demonstrating a useful implementation of our approach, modeling

its essential features, giving it a type system, and proving it sound. The main benefit

of our approach can be characterized as separation of concerns, but additional ben-

efits can be seen in our other AP-F implementations, including implicit parallelism,

domain specific control strategies, and extensive support for parametrized types and

data structures.

2 Background

Before going into the details of our approach, we begin by describing some programming

problems with functions and data structures in more detail. To illustrate a common

situation, consider data structures representing a simple boolean expression language

with literals, negation, conjunction, and disjunction. Simple Scheme structures with

comments describing their intended uses are shown below.

;; A BExp is one of Lit, Neg, ...
;; A Lit is one of True or False
;; (make-True )
(define-struct True ())
;; ( make-False )
(define-struct False ())

;; (make-Neg BExp)
(define-struct Neg (inner ))
;; (make-And BExp BExp)
(define-struct And (left right))
;; (make-Or BExp BExp)
(define-struct Or (left right ))

The structures themselves are only useful for creating and describing data, but we can

implement a typical evaluation function, eval-bexp, that reduces the representation

of a boolean expression to a Scheme value, #t or #f.

;; eval-bexp: BExp -> boolean
(define (eval-bexp e)

(cond [(True? e) #t]
[(False? e) #f]
[(Neg? e) (not (eval-bexp (Neg-inner e)))]
[(And? e) (and (eval-bexp (And-left e))

(eval-bexp (And-right e)))]
[(Or? e) (or (eval-bexp (Or-left e))

(eval-bexp (Or-right e)))]))

As a convention, we precede all function definitions with a comment that describes

the classes of values that the function expects as parameters and returns as a result.

In this case eval-bexp accepts a BExp and returns a boolean. Our implementation

is about as concise as it can be in Scheme when written as a single function. The

function’s recursion is explicit and, apart from the short-cutting evaluation of and and

or in Scheme, it mimics our structural definitions exactly.

Polytypic programming cannot directly help us define this particular function, since

the idea of evaluation does not make sense for all possible types. Instead, there has

been much work on abstracting these kinds of functions by creating structural recur-

sion operators, typically called folds [31,28]. Using our data definitions as a guide, we

can refactor the implementation of eval-bexp by creating a higher-order function for

folding BExps into a different structure.
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;; fold-bexp: BExp A A (A -> A) (A A -> A) (A A -> A) -> A
(define (fold-bexp e tru fals nott andd orr)

(cond [(True? e) tru]
[(False? e) fals]
[(Neg? e) (nott (fold-bexp (Neg-inner e)

tru fals nott andd orr))]
[(And? e) (andd (fold-bexp (And-left e)

tru fals nott andd orr)
(fold-bexp (And-right e)

tru fals nott andd orr))]
...))

The comment preceding fold-bexp describes its signature. The function accepts

five arguments, one for each structure definition (concrete variants of BExp). We use

A as a place-holder for the return type of our function, since it should be the same

throughout. The individual functions passed to fold-bexp match the arity of the cor-

responding constructors, using values instead of zero-argument functions. For each

case we replace the original constructor by calling the corresponding function with the

results of recursively folding the immediate fields of the structure.

Because fold-bexp works at the level of constructors, we can use it to give a more

succinct definition of eval-bexp, without mentioning any structural recursion.

;; Wrappers for Scheme and/or
(define (and-f a b) (and a b))
(define (or-f a b) (or a b))

;; eval-bexp: BExp -> boolean
(define (eval-bexp e)

(fold-bexp e #t #f not and-f or-f))

We have reduced evaluation to a one line function and can now use our fold to write

other functions that match this structural pattern. Essentially, we have abstracted the

traversal of a data structure from the most interesting parts of our function.

The general fold approach is manageable for smaller data structures, but a number

of questions/concerns remain:

1. Who writes the fold function? Hand writing folds for different data structure is still

tedious and difficult. We could probably implement it as a specialized macro, but

mutually recursive structures can complicate things.

2. What about parametrized structures like lists? Should we accept a function to recur

into the parameter, or just do a shallow fold? These interpretations correspond to

Church and Scott encodings [33] of datatypes, respectively.

3. What about mutually recursive structures? Should the fold implement the recur-

sion, or just treat them as parametrized structures?

4. Do we really have to pass all those functions? With many constructors performance

can suffer, and the order and number of functions quickly becomes overwhelming.

There are techniques to eliminate parameter passing for internal recursion [12], but

the interface of the original fold function must still accept all necessary parameters.

5. Can we abstract over multiple constructor cases with a single function?

6. Are we limited to folding to a single class of values? Is it safe to do otherwise?

In answering these questions we have completely reformulated the notion of Adap-

tive Programming (AP) [26] to provide a safe, flexible approach to traversal-based

generic programming in a functional setting, we call it functional adaptive program-

ming (AP-F). Our approach groups functions into sets, which are applied over a data
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structure by a generic traversal. The traversal uses a type-based multiple dispatch to

support case abstraction (allowing a single function to be called in-place of multiple

constructors) and overloading (allowing a more specific function to override a more

general one in special cases). Because dispatch is separate, function sets are easy to

combine/extend. The separate traversal allows us to easily control/limit our recursion,

for efficiency or algorithm correctness. Our approach can emulate generalized folds by

providing a function for each (concrete) constructor, and polytypic programming by

generating extensible function sets.

In the rest of this paper we discuss our new style of traversal-based programming. In

Section 3 we describe our library implementation with a number of increasingly complex

examples. We then step back and model its essential features in Section 4 by providing

minimal syntax and semantics. In order to perform meaningful type checking of AP-F

programs in both dynamically typed (like Scheme) and statically typed languages (like

Java), we provide a type system (Section 5) give a proof of type soundness (Section 6),

that shows that type correct traversals do not induce runtime dispatch errors. We

discuss related work in Section 7 and conclude in Section 8 with a mention of future

work.

3 Traversal-Based Generic Programming

Our AP-F Scheme library provides macros and functions for defining and using struc-

tures, unions/variants, functions sets, and different forms of traversal. In this section

we thoroughly introduce its main features and syntax. It is worth noting that in this

paper we focus on immutable data structures and will not be concerned with the redef-

inition of structures and/or functions. In particular, we will consider only non-cyclic

structures and will silently allow overridden definitions.

3.1 Data Structures

Traditional traversals are based solely on structural recursion, and AP-F is not much

different. In order to traverse a structure we need a description to guide our recursion.

Our system supports basic Scheme datatypes, namely booleans, numbers, symbols,

strings, chars, and lists. While others are primitive, boolean and list types are

unions of true and false (the types of #t and #f), and empty and cons (the types

of empty and non-empty lists), respectively. Using these built-in datatypes as a base,

AP-F allows programmers to define more complex data structures and unions.

Our library’s syntax for data definitions is described below in EBNF notation.

Concrete syntax is surrounded in double quotes and Id is used to represent Scheme

identifiers. We view data structures as either concrete, describing the structure of

values, or abstract, describing named unions that provide groupings and subtypes,

allowing programmers to abstract over multiple types.

Definition ::= Concrete | Abstract

Concrete ::= (concrete Id [ FieldDef* ] )

FieldDef ::= ( Id Id )

Abstract ::= (abstract Id [ Id+ ] )

Programmers can use concrete definitions to introduce new concrete structures (simi-

lar to Scheme’s define-struct), which are considered distinct types. A concrete type
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is defined as a list of fields, each with a name and a type. Similarly abstract types are

introduced by abstract definitions, which declare subtype relationships. For example,

a typical definition of binary-trees can be described as follows:

(abstract Tree [Node Leaf])
(concrete Node [(left Tree) (right Tree )])
(concrete Leaf [(item number )])

The first line defines the union Tree, with elements Node and Leaf, and the second and

third lines define the concrete structure of Node and Leaf instances. Based on these

definitions, we refer to Node and Leaf as subtypes of Tree.

Abstract definitions are viewed as true unions in the sense that they can be defined

over otherwise unrelated types (including other abstract types). We can, for example,

define the union of all atomic datatypes:

(abstract atom [boolean symbol number string char])
(atom? #\ space) ;; -> #t
(atom? ’(5 7)) ;; -> #f

Or the union of all built-in datatypes:

(abstract built-in [atom list])
(built-in? #\ space) ;; -> #t
(built-in? ’(5 7)) ;; -> #f

Our library uses these definition forms to introduce structures, traversals, and other

useful functions. In particular, for each abstract type our library constructs the obvi-

ous predicate (e.g., atom?) and for each concrete type it defines field accessors (e.g.,

Node-left), a predicate (e.g., Node?), and a short-hand constructor (e.g., Node rather

than make-Node, which is introduced by define-struct).

Returning to our example from Section 2, equivalent BExp structures can be written

in AP-F as follows:

(abstract BExp [Lit Neg And Or])

(abstract Lit [True False])
(concrete True [ ])
(concrete False [ ])

(concrete Neg [(inner BExp )])
(concrete And [(left BExp) (right BExp )])
(concrete Or [(left BExp) (right BExp )])

The first line defines BExp as the abstract union of four types: Lit, Neg, And, and Or.

Lit is also abstract, with True and False as concrete variants. Others are defined as

concrete types with field name/type pairs, e.g., (inner BExp). We will use these struc-

tures throughout the rest of this section, and extend them when needed to demonstrate

different aspects of our library.

3.2 Traversals and Functions

In order to write traversal-based generic functions, AP-F introduces two new forms of

Scheme expressions (SExps). The syntax of our new traverse and funcset expressions

is defined below.

SExp ::= . . . | Traverse | FuncSet

Traverse ::= (traverse SExp SExp )

FuncSet ::= (funcset Func* )

Func ::= [( Id* )( Id* ) SExp ]
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A FuncSet represents a set of functions, each with argument types, argument names,

and a body expression, similar to a list of typed lambda expressions. We will refer to

a function in the set as a case and to its argument types as its signature. A traverse

expression traverses its first argument, using elements from its second argument, a

function set, to fold together recursive results.

As a first example, below we define a simple function to convert a BExp into a

string. For brevity we rename string-append to ++. Our function set, tostring, is

defined first:

(define ++ string-append)
;; tostring: a set of functions
(define tostring

(funcset [(True) (t) "true"]
[(False) (f) "false"]
[(Neg string) (n i) (++ "(not " i ")")]
[(And string string) (a l r) (++ "(and " l " " r ")")]
[(Or string string) (o l r) (++ "(or " l " " r ")")]))

Each function in the funcset handles one of our boolean BExp subtype constructors,

identified by its first argument type. Using tostring we can define a top-level function,

BExp->string, that converts the given BExp into a string using a traversal:

;; BExp->string : BExp -> string
(define (BExp->string e)

(traverse e tostring ))

;; Test/Example
(BExp->string (And (Neg (True))

(False ))) ;; -> "( and (not true) false )"

The traverse form proceeds with a depth-first walk of the given BExp instance. After

recursively traversing the fields of the current node, traverse selects a function from

the given set that best matches: (1) the type of the current node, and (2) the result types

of traversing each of the fields. The selected function is then applied to the original node

(as its first argument) and the traversal results of its fields. Our asymmetric ordering

gives preference to earlier arguments and ensures that there is a unique best matching

function signature.

For instances of True or False selecting a function is simple. Since there are no

fields, the traversal selects the first or second function in tostring based on the type

of the node itself. When applied to a Neg instance, traverse first processes its inner

field. If the result is a string, then the third function is selected and applied. Similarly

for And and Or, with both fields (left and right) being traversed before selecting a

function. Any other case, e.g., (Neg number), would result in a runtime/dispatch error.

3.3 Traversal Control

Returning to our boolean expression example, we originally used fold-exp to im-

plement eval-bexp, but our fold was not capable of a short-cutting traversal. AP-F

provides another traverse form that takes a third argument. This new argument rep-

resents a control that guides the traversal through a structure. When a control is not

given the traversal proceeds everywhere. The syntax additions are described below:

SExp ::= . . . | Control

Traverse ::= . . . | (traverse SExp SExp SExp )

Control ::= (make-bypass FieldUse+ )

FieldUse ::= ( Id Id )
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A control is created using the make-bypass form that instructs the traversal to bypass

(or skip over) the given fields, passed as (type name) pairs. We differentiate between

field definitions and uses in our grammar because of their alternate meanings: (name

type) and (type name) respectively. To make the evaluation of And and Or short-

cutting, we specify that their right field should be bypassed:

(define eval-ctrl (make-bypass (And right)
(Or right )))

The function set that will be used to implement short-cutting evaluation is shown

below:

;; evaluate: A function set
(define evaluate

(funcset [(True) (t) #t]
[(False) (f) #f]
[(Neg true) (n t) #f]
[(Neg false) (n t) #t]
;; The right side will not be traversed
[(And false BExp) (a l r) #f]
[(Or true BExp) (o l r) #t]
[(And true BExp) (a l r) (BExp-eval r)]
[(Or false BExp) (o l r) (BExp-eval r)]))

Our set, evaluate, is a bit more complex than tostring. For True and False instances,

the function selection is as before, but for the other constructors there is more than

one function to choose from.

After traversing the inner field of a Neg instance, a result of type true or false

(i.e., a #t or #f value) matches the third or fourth case, respectively. Before describing

the rest of the function set, it is important to see how the top-level function, BExp-eval,

is defined:

;; BExp-eval: BExp -> boolean
(define (BExp-eval e)

(traverse e evaluate eval-ctrl ))

We use traverse, passing the given BExp, our function set, and the previously defined

control. When the current node is an And or Or, eval-ctrl tells the traversal to skip

its right field. After the traversal of their left field is complete, a function is selected

based on the type of the current node, the result type of the left traversal, and the

type of the unchanged right field. The intent to bypass is reflected in the type of the

third argument of the last four function cases. We use BExp, instead of true or false,

which matches the original type of the field. In the first two of these cases we can

immediately return #t or #f. In the final two cases we make a recursive call to evaluate

the right side of the expression. Since the right side of the expression is only traversed

when necessary, we achieve our short-cutting evaluation strategy.

3.4 Traversal Contexts

There are times when purely compositional functions do not suffice. In cases where

information about the ancestors of a sub-structure is important to a function’s result,

programmers typically add an argument to the function definition, and pass informa-

tion to recursive invocations, updating the argument when appropriate. Our traversal

library supports this style of function using a notion of traversal contexts. The original

two argument traversal form is extended by adding an additional function set and a root
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context. The new traverse syntax is shown below including syntax for representing

fields as types.

Traverse ::= . . . | (traverse SExp SExp SExp SExp )

FieldType ::= any-field | Id .Id

The first function set passed to traverse is still responsible for combining recursive

traversal results, but the second is responsible for updating the context at interesting

points during traversal. The context is available to each function case as its last argu-

ment. However, functions can ignore the context (or other later arguments) simply by

using a shorter signature. Functions responsible for context updating can accept up to

three arguments that represent the current node of the structure, the next field to be

traversed, and the parent’s (previous) context. The field to be traversed is encoded as

a FieldType, shown in the grammar as either the special identifier any-field, or of

the form type.field, e.g., And.left. The field type represents the pending traversal

of the named field of the given type. AP-F defines corresponding field-types for each

field of a concrete definition, making them subtypes of any-field.

Getting back to our example, we extend BExp structures with variable expressions

and implement a function that transforms a BExp into negation normal form. The

updated structure definitions are shown below; for brevity we elide our unchanged

structures.

;; Add Var to BExp definition
(abstract BExp [Lit Neg And Or Var])
(concrete Var [(id symbol )])

The new Var structure contains a symbol representing an identifier, and is added as a

variant to our abstract type BExp.

Our strategy for implementing this transformation is to keep track of the number

of nested outer Neg expressions during the traversal. We can then change the signs

of variables and literals accordingly, following the usual rules with And and Or under

negation. The structure definitions and a function set for tracking nested negations as

a context are shown below.

(abstract Sign [Even Odd])
(concrete Even [])
(concrete Odd [])

(define sign-updt
(funcset [(BExp any-field Sign) (e f s) s]

[(Neg Neg.inner Even) (n f s) (Odd)]
[(Neg Neg.inner Odd) (n f s) (Even )]))

We represent our context by a Sign: either positive, Even, or negative, Odd. We also

define a function set, sign-updt, for managing the Sign context with three cases. The

first is a default case: for any BExp, before traversing any-field with a context of Sign

we pass the sign unchanged to sub-expressions. The other cases flip the current Sign

from Even to Odd (or vice versa) when traversal enters the inner field of a Neg. The

traversal takes care of propagating and passing the updated context when functions

are applied.

With our traversal context sorted out, we can write a function set, neg-normal,

that recursively normalizes a BExp. The code is shown below.

(define neg-normal
(funcset [(Lit Even) (l s) l]

[(True Odd) (t o) (False)]
[(False Odd) (f o) (True)]
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[(Neg BExp) (n e) e]
[(Var symbol Even) (v id s) v]
[(Var symbol Odd) (v id s) (Neg v)]
[(And BExp BExp Even) (a l r s) (And l r)]
[(And BExp BExp Odd) (a l r s) (Or l r)]
[(Or BExp BExp Even) (o l r s) (Or l r)]
[(Or BExp BExp Odd) (o l r s) (And l r)]))

The function set is best explained case by case. The first matches Lit instances within

an Even context, simply returning the original literal. The next two cases match True

and False instances within an Odd context, returning their negation. After normaliza-

tion, only variables are negated, so the case for Neg accepts just two arguments. The

function ignores its context and returns the recursively normalized inner BExp.

Cases for Var return the original variable within an Even context, and its negation

within an Odd context. The final four function cases rebuild or convert And/Or instances

under Even or Odd contexts respectively. The cases follow the De Morgan conversion

rules for conjunction/disjunction, e.g., ¬(a∧b) ≡ (¬a∨¬b), with the recursive traversal

having already propagated negations.

A traversal expression completes the definition of our function, BExp-normalize,

shown below.

;; BExp-normalize : BExp -> BExp
(define (BExp-normalize e)

(traverse e neg-normal sign-updt (Even )))

We pass four arguments to traverse: the given BExp, our normalizing function set, the

sign-updt functions, and a root context. Since we begin with no outer Neg, our initial

context is Even.

3.5 Extensible Functions

Separating function sets from traversal also allows us to independently extend/override

function sets. AP-F supports such extension using a merge-func form. The additional

syntax of FuncSet is shown below.

FuncSet ::= . . . | (merge-func SExp SExp )

Given two function sets, merge-func intuitively extends the first by adding all function

cases from the second. Any duplicate signatures will be overridden, giving preference

to the second function set.

A typical use of traversals where function extension is convenient is when per-

forming functional updates over a particular structure, similar to map over lists. The

foundation of such a transformation, named copy, is shown below.

;; Rebuild/Copy BExp structures
(define copy

(funcset [(True) (e) (True)]
[(False) (e) (False )]
[(Neg BExp) (e in) (Neg in)]
[(And BExp BExp) (e l r) (And l r)]
[(Or BExp BExp) (e l r) (Or l r)]
[(Var symbol) (e s) (Var s)]))

Each function case in copy rebuilds our BExp structures during traversal by calling the

individual constructors on recursive results.

As an example, we can extend copy with specialized functions that will simplify

constant (non-variable) expressions to True or False literals and eliminate nested nega-

tions. Our additional function set, simplify, is shown below.
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(define simplify
(funcset [(Neg True) (n t) (False)]

[(Neg False) (n t) (True)]
[(Neg Neg) (n e) (Neg-inner e)]
[(And False) (a l) l]
[(And BExp False) (a l r) r]
[(And True BExp) (a l r) r]
[(And BExp True) (a l r) l]
[(Or True) (o l) l]
[(Or BExp True) (o l r) r]
[(Or False BExp) (o l r) r]
[(Or BExp False) (o l r) l]))

Our functions handle specific cases where the current BExp can be simplified based on

recursive results. A Neg instance can be simplified when its recursive result is a Lit

by returning its negation, or when its recursive result is a Neg by returning the inner

BExp. Instances of And and Or have a number of cases that can be simplified, when

at least one of the recursive results is a Lit. The first case uses a shorter signature,

ignoring the recursive result from its right field, since it is not needed. In each case,

the original BExp can be replaced by the simplified results from its left or right field.

We can create the top-level function, BExp-simplify, as shown below, using the

extended function set including copy and simplify.

;; BExp-simplify : BExp -> BExp
(define (BExp-simplify e)

(traverse e (merge-func copy simplify )))

For cases where simplify does not match, functions from copy are used to rebuild

the structure. Because the function selected during traversal is unique, the applica-

tion of functions is well ordered and depth-first, so confluence and critical pairs are

not a problem. The traversal gives us the added benefit of implicit recursion, so our

transformation applies to the entire data structure. This kind of transformation is so

common that AP-F provides a function set, named TP for type-preserving [24,21], that

implements the copy functionality for all defined structures.

3.6 Mutual Recursion

Up till now our data structures have only been self recursive, where recursive oc-

currences within BExp subtypes are only of type BExp. Mutually recursive types can

sometimes make processing instances more complicated, particularly in object-oriented

languages where visitors take the place of functions [20,9]. However, AP-F handles mu-

tual recursion just like self recursion, with the traversal selecting matching functions

from the given set.

As an example, we can extend our BExp structures to represent variable binding.

We add a new BExp variant, Let, that contains a Bind and a body BExp. A binding is

represented with a symbol and a BExp. The structures are shown below.

;; Add Let to BExp definition
(abstract BExp [Lit Neg And Or Var Let])

(concrete Let [(bind Bind) (body BExp )])
(concrete Bind [(id symbol) (e BExp )])

The types BExp and Bind are considered mutually recursive, since a Let is a BExp and

has a Bind, which has a BExp. We can extend our previous example, BExp-simplify, to

handle our new structures by extending our function sets and redefining the top-level

function as follows:
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;; Extend copy for Let and Bind
(define copy-w/let

(merge-func copy (funcset
[(Let Bind BExp) (l b e) (Let b e)]
[(Bind symbol BExp) (b id e) (Bind id e)])))

;; Extend simplify for Let and Bind
(define simplify-w/let

(merge-func simplify (funcset [(Let Bind Lit) (l b e) e])))

;; BExp-simplify : BExp -> BExp
(define (BExp-simplify e)

(traverse e (merge-func copy-w/let simplify-w/let)))

Our new function sets copy-w/let and simplify-w/let add support for the new

Let and Bind structures. We add construction cases for each to copy, and simplify

a Let with a Lit body, since the binding is unnecessary in this pure an total set-

ting. BExp-simplify is redefined by merging our new function sets. Because each case

is handled separately, the presence of mutual recursion does not affect our traversal:

functions are still applied as usual.

3.7 Performance

In order to gauge the performance of our initial AP-F implementation we performed

several experiments using PLT/DrScheme version 4.1.5 on a Dell Inspiron laptop with a

1.5 Ghz Pentium M processor running Linux. AP-F is provided as a module, which ex-

ports syntax for abstract and concrete definitions and other expressions like funcset

and traverse. Our tests were run in the DrScheme language “Pretty Big”.2

Figure 1 contains the results of comparing various implementations of deep-sum

over lists, and each of the BExp functions presented in this section. The first row is

hand-written Scheme, the next is a fold-based implementation, followed by Generic

Haskell (for DeepSum), and finally AP-F.

DeepSum ToString Eval Norm Simp Simp/Let

Hand 1.0 1.0 1.0 1.0 1.0 1.0
Fold 1.2 1.0 6.0 — 1.1 0.9

GenHaskell 7.0 — — — — —
AP-F 126.0 13.2 148.0 232.0 195.8 146.9

Fig. 1 Performance of dep-sum and BExp functions.

The number shown for each implementation is the time taken on a large data structure

instance divided by the time taken by a hand-written version of the same function.

Missing numbers mark where an approach is not applicable. For DeepSum we use the

same list of numbers in both Scheme and Haskell. For the others we generated a BExp

of depth 10. For the final case (Simp/Let) we included Let and Bind structures.

As with the hand-written code, the performance of fold functions is heavily depen-

dent on the order of the structure predicate tests, but the implementations otherwise

2 The performance of hand-written and fold-based functions was inexplicably poor when
using DrScheme’s “Module” language.
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perform very well. Generic Haskell uses a compilation step to produce type-class def-

initions and specific instances for deeply nested lists. The slowdown is likely due to

dictionary passing and lazy evaluation.

The slowdown of AP-F is due to our use of PLT Scheme’s structural reflection,

our own ad-hoc subtype testing, and function set dispatch. The slowdown is mostly

proportional to the number of function cases, though the length and order of signatures

allows some functions to be eliminated more quickly during selection. ToString is the

exception, since the real work of appending strings is almost identical for all three

implementations. Overall our performance is adequate for a prototype implementation,

but improving the execution times of AP-F programs is a priority for future work. We

have experimented with different traversal and dispatch strategies within our Java and

C# implementations [7], but have yet to apply these ideas to Scheme.

3.8 Errors and Assumptions

Having seen several examples of our AP-F library and functions, it is worth going over

the assumptions that AP-F makes and the different errors that can occur when using

and writing traversal-based functions. As with any Scheme-based library, programmers

can raise a traditional error during the execution of a function. AP-F does not attempt

to interact with Scheme exception mechanisms, so programmer-raised errors behave as

expected.

AP-F assumes a bit more about the structures that will be traversed. While struc-

tures defined with abstract and concrete do not support mutation, most Scheme im-

plementations allow mutation of cons lists and hand-defined structures, which allows

programmers to construct cyclic instances. AP-F assumes that traversed structures

are acyclic, but traversal-based functions can be written for cyclic structures by using

control to avoid infinite recursion.

All the function sets presented thus far have been type-correct and complete with

respect to the structures being traversed. However, when this is not the case AP-F raises

an error during function selection. A simple example is shown below. We traverse a

list, but only handle the empty case:

(traverse ’(1 2) (funcset [(empty) (e) 0]))

Running this expression results in the following AP-F runtime error:

No applicable function found for arguments:
(cons number number)

The error states that a matching function for the signature (cons number number) was

not found in the given function set. In this case the problem is easy to fix by adding a

new case, but often we want to be certain that a traversal expression will never raise

such an error. Being able to statically eliminate such dispatch errors from traversals is

the main topic of the rest of the paper. While externally verifying Scheme programs is

a partial goal, the model and soundness of AP-F are directly applicable to our other

implementations in statically typed languages, namely Java and C#.

4 A Model of AP-F

Now that we have discussed the features of our AP-F implementation, in this section

we formally describe syntax and semantics of a simplified model of the key aspects of
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our library. The model captures AP-F’s structure definitions, adaptive traversal, and

type-based dispatch, allowing us to define a type system that verifies that traversals

are free from dispatch errors.

4.1 Syntax

We begin by giving a concise description of our minimal syntax, which embodies most

of our implementation; it is described in Figure 2. The only notable features missing

are base types (like number) and field names.

x ::= variable names

C ::= concrete type names

A ::= abstract type names

T ::= C | A
P ::= D1 . . . Dn e

D ::= (concrete C [T1 . . . Tn])
| (abstract A [T0 . . . Tn])

e ::= x | (C e1 . . . en) | (traverse e0 F )

F ::= (funcset f1 . . . fn)

f ::= [(T0 . . . Tn) (x0 . . . xn) e ]

Fig. 2 AP-F Model Language Syntax

A simplified AP-F program, P , is a sequence of data structure definitions (abstract

and concrete types) followed by an expression. Concrete type definitions only mention

the types of their fields, as names will not be important. Expressions, e, are either

variable references, value constructions, or traversals. We model the simplest form of

traversal expressions from our library, representing the traversal of a structure using

a given function set, F . Functions and function sets are the same as in our library.

A function set is a sequence of functions, each of which is a sequence of type names,

followed by parameter names and a body expression.

Based on the definitions in a program, we define a subtype relation, ≤, in Figure 3,

as the reflexive, transitive closure of the immediate subtype relationship from abstract

definitions.

[S-Refl]

T ≤ T

[S-Def]
(abstract A [T0 . . . Tn ]) ∈ P

Ti ≤ A

[S-Trans]
T ≤ T ′′ T ′′ ≤ T ′

T ≤ T ′

Fig. 3 Subtyping Rules

Our model does not include base types, but our basic boolean expression structures

(from Sections 2 and 3) can still be defined. The original BExp definitions without field

names are shown in Figure 4. To complete the program definition we construct a simple

BExp in the program’s body.

4.2 Well-Formedness Rules

In order to avoid purely syntactic problems in our semantics, we restrict syntactically

valid programs with a few well-formedness rules. They check the sanity of a program’s

definitions and allow us to focus on the key issues of our semantics.
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;; ASTs for boolean expressions
(abstract BExp [Lit Neg And Or])
(abstract Lit [True False])
(concrete True [])
(concrete False [])
(concrete Neg [BExp])
(concrete And [BExp BExp])
(concrete Or [BExp BExp])

;; Simple program body
(Or (And (True) (False)) (Neg (False )))

Fig. 4 Model Example: Boolean expression structures

TypesOnce(P ): Each type must only be defined once.

CompleteTypes(P ): Each type used in the right-hand side of a definition

must itself be defined.

NoSelfSuper(P ): Each abstract type must not occur in the right-hand side

of its own definition.

SingleSuper(P ): Each type should occur in the right-hand side of at most

one abstract definition.

The first two rules check for the existence and completeness of a program’s definitions.

TypesOnce ensures that each type is defined only once, and CompleteTypes makes

sure each type use corresponds to a defined type. The rules do not restrict recursion

in the data structures or the shapes that can be defined, since they only require that

a definition exists and is unique.

SingleSuper enforces a simplifying assumption on our type hierarchies, restricting

types to a form of single inheritance. Together with NoSelfSuper the rules ensure a

linear supertype relation, which gives us a total ordering on function signatures: each

abstract type can have multiple subtypes, but only one supertype. Requiring a total

order on function signatures simplifies our dispatch semantics by avoiding the usual

diamond problem when multiple inheritance and multiple dispatch interact [29,8].

4.3 Semantics

We use a (small-step) reduction semantics to model AP-F traversals. We begin with a

description of values, v, runtime expressions, e, and evaluation contexts, E, described

in Figure 5.

v ::= (C v1 . . . vn)

e ::= · · ·
| (dispatch F v0 e1 . . . en )
| (apply f v0 v1 . . . vn )

E ::= [ ]
| (C v . . . E e . . . )
| (traverse E F )
| (dispatch F v0 v . . . E e . . . )

Fig. 5 Values, runtime expressions, and evaluation contexts

Values are simply constructions in which all sub-expressions are also values. Run-

time expressions (dispatch and apply) are not in our surface syntax, but are used to
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model structural recursion and function application respectively. The use of apply is

mainly cosmetic, in order to avoid over complicating rules involving dispatch. Eval-

uation contexts account for the reduction strategy, which is deterministic and left-

most/inner-most.

Figure 6 contains definitions of our reflective meta-functions and substitution. The

function types is used to return the concrete types of a list of values, others functions

are simply convenient accessors for portions of abstract syntax.

types((C0 . . . ) . . . (Cn . . . )) = (C0 . . . Cn)

argtypes([(T0 . . . Tn) (x0 . . . xn) e ]) = (T0 . . . Tn)

functions((funcset f1 . . . fn)) = (f1 . . . fn)

x[v/x] = v
x′[v/x] = x′ if x′ 6= x
(C e1 . . . en )[v/x] = (C e1[v/x] . . . en[v/x] )
(traverse e0 F )[v/x] = (traverse e0[v/x] F [v/x] )
(dispatch F v0 e1 . . . en )[v/x] = (dispatch F [v/x] v0 e1[v/x] . . . en[v/x] )
(apply f v0 v1 . . . vn )[v/x] = (apply f [v/x] v0 v1 . . . vn )
(funcset f1 . . . fn)[v/x] = (funcset f1[v/x] . . . fn[v/x])
[(T0 . . . Tn) (x0 . . . xn) e ][v/x] = [(T0 . . . Tn) (x0 . . . xn) e[v/x] ] if x 6∈ xi

[(T0 . . . Tn) (x0 . . . xn) e ][v/x] = [(T0 . . . Tn) (x0 . . . xn) e ] if x ∈ xi

Fig. 6 Reflection and Substitution Definitions

The substitution of a value for a variable within an expression, denoted e[v/x], is de-

fined over all terms, including function sets, F . Substitution within function definitions

only occurs when the variable is free in the function body. Since only values can be

substituted, and functions are not first-class, α-conversion or renaming is not necessary

to avoid capture.

Figure 7 completes our meta-functions with signature comparison and type-based

function selection implemented by choose. The helper function chooseOne selects the

most specific applicable function in a set, given the actual argument types. possibleFs

filters the function set, returning only the functions that are possible to apply to the

given types. possible returns true if all arguments are elementwise related, since a

function may be applied to subtypes of its argument types or when actual arguments are

refined from supertypes. At runtime however, the actual argument types will always be

concrete and without subtypes, so the second check, T0 ≤ T ′0, is irrelevant. The check

becomes important when we use possibleFs with approximate types, as is necessary

during type checking. chooseOne uses best to select the most specific function in the

filtered set, using better to compare function signatures. For simplicity we compare only

functions with the same number of arguments, though our library implementation is

more flexible.

Finally, Figure 8 gives a relation, → , which completes our small-step semantics

with a notion of reduction, i.e., with axioms or again, with contraction rules. The

left-hand side of each unconditional rule represents a potential reducible expression, or

potential redex. If a potential redex can be contracted then it is considered an actual

redex, i.e., no longer potential.

A traverse expression with a constructed value as its first argument can be con-

tracted (R-Trav) producing a dispatch expression by including the function set, the

original value, and wrapping each field in a traverse expression. A dispatch expres-
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choose(F, (C0 . . . Cn)) = chooseOne( possibleFs(F, (C0 . . . Cn)), (C0 . . . Cn))

chooseOne((), (T0 . . . Tm)) = error
chooseOne((f0 f1 . . . fn), (T0 . . . Tm)) = best(f0, (f1 . . . fn), (T0 . . . Tm))

best(f, (), (T0 . . . Tm)) = f
best(f, (f0 f1 . . . fn), (T0 . . . Tm)) = if better(argtypes(f0), argtypes(f))

then best(f0, (f1 . . . fn), (T0 . . . Tm))
else best(f, (f1 . . . fn), (T0 . . . Tm))

better((), ()) = false
better((T0 T1 . . . Tn), (T ′0 T ′1 . . . T

′
n)) = ((T0 6≡ T ′0 ∧ T0 ≤ T ′0) ∨

(T0 ≡ T ′0 ∧ better((T1 . . . Tn), (T ′1 . . . T
′
n))))

possibleFs(F, (T0 . . . Tn)) = filter(λ f. possible(argtypes(f), (T0 . . . Tn)), functions(F ))

possible((), ()) = true
possible((), (T ′0 . . . T

′
m)) = false

possible((T0 . . . Tn), ()) = false
possible((T0 T1 . . . Tn), (T ′0 T

′
1 . . . T

′
m)) = (T ′0 ≤ T0 ∨ T0 ≤ T ′0) ∧

possible((T1 . . . Tn), (T ′1 . . . T
′
m))

Fig. 7 Function Selection Meta-functions

[R-Trav]
(traverse (C v1 . . . vn) F )
→ (dispatch F (C v1 . . . vn) (traverse v1 F ) . . . (traverse vn F ))

[R-Dispatch]

(dispatchF v0 v1 . . . vn) → (apply f v0 v1 . . . vn ) if f 6= error

where f = choose(F, types( v0 v1 . . . vn))

[R-Apply]

(apply [(T0 . . . Tn) (x0 . . . xn) e ] v0 v1 . . . vn ) → e[vi/xi]

Fig. 8 Reduction Rules

sion containing only values can be contracted (R-Dispatch), when the result of choose

is not error, to an apply expression. A dispatch expression that violates this side

condition is considered stuck, i.e., a potential but not actual redex, representing a run-

time error. Our last rule (R-Apply) substitutes the values for the formal parameters

of the selected function.

4.4 From Reduction to Evaluation

Following Danvy’s lecture notes at AFP’08 [10], a one-step reduction function can be

defined using our reduction relation that decomposes a non-value expression into an

evaluation context, E, and a potential redex. If the potential redex can be contracted,

then the contractum can be recomposed with (plugged into) the evaluation context

resulting in a reduced program. Figure 9 gives sketches of the functions decompose,

recompose, and reduce that implement the one-step reduction function of our semantics.

We define reduce as decomposition followed by contraction and recomposition when

one of our reduction rules applies. The function decompose traverses an expression while

accumulating an evaluation context. Expression cases that match evaluation contexts

are handled explicitly by recurring on the inner expression. Other expressions, e.g.,
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decompose((C v . . . e0 e . . . ), E) = decompose(e0, (C v . . . E e . . . ))
decompose((traverse e0 F ), E) = decompose(e0, (traverse E F ))

decompose((dispatch F v . . . e0 e . . . ), E) = decompose(e0, (dispatch F v . . . E e . . . ))
decompose(e, E) = 〈e, E〉

recompose(e, [ ]) = e
recompose(e0, (C v . . . E e . . . )) = recompose((C v . . . e0 e . . . ), E)
recompose(e0, (traverse E F )) = recompose((traverse e0 F ), E)

recompose(e0, (dispatch F v . . . E e . . . )) = recompose((dispatch F v . . . e0 e . . . ), E)

reduce(v) = v
reduce(e) = let 〈e′, E〉 = decompose(e, [ ])

in recompose(e′′, E)
if e′ → e′′

Fig. 9 One-step Reduction Function

apply, match the final case returning a pair of the expression and context. recompose

does the reverse, building an expression until the empty context is reached.

Our one-step reduction function can be used to iteratively define an evaluation

function, as shown in Figure 10. The function evaluate implements the iteration of the

evaluate(v) = v
evaluate(e) = evaluate( reduce(e) )

if e is not stuck

Fig. 10 Reduction-based Evaluation Function

one-step reduction function from Figure 9. This definition can be ‘refocused’ into an

abstract machine and further transformed resulting in a more typical big-step evalua-

tion function [10,11], but the version of Figure 10 is sufficient for our purposes here.

For efficiency our actual implementation is, of course, based on a big-step evaluation

function.

4.5 Example

With our example definitions (Figure 4) we can add a simple traversal and function set

that implements BExp evaluation, shown in Figure 11. Without base types, we traverse

the expression producing a Lit, representing a result of True or False. Similar to

the Scheme example (Section 3), multiple dispatch is used to match the interesting

cases during traversal. For Neg this means matching True or False and returning its

negation; for And or Or this means capturing the all-true and all-false cases respectively.

The other two cases for And and Or are handled by more general signatures using Lit.

5 A Type System for AP-F

Programs written using our AP-F library can raise many different kinds of unrelated

errors. Our model has been specifically created to eliminate all but those relating to
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;; ... Definitions from Figure 4 ...

(traverse (Or (And (True) (False))
(Neg (False )))

(funcset [(Lit) (l) l]
[(Neg True) (n t) (False )]
[(Neg False) (n f) (True)]
[(And True True) (a l r) r]
[(And Lit Lit) (a l r) (False)]
[(Or False False) (o l r) r]
[(Or Lit Lit) (o l r) (True )]))

Fig. 11 Model Example: Boolean expression evaluation

traversals, function sets, and dispatch. In order to rule out runtime errors and predict

the class of values a program may return, we impose a type system on our model.

Though our type system rules out standard errors like unbound variable uses, we are

mostly interested in eliminating errors resulting from function selection (choose and

chooseOne in Figure 7).

For any type-correct program we obtain a typing derivation that constrains the

return values of traversals and function sets based on the shape of datatypes. Our

judgment (well-typed) is separated into three mutually recursive relations; one for each

of expressions, functions, and traversals. We use two type environments: Γ for vari-

ables, and X to capture the return types of recursive datatype traversals. We represent

environments as a list of pairs, with syntax shown in Figure 12.

Γ ::= ∅ | Γ, x :T

X ::= ∅ | X , T :T ′

Fig. 12 Variable and Traversal Environments

In certain typing rules we will denote the set of the left-hand sides of pairs from Γ

(also X ) by dom Γ . New pairs will be appended to environments, and lookup, denoted

Γ (x), will occur from right to left, selecting the latest binding if duplicate names exist.

5.1 Functions

We begin with the simplest of our typing rules. Since functions are not first-class, type-

checking a function depends only on the type of its body expression when parameters

are bound to the types given in its signature. Our single rule for `F is shown in

Figure 13.

[T-Func]
(Γ, x0 :T0, . . . , xn :Tn) `e e0 : T

Γ `F [(T0 . . . Tn) (x0 . . . xn) e0 ] : T

Fig. 13 Function Typing Rule
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5.2 Expressions

Figure 14 shows our typing rules for expressions (`e). Variables must be bound to a

[T-Var]
x ∈ dom Γ
Γ `e x : Γ (x)

[T-New]
(concrete C [T1 . . . Tn]) ∈ P

for i ∈ 1..n Γ `e ei : T ′i T ′i ≤ Ti

Γ `e (C e1 . . . en) : C

[T-Trav]
Γ `e e0 : T0 Γ ; ∅ `T 〈T0, F 〉 : T

Γ `e (traverse e0 F ) : T

[T-Dispatch]
∅ `e v0 : C

for i ∈ 1..n Γ `e ei : T ′i
for f ∈ possibleFs(F, (C T ′1 . . . T

′
n)) Γ `F f : Tf Tf ≤ T

covers(F, (C T ′1 . . . T
′
n))

Γ `e (dispatch F v0 e1 . . . en ) : T

[T-Apply]
f = [(T0 . . . Tn) (x0 . . . xn) e ] Γ `F f : T

for i ∈ 0..n ∅ `e vi : T ′i T ′i ≤ Ti

Γ `e (apply f v0 v1 . . . vn) : T

Fig. 14 Expression Typing Rules

type in the environment (T-Var) and value construction requires subtypes (T-New)

for each expression (i.e., field) of a concrete structure. Traversal expressions (T-Trav)

delegate to a more specialized judgment, `T (Section 5.3), passing the variable en-

vironment and an empty traversal environment, X = ∅. For dispatch expressions

(T-Dispatch) we use possibleFs to be sure all possible functions unify to a common

supertype. Function application (T-Apply) requires subtypes of a function’s formal

parameter types.

One subtle (but key) aspect of the T-Dispatch rule is the use of the meta-function,

covers. Its properties will be discussed in Section 5.4, but the main idea of covers is to

verify that a function set, F , contains a possible function for each sequence of concrete

types that are subtypes of the given sequence. In this case, it means that F has at least

one function that can be applied to values of the given types. The use of covers here

corresponds to our typing rules for concrete traversals, which is discussed in the next

section.

5.3 Traversals

Traversal expressions are typed using a specialized judgment, `T , that takes data

structure definitions and the function set into account. The two rules, one for each of

concrete and abstract types, are shown in Figure 15.

We read Γ ;X `T 〈T, F 〉 : T ′ as follows:

In type environment Γ with traversal types X the traversal of a value of type T

with function set F returns a value of type T ′.
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[T-ATrav]
(abstract A [T0 . . . Tn ]) ∈ P

for i ∈ 1..n Ti ∈ dom X ⇒ T ′i = X (Ti)

for i ∈ 1..n Ti 6∈ dom X ⇒ Γ ;X , A :T `T 〈Ti, F 〉 : T ′i
for i ∈ 1..n T ′i ≤ T
Γ ;X `T 〈A,F 〉 : T

[T-CTrav]
(concrete C [T1 . . . Tn]) ∈ P

for i ∈ 1..n Ti ∈ dom X ⇒ T ′i = X (Ti)

for i ∈ 1..n Ti 6∈ dom X ⇒ Γ ;X , C :T `T 〈Ti, F 〉 : T ′i
for f ∈ possibleFs(F, (C T ′1 . . . T

′
n)) Γ `F f : Tf Tf ≤ T

covers(F, (C T ′1 . . . T
′
n))

Γ ;X `T 〈C,F 〉 : T

Fig. 15 Traversal Typing Rules

Γ is the standard variable type environment. X is an environment of traversal return

types for (possibly recursive) types that may depend on the traversal return of T . The

function set F is constant for a given expression, and is passed throughout a derivation.

The typing of the traversal of an abstract type proceeds by typing each of the

elements Ti separately. If a binding for Ti exists in X (Ti ∈ dom X ) then the result,

T ′i , must be the same as the bound result type, which we denote X (Ti). Otherwise,

we calculate the result type with A : T added to X using the same function set, F .

The final line of the premise constrains the result type for the union to be a common

supertype of the traversal the individual elements.

The rule for concrete types is more involved due to function selection. For field

types bound in X the result, T ′i , must be the same as the bound result type. For

unbound field types we calculate the result type of a traversal with C : T added to

X using the same function set F . Using the return types, T ′i , of field traversals we

can approximate the possible functions from F that can be called after traversing an

instance of C. The final return type, T , is the common supertype of the possibleFs

given the field return types. On the last line of the premise the meta-function covers(·)
is used to determine whether or not the function set is complete with respect to all

possible value sequences corresponding to subtypes of the given types. The attributes of

covers are important to the type soundness of our model and deserve special discussion.

5.4 Function Set Coverage

Type checking AP-F programs infers the return types of traversal expressions, but

being sure that function selection always succeeds requires an analysis of function set

signatures. In particular, our asymmetric multiple dispatch implemented by choose

means that after traversing a concrete value, any of the possible functions may be

called based on the types of sub-traversal return values. In general, we cannot know

(until runtime) which concrete subtypes will be returned, so we require that all cases

be handled by the function set.

In order to guarantee successful dispatch, covers(·) must check all concrete subtypes

of the possible argument types and ensure that a possible function exists. Because our
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type hierarchies and function signatures can be arranged into trees (or at least directed

acyclic graphs), we call the problem leaf-covering. The solution involves the Cartesian

product of the sequence of type hierarchies [5], but the actual implementation of covers

is not important to our soundness, only that each concrete sequence of subtypes has a

possible function:

covers(F, (T0 T1 . . . Tn)) ⇔
∀C0, C1, . . . , Cn with Ci ≤ Ti . possibleFs(F, (C0 C1 . . . Cn)) 6= ()

As a consequence, covers is preserved by subtyping. If ∀i ∈ 1..n . T ′i ≤ Ti, then:

covers(F, (T0 T1 . . . Tn)) ⇒ covers(F, (T ′0 T
′
1 . . . T

′
n))

Because runtime values are made only of concrete types, e.g., (Neg (True)), then

function selection cannot fail as long as sub-traversals (at runtime) return subtypes of

their expected types. The implementation of covers is beyond the scope of this paper,

though we have experimented with several different approaches. The abstract problem

of leaf-covering is coNP-complete [5], however, the number of function arguments (i.e.,

structure fields) tend to be small, and individual type hierarchies are usually tractable.

In our Java implementation, called DemeterF, the largest number of arguments is

13. With approximately 90 classes in all, the deepest subtype chain is 4 classes, i.e.,

C ≤ A1 ≤ A2 ≤ A3.

5.5 Typing Example

Returning to our model example in Figure 11, we can assign a type to the body of

our program using the T-Trav rule. The first argument to traverse is given the type

Or by successive applications of T-New. Since True and False have no fields, their

constructions become axioms for the derivation. The second part of T-Trav requires

the use of our traversal judgment:

∅; ∅ `T 〈 Or, F 〉 : T

From the definitions in Figure 4 Or is a concrete type, so a derivation requires the

use of T-CTrav:

(concrete Or [ BExp BExp ]) ∈ P ∅; (∅, Or :Tor) `T 〈 BExp, F 〉 : Tbexp

for f ∈ possibleFs(F, (Or Tbexp Tbexp)) ∅ `F f : Tf Tf ≤ Tor
covers(F, (Or Tbexp Tbexp))

∅; ∅ `T 〈Or, F 〉 : Tor

The traversal type derivation recursively continues to the abstract types BExp and Lit,

eventually coming to the applications of T-CTrav for True and False that do not

require recursion. For these types there is only one possible function, which simplifies

the rule further. An instance for the type True is shown below.

(concrete True [ ]) ∈ P
∅ `F [(Lit) (l) l] : Lit Lit ≤ Ttrue

covers(F, (True))

∅;X `T 〈True, F 〉 : Ttrue
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Assigning a type to the single function and checking function set coverage is then

trivial. The constraints build up as we come back through the abstract definitions of

Lit and BExp. Ignoring other variants of BExp for simplicity, we have the constraints:

Lit ≤ Ttrue Lit ≤ Tfalse Ttrue ≤ Tlit Tfalse ≤ Tlit Tlit ≤ Tbexp

We can make these true by setting each of the return types to Lit. Other BExp variants

(Neg, And, and Or) are recursive, which causes equality constraints to be generated

instead.

6 Soundness

In order to prove our AP-F model sound, we construct a Wright-Felleisen [37] style

proof of type-soundness, by way of progress and preservation. Our proof ultimately

shows that the reduction of a well-typed AP-F program will not get stuck, and will

result in a value of the expected type. An expression e is considered stuck if there does

not exist an expression e′ such that e → e′. In particular, an expression is stuck if it

is of the form:
E[ (dispatch F v0 v1 . . . vn) ]

and choose (Figure 7) results in an error:

choose(F, types( v0 v1 . . . vn)) = error

We note that choose returns error precisely when:

possibleFs(F, types( v0 v1 . . . vn)) = ()

Meaning that F does not contain a function applicable to the given arguments.

Our proof begins with a few AP-F specific lemmas (function and traversal special-

ization) then moves on to more standard soundness lemmas such as substitution and

well-typed contexts. In order to prove that reduction preserves the type of a program,

it is necessary to start at the dispatch level and work up to expressions. We begin

by proving that possibleFs applied to a sequence of subtypes returns a subset of the

functions returned by possibleFs applied to supertypes.

Lemma 1 (Function Specialization) As a sequence of argument types is

specialized through subtyping, the set of possible functions does not increase.

If ∀i ∈ 1..n T ′i ≤ Ti then

possibleFs(F, (T ′1 . . . T
′
n)) ⊆ possibleFs(F, (T1 . . . Tn))

Proof : We argue using induction on the type sequences by case analysis of the defini-

tion of possible (Figure 7), used to filter the functions of F . Consider a single function

f ∈ F with formal argument types, (T f
0 . . . T f

m). Our lemma depends on a single

implication that must hold of possible (given our subtype sequence assumption):

possible((T f
0 . . . T f

m), (T ′0 . . . T
′
n)) ⇒ possible((T f

0 . . . T f
m), (T0 . . . Tn))

The three base cases of possible (Figure 7) are simple, so we consider them together. If

the first case applies, then our implication follows trivially, while the two false cases

are not relevant, since they may only decrease the set of selected functions. Proof of

the lemma then hinges on showing our implication holds for the inductive case of the
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definition, particularly the first component of the conjunction. In our case this reduces

to:

(T f
0 ≤ T

′
0) ∨ (T ′0 ≤ T

f
0 ) ⇒ (T f

0 ≤ T0) ∨ (T0 ≤ T f
0 )

which follows from transitivity (and reflexivity) of the program’s subtype relation, ≤,

as both disjunction components of the implication are immediate:

(T f
0 ≤ T

′
0) ⇒ (T f

0 ≤ T0) and (T ′0 ≤ T
f
0 ) ⇒ (T0 ≤ T f

0 )

ut
In order to complete the dispatch portion of preservation we must also show that

well-typed traversal expressions preserve types, the subject of lemma 2.

Lemma 2 (Traversal Specialization, or Subtype Traversals Return

Subtypes) As the type of an expression that is the argument of a traversal is refined,

the return type of the traversal expression itself remains a subtype of its original type.

For any well-typed traversal of a type T0 with Γ ; ∅ `T 〈T0, F 〉 : T . The

traversal of a type T ′0 ≤ T0 satisfies Γ ; ∅ `T 〈T ′0, F 〉 : T ′ for some T ′ ≤ T

Proof : By induction on the traversal type derivation of Γ ; ∅ `T 〈T0, F 〉 : T , we proceed

on the last rule of the derivation, which must be one of T-CTrav or T-ATrav, from

Figure 15.

If T-ATrav applies ((abstract T0 [T1 . . . Tn ]) ∈ P ) then the rule requires that

a traversal of an immediate subtype of T0 return a subtype of the final result type,

which applies inductively to all transitive subtypes of T0, including T ′0.

If T-CTrav applies ((concrete T0 [T1 . . . Tn ]) ∈ P ) then T0 can only have

itself as a subtype (T0 ≡ T ′0). Regardless of which function in F is actually applied at

runtime, we know by the T-CTrav derivation that each function returns a subtype,

from the premises of the rule.

ut
The final lemmas for preservation are value substitution and well-typed contexts.

Substitution proves that function application preserves the type of a traversal expres-

sion:

Lemma 3 (Substitution Preserves Type) Substituting a value of a subtype for a

free variable in any expression results in a subtype of the original expression’s type.

Suppose Γ ≡ (Γ ′, x :Tx). If Γ `e e : T , ∅ `e v : T ′x , with T ′x ≤ Tx then

Γ ′ `e e[v/x] : T ′ and T ′ ≤ T .

Proof : By induction on the derivation of (Γ, x : Tx) `e e : T . Traversal expressions

require lemma 2, and dispatch expressions require lemma 1. We proceed by cases on

the last rule used:

Case T-Var e = x′ . If x′ 6= x then x′ :T ∈ Γ ′ and Γ ′ `e x
′ : T . If x′ = x then

e[v/x] = v and T ′x ≤ Tx by our assumptions.

Case T-New e = (C e1 . . . en) with T = C . By the induction hypothesis, for

all i ∈ 1..n Γ `e ei[v/x] : T ′′i for some T ′′i ≤ T ′i with T ′′i ≤ Ti by transitivity

of ≤. So Γ `e (C e1[v/x] . . . en[v/x] ) : C.
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Case T-Trav e = (traverse e0 F ) . By the induction hypothesis, Γ ′ `e e0[v/x] :

T ′0 for some T ′0 ≤ T0. By lemma 2 the traversal result is Γ ; ∅ `T 〈T ′0, F 〉 : T ′ for

some T ′ ≤ T , so Γ ′ `e (traverse e0[v/x] F [v/x] ) : T ′ and T ′ ≤ T .

Case T-Apply e = (apply f v0 v1 . . . vn) with f = [(T0 . . . Tn) (x0 . . . xn) e0 ] .

If x ∈ xi then substitution has no effect and the result is T . If x 6∈ xi then by the

induction hypothesis, (Γ ′, x0 :T0, . . . , xn :Tn) `e e0[v/x] : T ′ for some T ′ ≤ T .

Case T-Dispatch e = (dispatch F v0 e1 . . . en) . By the induction hypothesis,

for all i ∈ 1..n Γ `e ei[v/x] : T ′′i and T ′′i ≤ T ′i . By lemma 1 we know that

possibleFs(F, (C T ′′1 . . . T ′′n )) ⊆ possibleFs(F, (C T ′1 . . . T
′
n)), so there exists a type

T ′ ≤ T such that for all f ∈ possibleFs(F, (C T ′′1 . . . T ′′n )) Γ `F f : Tf with

Tf ≤ T ′. The result is Γ `e (dispatch F v0 e1[v/x] . . . en[v/x] ) : T ′. By the

implication property of covers:

covers(F, (C T ′1 . . . T
′
n)) ⇒ covers(F, (C T ′′1 . . . T ′′n ))

So our covers premise still holds.

Cases of substitution within functions/sets follow directly from our induction hypoth-

esis.

ut
Well-typed contexts means that recomposition of an expression and a context also

preserves the type of the outer context. The lemma is similar to substitution.

Lemma 4 (Well-Typed Contexts) Substituting a closed, well-typed expression,

which is a subtype of the original, into the hole of a context preserves the outer

context’s type.

For any closed expressions e, e′, and context E, if ∅ `e e : T , ∅ `e e
′ : T ′ with

T ′ ≤ T , and Γ `e E[e] : T0, then Γ `e E[e′] : T ′0 for some T ′0 ≤ T0.

Proof : By induction on the structure of the outermost context E and the typing

derivation of E[e].

Case E = [ ] . Follows from our assumptions, since ∅ `e e : T , ∅ `e e′ : T ′ and

T ′ ≤ T .

Case E = (C v . . . E′ ei . . . ) . By the induction hypothesis, replacing e with e′

in E′ maintains the premises of T-New. The result type remains C.

Case E = (traverse E′ F ) . In T-Trav, by the induction hypothesis and lemma 2,

the traversal of E′[e′] with the same function set, F , must return a subtype of the

traversal result type of E′[e].

Case E = (dispatch F v0 v . . . E
′ ei . . . ) . In T-Dispatch, by the induction hy-

pothesis and lemma 1, the possible functions with E′[e′] instead of E′[e] remains a

subset, and must unify to a common supertype, which is a subtype of that obtained

with E′[e]. The premise of covers also holds, with proof similar to substitution.

ut
We can now state the first half of our soundness theorem: preservation.

Theorem 1 (Preservation) Reduction preserves an expression’s type.

If Γ `e E[e] : T and E[e] → E[e′] then Γ `e E[e′] : T ′ with T ′ ≤ T .
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Proof : Using lemma 4, our proof reduces to showing that our individual reductions

preserve type. That is, we must show that ∅ `e e : Te and e → e′ implies ∅ `e e
′ : T ′e

and T ′e ≤ Te. If we prove this implication, then by lemma 4, it is true that Γ `e E[e′] :

T ′ for some T ′ ≤ T . We proceed by showing the implication holds for each of our

reduction rules.

Case If R-Apply applies . Follows from substitution, lemma 3.

Case If R-Dispatch applies . Since the function selected, f , is one of the possible

functions (choose(F, (T0 . . . Tn)) ∈ possibleFs(F, (T0 . . . Tn))), f is used in the

premise of our typing rule (T-Dispatch). Proof follows immediately, as the rule

requires that the return types of all possible functions be a subtype of the assigned

type.

Case If R-Trav applies . The typing derivation of the traversal expression in-

cludes both a sub-derivation for the value to be traversed, e0 = (C v1 . . . vn),

and a traversal judgment based on the definition of C. By the first sub-derivation,

we know that ∅ `e vi : Ci for some Ci ≤ Ti where Ti is from the definition of C.

The traversal typing for each field type, Ti, contains as a sub-derivation a typing

rule for Ci, which can be used to construct a traversal derivation for the expanded

traverse term.

By lemma 1 the possible functions to be used in the typing derivation of

the dispatch expression are a subset of those used in the traversal rule for C, and

likewise unify to a common supertype (T ′e), which is a subtype of the original, Te.

The use of covers in the traversal rule (T-CTrav) for C remains the same for

dispatch.

ut
While preservation itself is interesting, as important is the preservation of function set

completeness: if a traversal expression is well typed, then covers holds after traversal

reduction, R-Trav.

Soundness now rests on progress, which in turn relies on function selection succeed-

ing. While preservation says that our possible functions return the right types, progress

requires that there exists a possible function for well-typed traversals.

Theorem 2 (Progress) A closed, well-typed expression is either a value, or can be

reduced, i.e., is never stuck.

For any expression e such that ∅ `e e : T , then either e is a value, or e = E[e′]
and E[e′] → E[e′′].

Proof : By induction on the structure e.

Case e = x . This case is impossible since e is closed.

Case e = (C e1 . . . en) . If all ei are values, then e is also a value. Otherwise, by

the induction hypothesis, we can decompose e into E[ e′ ] with E = (C v . . . E′ ei . . . ),

for for the first non-value and some E′, and e′ can be reduced.

Case e = (traverse e0 F ) . If e0 is a value, then R-Trav applies. Otherwise, by

the induction hypothesis we can decompose e into E[ e′ ] with E = (traverse E′ F ),

for some E′, and e′ can be reduced.

Case e = (apply f v0 v1 . . . vn) with f = [(T0 . . . Tn) (x0 . . . xn) e0 ] . R-Apply

is immediately applicable.
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Case e = (dispatch F v0 e1 . . . en) . If not all ei are values, then by the induction

hypothesis we can decompose e into E[ e′ ] with E = (dispatch F v0 v . . . E
′ ei . . . ),

for some E′, and e′ can be reduced.

If all ei are values, then R-Dispatch applies. Because e is well-typed, it must

be the case that ∅ `e v0 : C0 and for all i ∈ 1..n ∅ `e ei : Ci. Our premises require

that covers(F, (C0 C1 . . . Cn)), which matches our necessary property of covers:

possibleFs(F, (C0 C1 . . . Cn)) 6= ().

ut
With preservation and progress we can now state and prove our soundness theorem.

Theorem 3 (Type Soundness) A closed, well-typed expression e is either a value,

or can be reduced to another well-typed expression.

For any expression e such that ∅ `e e : T , then e is either a value of type T ,

or e → e′ and ∅ `e e
′ : T ′, with T ′ ≤ T .

Proof : By Progress, e is either a value or can be reduced. By Preservation, if e

reduces to e′, then ∅ `e e
′ : T ′ and T ′ ≤ T .

ut
Wright and Felleisen [37] refer to this theorem as strong soundness, since reduction is

never stuck and the type of the result is correctly predicted. The standard form of type

soundness is what they call weak soundness:

For any well-typed expression, e, if e → e′, then e′ is not stuck.

Proof is immediate from Theorem 3, since a stuck dispatch expression is not a value.

7 Related Work

Our view of generic programming is influenced by many different projects ranging from

generalized folds [31,28], light-weight functional approaches [24,25,21], and visitors [20,

9] to full-fledged generic programming [16,15], attribute grammars [19], and multi-

methods [8,2].

The notion of traversals that we use is closest to Sheard and Fegaras’ work on

generalized folds [31], drawing inspiration from Meijer et al. [28]. Our traversal function

is similar to Sheard’s general functor, E, which he uses to implement fold, though we

group functions in a set, rather than passing them as arguments. Our single traverse

function takes the place of a number of very complex functions, one for each value

constructor. The benefits of a single traversal function become more pronounced when

dealing with mutually recursive types, where fold functions can become difficult to

manage. Rather than fixing calls to a particular function argument, our type-based

dispatch allows function sets to abstract multiple cases into one, or overload a case

based on argument types. Our traversal also goes a bit further by supporting function

set extension, contexts, and control.

Library and combinator approaches by Lämmel et al. [24,25] and the Scrap Your

Boilerplate series of papers [21–23] support solutions to similar problems using traversal

combinators and Haskell’s type classes [17]. When the typical everywhere traversal is

not sufficient, these solutions control recursion using a one-step traversal. Type safety

is provided by definition within their implementation language. Our external library
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approach provides significantly more flexibility but requires us to formulate soundness

separately. Work on more heavy-weight generic programming [27,16] can be used to

write traversal functions based on the shape of data constructors, but provide only

limited support for function specialization and control.

Our traversals and contexts are similar to an implementation of attribute gram-

mars [19]. In Knuth’s original description, each attribute is defined by functions over

the productions of a context free grammar. In AP-F, abstract and concrete defi-

nitions are similar to non-terminals of a context free grammar.3 In AP-F, traversing

a data structure instance using a function set corresponds to the evaluation of an at-

tribute’s functions over a derivation of the grammar. The first function set passed to

the extended traverse form corresponds to a synthesized attribute, with contexts cor-

responding to an inherited attribute. Knuth mentions that attribute grammars can be

used to compute arbitrary functions over a derivation of a grammar, and later papers

discuss the complexity of checking attribute dependencies and evaluating functions [13].

In AP-F Scheme functions can can be arbitrarily complex, but function sets without

hand-coded recursion correspond to one-pass (or one-visit) attribute grammars, that

can be evaluated left-to-right in a single traversal [4]. Our traversal control also allows

the application of functions to be limited to a particular portion of the data structure,

though it may be possible to encode similar ideas within attribute functions.

AP-F’s multiple-dispatch and checking of function sets and structures is related

to work on static checking of multi-methods [29]. Though Millstien and Chambers

are more concerned with balancing modularity and expressiveness, they do focus on

eliminating problems associated with multi-method overloading. Agrawal et al. [8] focus

on a simple model of dynamic dispatch and reduce the type checking problem to (1)

checking the consistency of overlapping signatures, and (2) confirming that call sites

are correct. Chambers and Leavens [2] eliminate overloading ambiguities by requiring

that every combination of argument types have a most specific method signature to

dispatch to. Their goal is to catch such errors at compile-time, rather than raising a

runtime method ambiguous exception. AP-F dispatch is more like CLOS [32], in that

we have an implicit total ordering of applicable method signatures (including shorter

signatures), which avoids ambiguities. We are more interested in the possible return

types during traversal when using a given function set, and making sure that every

case has an applicable function.

Our model, type system, and soundness builds on simpler ideas from an earlier

paper [6] and has been influenced by work on aspect-oriented semantics [36]. Though

we maintain a functional approach, our original motivations for separating traversal

from other concerns stems from adaptive programming [26] and other visitor-based

approaches [20,34,35]. More recent functional visitor approaches [9,30] have focused

on safety and modularization, but can be mainly categorized as design patterns whereas

our aim is to provide a useful library for writing flexible and generic traversal-based

functions.

8 Conclusion

We have introduced an approach to traversal-based generic programming, AP-F, and

a library implementation in Scheme. Instead of requiring programmers to hand write

3 AP-F actually uses the definitions to automatically construct a parser.
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structural recursion our traverse form adapts to datatypes. Our approach uses a

depth-first traversal that handles mutually recursive structures without programmer ef-

fort, supports non-compositional functions using traversal contexts, can be guided/lim-

ited by control expressions. The traversal uses a set of functions to fold recursive results

and to update context, with functions selected by a type-based multiple dispatch. Our

multiple dispatch provides programmers with much of the flexibility of hand-written

functions while also supporting extension, abstraction, and overloading of functions.

In order to show that this flexibility is sound and verifiable, we introduced a simplified

model of our essential features: traversal, function sets, and dispatch. We presented a

type system, and a proof of type soundness, showing that type-correct programs are

free from runtime dispatch errors. This allows us to verify that particular traversals,

data structures, and function sets are safe, not only for our dynamic Scheme implemen-

tation without redefinitions, but also for our other AP-F implementations in statically

typed languages.
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21. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. In TLDI ’03, pages 26–37, New York, NY, USA, 2003. ACM.
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