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Abstract. Based on the growing popularity of smart mobile devices,
location-aware services become indispensable in human daily life. Loca-
tion prediction makes these services more intelligent and attractive. How-
ever, due to the limited energy of mobile devices and privacy issues, the
captured mobility data is typically sparse. This inherent challenge dete-
riorates significant principles in mobility modeling, i.e. temporal regu-
larity and sequential dependency. To tackle these challenges, by utilizing
temporal regularity and sequential dependency, we present a location
prediction model with a two-stage fashion. Firstly, it extracts predictive
features to effectively target the better performer from sequential and
temporal models. Secondly, according to the inferred activity, it adopts
non-parametric Kernel Density Estimation for posterior location predic-
tion. Extensive experiments on two public check-in datasets demonstrate
that the proposed model outperforms state-of-the-art baselines by 10.1%
for activity prediction and 12.9% for location prediction.

Keywords: Location prediction + Activity prediction - Mobility mod-
eling - Context-Aware Hybrid approach - Kernel Density Estimation

1 Introduction

With the ubiquity of smart mobile devices and the development of position-
ing technology, an overwhelming number of location-aware services have gained
increasing popularity in recent years. These services have offered an unprece-
dented opportunity for both academia and industry to study human mobility
behavior with access to various kinds of data, such as GPS trajectories, WiFi
records, cellular phone logs, smart card transactions and social network check-
ins, etc. They also shed light on a myriad of potential applications like user
profiling, location understanding, urban planning and mobility modeling [11,19].

Among them, location prediction plays a key role. Generally, scholars handle
this task with two-broad-category approaches, sequential modeling and tempo-
ral regularity modeling. Viewing that user activity serves as mobility motiva-
tion, activity prediction [5,8,9,16,17] is introduced as auxiliary to reduce vast
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location candidate space (million magnitude from population level and thou-
sand magnitude from individual level). Unfortunately, many unresolved difficul-
ties remain tough in location prediction: (1) Sensitive to sequential dependency,
sequential models [1,3,7,16] deteriorate when the timespan of consecutive mobil-
ity records being far like days or even months [3,15]. This is often the case due
to device energy limitation and user privacy concern. (2) Temporal model per-
forms poorly at night or during weekends [13] owing to decayed regularity; (3)
Even for the same activity purpose, people still conceive different preferences
under different contexts. E.g., at midnight, Alice would buy snacks from 7-Eleven
near home, instead of Stop&Shop where she usually visits in the daytime. One
thing worth noting is that these three problems are non-trivial. Simply take the
last example for illustration. Because of data sparsity, directly estimating the
user location preference for the specific time is obsessed with under-fitting. In
addition, “contexts” are highly diversified and even only for the time context,
modeling “location open hour”, “user rest period”, etc. simultaneously can be
overwhelming.

In this paper, we tackle above challenges by decomposing location predic-
tion into two subtasks [5,8,16], user activity inference and location inference
based on activity. For activity inference, sequential and temporal models can
fit respectively. However, as previously indicated, both are ineffective in cer-
tain circumstances. Here we design a Context-Aware Hybrid (CAH) module to
integrate temporal regularity and sequential dependency models dynamically.
More specifically, a set of elaborate evaluation features (e.g. density of recent
records, regularity strength of user historical activities) are extracted as context
features and based on that, a supervised classifier is applied to select the bet-
ter performer between sequential and temporal models. For location inference,
we adopt a time-aware approach for posterior location distribution calculation.
Technically, instead of employing parameterized models which usually fall into a
training dilemma, Kernel Density Estimation is applied to capture the visit time
distribution at specific locations. Last but not the least, we summarize these two
phases to leverage final location prediction.

Our main contributions are summarized as follows:

1. With a set of features assessing the performance of sequential and temporal
models, we develop a Context-Aware Hybrid approach to combine them for
user activity prediction.

2. We introduce Kernel Density Estimation to model the time variation of loca-
tion preference for a given user, and construct a two-stage model to predict
future locations based on the inferred activity.

3. The experimental results on two public datasets validate that our model sig-
nificantly outperforms state-of-the-art baselines in terms of both activity pre-
diction accuracy and locations prediction accuracy.

The rest of paper is structured as follows: Sect. 2 reviews related mobility
prediction works. Section3 formulates the prediction problem and introduces
the notations. Our proposed model is presented in Sect. 4. Experimental results
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based on two real world public datasets are presented in Sect.5. Finally, the
conclusion, limitation and future work outlook are offered in Sect. 6.

2 Related Work

2.1 Mobility Pattern Model

We categorize relevant mobility prediction models into sequential model, tem-
poral model and hybrid model.

Sequential Model. Song et al. [12] found that Order-2 Markov with fall-
back had the best performance on the location prediction. Applied in mobil-
ity prediction by Cheng et al. [1], Factorizing Personalized Markov Chain
extended the Markov Chain via factorization of transition matrix. Zhang
et al. [18] extracted users’ mobility sequential pattern from historical check-
ins as a Location-Location Transition Graph. The problem of sequential models
lies in that when adjacent mobility records gap for a long time like several days
or even months, the performance becomes undesirable [1,3].

Temporal Model. Cho et al. [2] proposed a time-aware Gaussian Mixture
model combining periodic short-range movements and sporadic long-distance
travels. Wang et al. [13] provided a Regularity Conformity Heterogeneous (RCH)
model to predict user location at specific time, considering both the regular-
ity and conformity. Yang et al. [15] employed a Tensor Factorization model to
capture the user temporal activity preference. However, these methods depend
heavily on temporal regularity and data with decayed mobility regularity (e.g.
at night or during weekends) leads to low accuracy [13].

Hybrid Model. Lian et al. [6] incorporated Markov model and temporal
regularity model into the hidden Markov framework to predict user regular
locations. This method suffered the same drawback as sequential model. Feng
et al. [3] developed Personalized Ranking Metric Embedding (PRME) method to
balance sequential dependency and user preference, by a threshold of transition
timespan. PRME ignored the temporal regularity and a fix threshold cannot sat-
isfy all the scenarios. In contrast to these methods, the proposed CAH approach
combine temporal and sequential models flexibly depending on mobility context.

2.2 Location Prediction with Activity Information

Some researchers exploited activity information to improve the location pre-
dictability [5,8,9,16,17]. Noulas et al. [9] captured factors driving user move-
ments, including the activity preference and activity transition. Yuan et al. [17]
came up with a unified model W* (who, when, where, what) to discover individ-
ual mobility behaviors from spatial, temporal and activity aspects. Ye et al. [16],
Li et al. [5] and Liu et al. [8] modeled activity sequential pattern, and predicted
locations based on above activity. However, none of them absorb temporal and
sequential model simultaneously to infer user activity preference.
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In addition, given the activity distribution, Yuan et al. [17] and Li et al.
[5] assumed the user location preference followed multinomial distribution. Ye
et al. [16] ranked locations based on check-in frequency. Liu et al. [8] applied
Matrix Factorization to predict user preference of specific locations. However,
these methods fail to capture the time variation of user location preference.
Instead, we adopt a generative approach to model the time variation pattern.

3 Problem Formulation

Let V = {vi,va,..., vy} and C = {c1,ca, ..., ¢c|} represent locations and cate-
gories. Each location belongs to a certain category indicating the activity purpose
of users. Given a set of users U, each mobility record can be defined as a quadru-
ple r = (u,v, ¢, t), representing that user u visits location v at time ¢ for activity
c. Here, for the ease of calculation, ¢ is discretized from continuity to discrete by
24h. Our goal is to predict user u’s next location 7, given the next visit time £
and the recent visit sequence before ¢, T

4 Methodology

4.1 Overview

We construct a two-stage model to predict activities and locations. The overall
framework of the proposed model is presented in Fig.1(a). It consists of two
stages for activity and location prediction respectively and each stage incorpo-
rates offline model training and online prediction. In the first stage, Context-
Aware Hybrid (CAH) approach is adopted to dynamically select the better per-
former from sequential and temporal models for activity prediction, i.e. inferring
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Fig. 1. Overall framework and CAH module
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P,(c
mation is exploited to approximate P, (vlc, 7, t). Finally, location prediction is

e t). In second stage, based on inferred user activity, Kernel Density Esti-

t), where

achieved by © = arg max P, (v|7},
v

ZP vlej, T, ) Pulcs| i, £) = Py(vlcy, £) Py(cy

T vt (1)

Note that during the second phrase, we ignore the sequential pattern of loca-
tion by simplifying Py (v|c,, 7/, t) to P,(v|cy, ). The reason is that the sequential
dependency of the user mobility has been captured in the first stage. Although
the geo-distance may influence user location preference, introducing distance
does not significantly improve the prediction performance [6], due to the highly
uncertain timespans between adjacent records and the convenient transportation
in the modern world.

Figure 1(b) shows specific details of Context-Aware Hybrid module. We par-
tition the training data into training set 1 and training set 2. The former is
utilized for learning sequential and temporal models, and the latter is employed
to evaluate the performances of them. In this work, we assign Tensor Factor-
ization as temporal model and smoothed Order-1 Markov Chain as sequential
model. With features of user contextual and historical factors and labels of the
better performer between sequential and temporal models, we build a binary
classifier for online prediction.

4.2 User Activity Prediction

Sequential Model. Markov model has been proved effective in mobility pre-
diction [12]. Due to the data sparsity, we filter the transitions with timespans
larger than threshold e, and merely consider Order-1 Markov Chain. The tran-
sition probability is estimated by Kneser-Ney smoothing technique [6]. In par-
ticular, let n¥(c;, ¢;) indicate the times of user u transferring from activity ¢; to
¢; within e. The transition probability is derived as:

max{n¥(c;,c;) — 9, O}_’_§X:,C I{n¥(c;i,cr) >0} - >, {n¥(cx, ¢j) > 0}
2ok cr) Do (e cr) - 3o 20 Hnd (e, ) > 0}
where I{-} is an indicator function and § is the discount parameter. The basic

intuition of this equation is to discount the observed times of transition from ¢;
to ¢j, and turn them over to low frequency transitions.

Pu(cjlei) =

Temporal Model. We adopt the non-negative Tensor Factorization (TF)
method for inferring the activity preference at specific time [15]. A user-time-
activity tensor T € RIUI*24xICl js built, in which the element T h,c equals to
the frequency of activity ¢ at hour of day (HOD) h by user u. Using Canoni-
cal decomposition model [4], T is decomposed into three matrices, user feature
matrix U € RU*L | time feature matrix 7' € R24*L | and activity feature matrix
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A € RICIXL (L is the latent space dimension). User u’s preference of activity ¢
at h could be described as: Prefy p,. = Zle Zle Zle Uu,i . Th’j . Ac,k. For
user u, the probability of activity ¢ given time ¢ is formulated as follows, where
tp is HOD of t.

PTefu,th,c

Py(clt) =
(Cl ) Zc/ec Prefu,th,,cl

(2)

Context-Aware Features Extraction. Given the Markov and TF models,
we extract several kinds of features determining the accuracies of these two
models, including temporal contextual features, sequential contextual features
and historical features.

Temporal Contextual Features: This group of features refer to factors severely
affecting temporal model at next visit HOD h, i.e. temporal regularity
strength and data density at h. (1) Temporal regularity strength determines
the limit of predictability, measured by entropy [11], defined as: H(Z) =
— >, P(%)log P(2;) over random variable Z. We introduce random variable
A}, activity at h of user u, whose entropy H(A}') can be calculated based on
u’s history records I3. Moreover, the number of distinct activities at h in I,
correlating with H(A}), is also considered here, signified by N¥(h). (2) Data
density is represented by N (h), the number of history records at h of user u. In
summary, H(A}), N} (h) and N} (h) constitute temporal contextual features.

Sequential Contextual Features: The accuracy of sequential model depends on
contexts of user recent records, i.e. the timespan and recent record frequency.
(1) Timespan feature: As the sequence dependency decays over time, D¥(#), the
interval between ¢ and nearest record time of user u, is introduced to model
it. (2) Recent record frequency features: Data sparsity means missing latest
activities and reduced performance of sequential model. Thus we propose two
features: the length of S, the longest mobility sequence ending by t, satisfying
that timespans between any adjacent records is less than e; D¥ (), the timespan
between £ and the earliest record time in S¢. In summary, we use D (t), DY (%),
|S¥| as sequential contextual features.

Historical Features: From the whole mobility historical sequences, we consider
user specific features (independent of context) of temporal regularity, sequential
dependency and activity regularity strengths. (1) User specific temporal regular-
ity strength is defined by Ej, (N} (h)) and Ej, (H(A})), where N¥(h) and H(A})
are defined above, and F,(Y) = Z?il P, (h;)Y (h;). (2) User specific sequential
dependency strength is captured by E.(MY(c)) and E.(H(AY)), where M} (c)
is the number of distinct activities of u after activity ¢, A} is a random variable
of the activity for user u after activity ¢, and E.(Y) =", Pu(c;)Y (¢;). (3) User
specific activity regularity strength is measured by the number of distinct activ-
ities N* and the activity entropy H(A") in history records I3, where A" is a
random variable of the activity for user u. In summary, the historical features
include Ey(N2(h)), En(H(AL), Eo(H(AY), E.(MZ(c)), N* and H(A").
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Context-Aware Hybrid. Given the user u, the visit sequence ' and the next
activity time £, feature vector X is calculated as mentioned before. We build a
binary classifier to target at the better performer between TF and Markov mod-
els, taking feature vector X as input. Let positive class represent that Markov

model is more effective, then P, (cz|7n ) is estimated as follows, where ¢, is the
latest activity in 7;* and y is the output of classifier:
R P,(cilen), ify=1
Puleafrgsf) = § e 10 ®)
P,(clt), ify=-1

We split user u’s history records I, into two parts, I 751) for training Markov
and TF models, and I'®) for training the classifier. For the record r : (u, t,, ¢, v;.)
in I, 152), let Rank,,(c,) represent the probability rank of actual activity ¢, gener-
ated by Markov model, and Rank:(c,) is the probability rank generated by
TF model. Then the record can be labeled as positive or negative depend-
ing on the sign of Rank:(c,) — Rank,(c,). However, apart from contextual
and historical features, the capacity of these two models may also be slightly
affected by some random factors, such as the stochastic error. When the Markov
and TF models perform similarly on the activity prediction, these random
errors lead to wrong labeling. Therefore, we only take the records satisfying
|Ranky(c,) — Ranky, (¢,)| > £ as training examples of the classifier. € is called fil-
tering parameter. At last, considering that the numbers of positive and negative
examples may be unbalanced, we set the negative-rate of training examples as
the weight of positive class and the positive-rate as the weight of negative class.

4.3 User Location Prediction

As we have discussed in Sect. 1, the user preference of specific location changes
over time. Without sufficient training data, directly estimating the probability
P,(v|t,c,) leads to the under fitting problem. The generative approach is more
effective to address this missing data situation than the discriminative approach.
If the time variation pattern of the user location preference could be modeled as
probability distribution P, (t;|v), we can approximate the probability of location
v to be visited at time t as follows, where t;, is the HOD of t:

_ Py, (th|v) Pu(v)

>ovee, Pultn|v)Pu(v')
However, the time variation pattern varies from location to location. For exam-
ple, some restaurants have three peak periods in a day including breakfast time,
lunch time and dinner time, while some other restaurants only focus on dinner
time. Due to this case, we perform non-parametric Kernel Density Estimation
to reckon P, (ty|v), which is widely used to estimate the shape of unknown prob-
ability density. The density of location v at ¢, is formulated by

Pu(tale) = de( (tn, b >) (5)

P, (vl|t,cy) (4)
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where A(tp, h;) = min(|t, — h;|,24 — |tn — h;]) is the interval between HOD ¢y,
and h;, K(+) is the kernel function, d is the bandwidth, and nj, is the number of
distinct record hours on this location.

5 Experiments

5.1 Datasets

We evaluate our model on public check-in datasets in two big cities (New York
and Tokyo), collected by Yang et al. [15]. In these two datasets, check-in records
last from Apr 2012 to Feb 2013, and locations are classified into 251 categories.
The statistics description is shown in Table1l. We do not study other public
datasets due to the lack of activity information, such as the Gowalla dataset [2].

Table 1. Datasets statistic

#User | #Location | #Check-in | #Location | #Category
per user per user
NYC | 1,083 | 38,333 227,420 | 84.04 40.22
TKY | 2,293 | 61,858 573,703 92.43 32.40

5.2 Experiment Setting

Evaluation Plan. In the following experiments, we set the proportion of train-
ing set I 751), I 52) and test dataset as 7:2:1. For more convincing results, we repeat
each experiment 10 times and take the average of metrics into comparison.

Parameter Setting. We set the timespan threshold ¢ as 6h following the
empirical rule [1,3], and the discount parameter as empirical formula § = n1112n

(ny and ng are the number of one-time transitions and two-times transitions)[ﬁf.
The latent space dimension L of TF model is recommended as 64 on these
datasets by Yang et al. [15]. We select the standard normal kernel function and
rule-of-thumb bandwidth d = (46/3n)5 &~ 1.066~5 for KDE [10]. We study the

effect of filtering parameter £ in Sect. 5.3 and set it as 60.

5.3 Activity Prediction Evaluation

Effect of Features and Parameters. Firstly, we study the performance of
binary classifier with different features. After attempting several methods such
as logistic regression, decision tree and SVM, we apply the one with high perfor-
mance and low training cost: Classification and Regression Tree (CART). The
classification performance is measured by accuracy Acc and weighted average
F-score F, following [14].

The classification performance evaluation based on different feature groups
is shown in Table 2, where Seq, Tem and His are the abbreviation of sequential
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Table 2. Features evaluation

Seq Tem | His His+Seq | Tem+His | Tem+Seq | All

Acc of NYC | 0.7154 | 0.7440 | 0.7511 | 0.7587 | 0.7534 0.7570 0.7593
F of NYC ]0.7362|0.7677|0.7794 | 0.7701 0.7747 0.7666 0.7803
Acc of TKY | 0.6822 | 0.7040 | 0.6998 | 0.7044 | 0.7054 0.7062 0.7158
F of TKY |0.6719/0.7022|0.6719|0.7074 | 0.7019 0.7029 0.7150

contextual features, temporal contextual features and historical features. We can
observe that every paired feature groups combination outperforms the individual
one, and combining all the features gets the best performance, implying that all
three feature groups are effective and necessary.

Figure 2(a) describes the importance of features. Sequential contextual fea-
tures and the sequential entropy take a larger proportion in TKY dataset. One
possible reason is that the sequence regularities of users are stronger in TKY
dataset, which makes sequential model more important in CAH approach.

feature

Record densitf:l—\ o TKY —e—Accof NYC —»—F of NYC
Time interval ; ] = NYC 078/ —e— Acc of TKY F of TKY
Time interval 1 I ]
Entropy of hour| — 0.764
Act. of hour—‘—|
Freq. of hour; 1 1 0.74+
Seq. entropy
Avg. next act. . 0.72 —
Tem. entrop) s
Act. per hour 1 0.70+
Act. entropy]|
0.00 0.05 0.10 0.15 0.20 6 Zb 4b Gb éO 160
(a) Feature Importance (b) Effect of &

Fig. 2. Feature importance and parameter effect

Besides, Fig. 2(b) reports the effect of filtering parameter £. As £ increases,
the labels of training examples become more credible. Thus the performance
gets better when £ varies from 0 to 60. However, there is a negative correlation
between ¢ and the number of classifier training examples. Owing to the insuffi-
ciency of training examples, the classification accuracy will fall back when ¢ is
bigger than 60.

Activity Prediction. After training the classifier, we apply the most frequently
used metric of mobility prediction performance, AccQtopk, to contrasting the
performance of proposed CAH approach with following 5 baselines:

1. Most Frequent: This method assigns the most frequent activity of user u at
time ¢ as the result of prediction.

2. Fallback Markov: Order-2 Markov with fallback has been utilized widely in
mobility prediction on GPS trajectories and WiFi network [12].
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3. Smooth Markov and Tensor Factorization: The sequential and temporal mod-
els we used, which have been introduced in Sect. 4.2.

4. HMM of CEPR: This model integrates temporal regularity and Markov mod-
els into a hidden Markov framework [6].

0.5+

Markov MF ——SM Markov MF ——SM ‘
‘AiOUfMOdS"FTF —— HMM ‘ /< 0.6 [ QurModel —v—TF —+— HMM
P
v /:/
04 /:/éA 05 <?://
© —
3 0.3 / / g o4 <
¥
03
02{ «
T T T T T 0.2 T
3 4 5 1 2 3 4 5
top K top K
(a) NYC dataset (b) TKY dataset

Fig. 3. Acc@topk of activity prediction

Figure 3 shows the top-k (k = 1,2,3,4,5) accuracy of activity prediction.
It can be observed that (1) the proposed Context-Aware Hybrid (CAH) app-
roach achieves the highest accuracy for all k values, and outperforms Smooth
Markov and Tensor Factorization models by a large margin. In particular, when
we choose the activity with the maximum probability as the prediction result,
the CAH approach shows at least 10.1% and 15.7% improvement over any
other method on NYC dataset and TKY dataset; (2) As the prediction list
size k increases, the performance gaps between CAH and some baselines become
smaller, such as HMM and TF. This result is not surprising since a user usually
prefer about 30-40 activities according to Table 1. In addition, it is clear that a
large prediction list size k is meaningless for practical applications, thus getting
higher accuracy with a small k£ is much more valuable.

5.4 Location Prediction Evaluation

For location prediction evaluation, we use the same metric as activity prediction
(i.e. Acc@topk) and study following methods for comparison:

1. Most Frequent: Returning the most frequent locations of user as result.

2. KDE: Predicting locations only with generative method of the second stage,
without the first stage.

3. PRME: This method [3] constructs a metric embedding model to balance
sequential information and individual preference.

4. HMM of CEPR: We provide two versions of this approach. HMM represents
the original approach of [6], predicting locations without activity information.
HMM&KDE uses the hidden Markov framework of [6] to predict activities
and the proposed generative approach to predict locations.
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5. CAH&Rank/CAH&MFT: We apply other two methods to predict user
future location based on CAH’s results. CAH&Rank ranks locations by over-
all frequency [16]. CAH&MFT (Most Frequent of Time) directly estimates
P,(v|t,c,) based on frequency of location v at time ¢ by user w.

6. CAH&KDE: The integrity version of the proposed model in this article.

Accuracy Accuracy

0sl® MF O HMM @ CAH+Rank BME 0 HMM B CAH+Rank
“I'o PRME = HMM+KDE m CAH+KDE 05l PRME @ HMM+KDE B CAH+KDE
0 KDE o CAH#MET . m 0 KDE @ CAH+MFT _ -
0.4
0.4 1 |
0.3 1 I 1
03
0.2 02
0.1 04
0.0 10 20 30 40 50 Pk 00 10 20 30 40 s0 1Pk
(a) NYC dataset (b) TKY dataset

Fig. 4. AccQtopk of Location Prediction

Figure 4 depicts the Acc@topk (k = 10, 20, 30,40, 50) of above methods. We
can learn from that: (1) the integrity version of the proposed model (CAH&KDE)
gets the best results for all the k& values. Specifically, it shows 12.9% and 14.4%
improvement over HMM of CEPR and 28.7% and 20.1% improvement over
PRME, when k& = 10; (2) the proposed generative approach (CAH&KDE)
outperforms any other location prediction method based on CAH’s results(i.e.
CAH&Rank/CAH&MEFT). Note that CAH&MFT gets the worst result, which is
in line with the discussion in Sect. 4.2; (3) the performances of CAH&KDE and
HMM&KDE are obviously better than KDE and HMM, implying that exploiting
activity information facilitates location prediction. In addition, it also proves, to
some extent, our two-stage framework is suitable for other activity prediction
approaches; (4) the comparison of CAH&KDE and HMM&KDE indicates that
improving activity prediction accuracy is beneficial to location prediction.

6 Conclusion

In this article, we propose a two-stage method to predict locations. In the first
stage, we study the contextual and historical features that impact the prediction
accuracy of sequential and temporal models, then we adopt a binary classifier
to switch between these two models depending on predicting context. In the
second stage, Kernel Density Estimation is performed to capture the time vari-
ation of the user location preference. Based on the evaluation results, our model
significantly outperforms existing approaches.
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Several interesting future directions exist for further exploration. For exam-
ple, the sequential dependency and temporal regularity of user activities may
affect each other, which makes it possible to improve the predictability.
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