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Abstract
Schnorr’s signature scheme permits an elegant threshold signing pro-

tocol due to its linear signing equation. However each new signature con-
sumes fresh randomness, which can be a major attack vector in practice.
Sources of randomness in deployments are frequently either unreliable,
or require state continuity, i.e. reliable fresh state resilient to rollbacks.
State continuity is a notoriously difficult guarantee to achieve in prac-
tice, due to system crashes caused by software errors, malicious actors, or
power supply interruptions (Parno et al., S&P ’11). This is a non-issue
for Schnorr variants such as EdDSA, which is specified to derive nonces
deterministically as a function of the message and the secret key. How-
ever, it is challenging to translate these benefits to the threshold setting,
specifically to construct a threshold Schnorr scheme where signing neither
requires parties to consume fresh randomness nor update long-term secret
state.

In this work, we construct a dishonest majority threshold Schnorr pro-
tocol that enables such stateless deterministic nonce derivation using stan-
dardized block ciphers. Our core technical ingredients are new tools for the
zero-knowledge from garbled circuits (ZKGC) paradigm to aid in verifying
correct nonce derivation:
• A mechanism based on UC Commitments that allows a prover to com-

mit once to a witness, and prove an unbounded number of statements
online with only cheap symmetric key operations.

• A garbling gadget to translate intermediate garbled circuit wire labels
to arithmetic encodings.

Our scheme prioritizes computation cost, with each proof requiring only
a small constant number of exponentiations.

∗Part of this work was done during an internship at Novi/Facebook.
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1 Introduction
The Schnorr signature scheme [Sch91] is a simple discrete logarithm based con-
struction where the public key is of the form X = x ·G, and to sign a message m
the signer provides R = r ·G and the linear combination σ = xe+ r where e is
derived by hashing X,R,m (or just R,m as in the original specification). This
relation can easily be verified in the exponent as σ · G = e ·X + R. Assuming
an ideal hash function (modelled as a random oracle) unforgeability is rooted
in the hardness of the discrete logarithm problem. The signatures themselves
embody a zero-knowledge property: assuming that the r values are uniformly
chosen, the σ values reveal no information about x.

1.1 Practical Concerns: Determinism and Statelessness
The fact that r values are chosen uniformly upon every invocation permits many
useful theoretical properties, among them a clean proof [PS96]. However, the
necessity of fresh randomness introduces a new attack vector in practice: the
assumption that a consistent source of entropy will be available for use has
repeatedly turned out to be ill-founded.

As an example, the public cloud is a context in which access to good entropy
and a well-seeded PRNG is particularly difficult. Indeed, deploying an applica-
tion on cloud infrastructure delivers the convenience of modern enterprise-grade
offerings, yielding significant benefits in uptime, availability, APIs, threat de-
tection, load balancing, storage, and more. Yet this choice often entails that
a user application will run as a guest in a virtualized environment of some
kind. Existing literature shows that such guests have a lower rate of acquir-
ing entropy [KASN15], that their PRNG behaves deterministically on boot and
reset [EZJ+14], and that they show coupled entropy in multi-tenancy situa-
tions [KC12], including in containers [Bay14]. This can have disastrous conse-
quences, as even a small amount of bias in r values across many Schnorr signa-
tures can be leveraged to completely break the scheme [HS01, ANT+20, MH20].

The idea of deterministically deriving r values from randomness established
during key generation has correspondingly gained traction [MNPV99, KW03,
KL17]. The widely used EdDSA signature scheme [BDL+12] derives its nonces
as r = H(H(k),m) where k is sampled during key generation and m is the mes-
sage to be signed. Assuming k has enough entropy and that H produces pseu-
dorandom outputs, the r values will be pseudorandomly determined for each
m, leading to signatures that are essentially as secure as the original Schnorr
algorithm that consumes fresh randomness for each r. In this work, we aim to
translate the benefits of deterministic signing to the threshold signature setting.
In particular, we study deterministic threshold Schnorr as the problem of design-
ing a decentralized protocol to produce Schnorr signatures where each party’s
signing algorithm is deterministic.

State Continuity is non-trivial. Folklore would suggest that the problem
at hand is simple: first design a randomized protocol (of which many exist
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for threshold Schnorr) and then simply ‘compress’ the random tape by us-
ing a PRG/block cipher invoked with a fresh counter each time new random-
ness is needed. However this approach fundamentally assumes state continu-
ity [PLD+11], i.e. that the state of the device running the protocol can be
reliably updated and read on demand. However as Parno et al. [PLD+11] first
pointed out, even secure hardened devices with strong isolation guarantees can
not take this property for granted. In particular, malicious attackers or even
natural circumstances such as software errors or power interruptions may in-
duce a device to turn off and roll back to a ‘last known safe’ state upon restart.
While such a state may be entirely consistent in every detectable way, it could
be stale, leading to randomness reuse in the PRG context. We stress that reli-
ably storing long-term secrets is significantly easier than for instance updating
a counter every time a signature is produced.

Why not solve this at the systems level? While state continuity in gen-
eral has been studied as a systems problem, we argue here that incorporating
resiliency to state resets in cryptographic protocol design has both qualitative
and quantitative advantages:

• Qualitative: Systems-level solutions depend on context, and consequently
hinge on specific assumptions such as trusted hardware [PLD+11, SP16], a
number of helper nodes with uncorrelated failures [BCLK17, MAK+17], or a
trusted server [vDRSD07]. In contrast, a cryptographic protocol in the stan-
dard model offers provable security and strong composition guarantees with-
out resorting to context-specific physical assumptions.

• Quantitative: Deployment of a protocol that relies on state continuity will
require the expending of resources on establishing context-specific solutions
to this problem for each new environment; acquiring such dedicated hardware
is expensive. Moreover it is unclear that the best systems solution in every
environment will be more efficient than a canonical stateless cryptographic
protocol. Consider two-party distributed signing: it defeats the purpose to
incorporate extra parties/servers for state continuity, and solutions that rely
on monotonic counters maintained on special purpose hardware such as In-
tel SGX or Trusted Platform Modules suffer other issues inherent to these
platforms. Matetic et al. [MAK+17] showed that the upper limit on the num-
ber of writes to such protected counters (due to non-volatile memory wearing
out) can be exhausted in a few days of continuous use. Moreover maintaining
and reading from such memory is slow; Strackx and Piessens [SP16] report
a 95ms latency, and Brandenburger et al. [BCLK17] report a 60ms latency
in incrementing an SGX Trusted Monotonic Counter. In summary, dedicated
hardware for state continuity is expensive, slow, and comes with limited lifes-
pan. The protocols we construct in this work are expected to run significantly
faster on commodity hardware (order of 10ms) - well within the performance
envelope of trusted hardware solutions due to their latency.

We therefore incorporate statelessness into the problem statement, to mean
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that security must hold even when devices are arbitrarily crashed (even in the
middle of a protocol) and restored with only their long-term secrets.

1.2 Why is Stateless Deterministic Threshold Signing Chal-
lenging?

Schnorr signatures permit a very elegant multiparty variant [SS01, GJKR07]
as signatures are simply linear combinations of secret values. Most natural se-
cret sharing schemes permit linear combinations “for free”, with the result that
threshold Schnorr in different settings has essentially reduced to the task of es-
tablishing x · G and r · G such that x, r are random and secret-shared among
parties.

The instructions for each of the parties in the classic threshold Schnorr pro-
tocols [SS01, GJKR07] looks very much like the regular signing algorithm. We
give a brief sketch of how the semi-honest two party version works, which is
sufficient to understand the challenges we address in the rest of our exposition.
The description is from the point of view of party Pb for b ∈ {0, 1}.

1. Key generation: Pb samples skb ← Zq and sets pkb = skb ·G. It then sends
pkb to P1−b and waits for pk1−b. The shared public key is set to pk = pk0+pk1

2. Given message m to sign:

(a) Pb samples rb ← Zq and sets Rb = rb ·G. It then sends Rb to P1−b and
waits for R1−b. The signing nonce is computed by both as R = R0 +R1

(b) Pb computes e = H(pk, R,m) and sets σb = skb · e+ rb. It then sends σb
to P1−b and waits for σ1−b. Finally (R, σ = σ0 +σ1) is a signature on m

The above protocol can be made secure against an active adversary with
an extra commitment round [NKDM03], however this will not be important for
our discussion. An immediate observation is that instead of having Pb sample
a fresh rb for each message, one could adopt the EdDSA approach and have
Pb sample kb during key generation and instead compute rb = H(H(kb),m).
This does in fact yield a deterministic threshold signing protocol, with security
against at least passive corruption. However, as previously noted by Maxwell et
al. [MPSW19], a malicious adversary will be able to completely break such a
system. The attack is as follows: a malicious P1 can first run the honest signing
procedure for message m with the correct r1 (as per Step 2a), and subsequently
ask to sign the same m but use a different r′1 6= r1 this time. The honest
P0 follows the protocol specification and unfortunately uses the same r0 value
in both executions, as it is derived as a function of m, k0, both of which are
independent of r1. Consequently, R = (r0 + r1)G and R′ = (r0 + r′1)G are the
nonces derived for each execution, which induce unequal challenges e = H(..R)
and e′ = H(..R′). The honest party therefore gives P1 the values σ0 = sk0e+ r0
and σ′0 = sk0e

′ + r0 in different executions, which jointly reveal its secret key
share sk0.
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Going forward, we follow the natural template for threshold Schnorr set by
previous works [NKDM03, SS01, GJKR07], and investigate how to enforce that
parties indeed derive their nonces deterministically by following the protocol.

1.3 Desiderata
There are many possible ways to enforce deterministic nonce derivation, and so
we first highlight the constraints of our context in order to inform our choice of
technology.

• Standard assumptions. This is a subtle but important constraint. As with
any safety critical application, we would like to avoid new and insufficiently
vetted assumptions in our protocol. However even more important than pro-
tocol security (which is only relevant when parties in the system are corrupt)
is the security of artefacts exposed to the outside world, i.e. the signature. In
particular, we wish to be very conservative in instantiating the PRF that is
used to derive nonces; Schnorr signatures are known to be extremely sensitive
to nonce bias [HS01, TTA18], meaning that the slightest weakness discov-
ered in the PRF could lead to attackers retrieving entire signing keys using
previously published signatures.

• Lightweight computation.We want our schemes to be as widely applicable
as possible, and consequently we do not want to make use of heavy cryptog-
raphy. In the case of decentralized cryptocurrency wallets where one or more
signing party is likely to be a weak device (e.g. low budget smartphone, or
Hardware Security Module) both computation cost and memory consumption
must be minimized. On the other end of the spectrum for threshold signing at
an institutional level with powerful hardware, lightweight signing is conducive
to high throughput.

• Round efficiency. As much as possible we would like to avoid compromis-
ing on round efficiency in our endeavour to make signing deterministic and
stateless. In particular ordinary threshold Schnorr signing [NKDM03, SS01,
GJKR07] requires only three rounds, and we would like to match this effi-
ciency.

We therefore formulate a more precise problem statement,

How can we construct a lightweight threshold signing protocol for
Schnorr signatures where parties do not consume fresh randomness
or update state after the initial key generation? Moreover nonce
derivation must strictly use standardized primitives (eg. AES, SHA).

To be clear, our focus is on the ‘online’ signing operations; we do not worry about
optimizing the efficiency of the distributed key generation, which is one-time.
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1.4 This Work
In this work, we construct an efficient zero-knowledge proof system for proving
correct nonce derivation that makes use of only cheap symmetric key cryptog-
raphy and a small constant number of exponentiations when invoked, and does
not require updating long-term state.

Our proof system is in the Zero-knowledge from Garbled Circuits (ZKGC)
paradigm of Jawurek et al. [JKO13], and the techniques that we develop improve
the ZKGC paradigm even outside of the stateless deterministic setting.

General ZKGC Bottlenecks. The efficiency of the ZKGC paradigm is rooted
in the fact that the prover and verifier pay at most three AES invocations per
AND gate in the circuit, when instantiated with the privacy-free variant of Half-
Gates [ZRE15]. However especially for small circuits such as AES, SHA, etc.,
the bottleneck usually lies in logistics for the witness (i.e. input to the circuit).
In particular:

• Input Encoding: Transferring wire labels for a |q|-bit input requires |q|
Oblivious Transfers, which means O(κ) public key operations per invocation
even with OT Extension, for κ bits of computational security.

• Binding Composite Statements: The state of the art technique [CGM16]
to tie statements about an order q elliptic curve group elements to a Boolean
circuit involves the garbling of an additional private circuit to multiply a
|q|-bit value with an s-bit statistical MAC. While the cost of these Õ(s · |q|)
extra gates may disappear as the circuit size grows, it incurs high concrete cost
relative to common ciphers that have compact Boolean circuit representations.
Consider the parameter regime relevant here, a 256-bit curve and 60 bits of
statistical security: the cost of garbling with privacy (2× the per-gate cost
of privacy-free [ZRE15]) the corresponding 32k gate multiplication circuit for
the MAC1 is considerably more expensive than privacy-free garbling of the
circuit for the relation itself: nearly an order of magnitude more than AES-128
(7k gates [AMM+]) and even 3× that of SHA-256 (22k gates [CGGN17]).

We develop novel techniques to address both of these problems in this work,
which we briefly describe below.

1.4.1 Commit Once, Prove Many Statements

As the use of O(κ) public key operations used for input encoding in garbled
circuit based protocols is a difficult foundational issue, we relax the problem to
fit our setting more closely. In particular, it is sufficient for a party to commit to a
nonce derivation key k once during distributed key generation, and subsequently
prove an unbounded number of statements (i.e. PRF evaluations) online. This
gives us a more targeted problem statement:

1Calculated with Karatsuba’s multiplication algorithm per Table 6.7 in [CCD+20]
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How can we enable the prover to commit to its witness w once, and
prove an unbounded number of statements x such that R(x,w) =
1 with only symmetric key operations per instance in the ZKGC
paradigm?

This problem reduces to the task of constructing a variant of Committed
OT, where an OT receiver commits to a choice bit once and subsequently re-
ceives one out of two messages for an unbounded number of message pairs sent
by the sender. Importantly, after the sender has sent a message pair, the sender
should be able to reveal the pair at a later point without changing the messages
or learning the receiver’s choice bit. We devise a novel method that makes non-
blackbox use of any Universally Composable (UC) commitment [Can01] in the
one-time preprocessing model to solve this problem. Roughly, each OT in the
canonical instantiation of input encoding is replaced by a pair of UC commit-
ments. This is substantially more computationally efficient, as we summarize
below in Table 1.1.

On a Macbook Pro 2017 laptop (i7-7700HQ CPU, 2.80GHz) running OpenSSL
1.1.1f: a single AES-128 invocation takes 0.07µs, SHA-512 takes 0.3µs, and a
Curve25519 exponentiation takes 59.8µs. This data in combination with Ta-
ble 1.1 suggests that our technique for preprocessing Committed OT can per-
form input encoding an order of magnitude faster than using the fastest plain
OT.

Scheme Comp. Comm. (bits) Estd. runtime
OT [CO15] 5 exponentiations 1152 299µs
This work 240 · F + 31 · CRHF 5120 26.1µs

Table 1.1: Cost per bit of the witness (send+receive+open), per instance not
including preprocessing. Parameters: 128 bits of computational security, 60 bits
of statistical security. Estimated runtime with AES for F, SHA-512 for CRHF,
and Curve25519 for exponentiations.

Beyond Stateless Deterministic Signing. This pattern of proving an un-
bounded number of statements about the same private input is not unique to
threshold signing. Consider the example of distributed symmetric key encryp-
tion [AMMR18]: Servers A and B (one of which may be malicious) hold keys
kA, kB respectively, and comprise one endpoint of a secure channel. Cipher-
texts on this channel are of the form (r,m ⊕ FkA

(r) ⊕ FkB
(r)), and so encryp-

tion/decryption requires the servers to reveal FkA
(r),FkB

(r) and prove correct
evaluation.

Intuition. Recall that a UC commitment scheme must be ‘straight-line ex-
tractable’, i.e. there must exist an extractor algorithm Ext, which when given
a commitment C to message m and a trapdoor ek should efficiently output m.
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Our insight is to run Ext to implement the committed OT receiver, even though
its utility in the context of the UC commitment is simply as a ‘proof artefact’
which is never executed in a real protocol. Roughly, we generate a pair of com-
mitment keys ck0, ck1 for the OT sender during the preprocessing phase, and
give the trapdoor ekb corresponding to ckb to the OT receiver, where b is the
choice bit. To send a message pair (m0,m1) the sender commits to m0 using
ck0 and m1 using ck1, of which the receiver retrieves mb by invoking Ext with
ekb. In order to ‘open’ its messages, the sender simply runs the decommitment
phase of the UC commitment scheme. The novelty in this approach lies in our
use of the extraction trapdoor ek, which is an object that only appears in the
security proof of a UC commitment (but not in the ‘real’ world), to construct a
concrete protocol. The real-world OT receiver essentially runs the simulator of
the UC commitment scheme.

1.4.2 Exponentiation Garbling Gadget

We design a gadget to garble the exponentiation function fG(x) = x ·G at very
low cost. The gadget takes as input a standard Yao’s garbled circuit style encod-
ing of a bit string x (i.e. keys (kxi

i )i∈[|x|]), and outputs a convenient algebraic
encoding of this value Z = (ax+ b) ·G for some secret a, b ∈ Z∗q .

A similar effect is achieved by Chase et al. [CGM16] by garbling an explicit
multiplication circuit. However our gadget is drastically more efficient, as sum-
marized below in Table 1.2.

Scheme Asymptotic Comm. Concrete Comm. Calls to KDF
[CGM16] Õ(s · |q| · κ) 1024KB 64000
Our gadget O(|q| · κ) 8.2KB 1024

Table 1.2: Cost to apply algebraic MAC z = ax+ b to a secret x encoded in a
garbled circuit. Concrete costs are given for |q| = 256, s = 60, and κ = 128, with
the HalfGates [ZRE15] garbling scheme. KDF is the cipher used for garbling.

This leads to significant savings, as stated earlier the MAC computation
alone would have dominated bandwidth cost.

Beyond Stateless Deterministic Signing. This gadget cuts down the heavy
MAC computation in [CGM16] by a factor of 125, and therefore is useful for
composite statements where the Boolean circuit size for the non-algebraic com-
ponent is smaller or comparable in size to Õ(s · |q|). Concretely bandwidth
savings can range from ∼ 90% for AES-128, to ∼ 70% for SHA-256. The latter
translates significant bandwidth savings in the context of proving knowledge of
an ECDSA signature [CGM16].

Intuition. The gadget is inspired by the Oblivious Linear Evaluation tech-
nique of Gilboa [Gil99]. The ciphertexts are structured so that the evaluator
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always decrypts zi = bi + xi ·ui ·a on wire i, where a and b =
∑
i bi are the gar-

bler’s MAC keys and x = 〈u,x〉. Adding up z =
∑
i zi yields z = ax+ b, which

is the desired arithmetic encoding, and allows for easy exponentiation outside
the garbled circuit. This self-contained gadget can be expressed as a garbling
scheme and proven secure as such.

We are therefore able to construct a highly efficient zero-knowledge proof
system, where a prover commits to a some nonce derivation key k during key
generation, and subsequently proves correct nonce derivation, i.e. R = Fk(m) ·G
for an unbounded number of messages m that are signed online. Simply aug-
menting the semi-honest threshold signing protocol sketched earlier with this
zero-knowledge proof yields an n-party stateless deterministic threshold signing
protocol that is secure against n− 1 malicious corruptions.

2 Related Work
Resettable Zero-knowledge (rZK). The notion of rZK introduced by Canetti
et al. [CGGM00] allows an adversarial verifier to arbitrarily reset a prover, and
requires zero-knowledge to hold even in the absence of fresh randomness for
the prover upon being reset. This achieves stateless determinism as we require,
and indeed the attacks discovered by Canetti et al. on canonical protocols when
confronted with such an adversary are of the same flavour as the one in Sec-
tion 1.2. However the adversarial model that we consider in this work is weaker
for two reasons: one is that the prover and verifier are allowed a one-time reset-
free interactive setup phase, and the other is that in case an abort is induced at
any point no further interaction will occur. Therefore rZK protocols would be
overkill for our setting.

MuSig-DN. The closest work to ours is the very recent work of Nick et al. [NRSW20],
in which the authors construct a two-round multisignature scheme called MuSig-
DN which enforces deterministic nonces with security against n−1 out of n ma-
licious corruptions. Their protocol achieves stateless deterministic signing for
Schnorr signatures, however their approach diverges from ours in two significant
ways:

• The security of the PRF they use for nonce derivation is based on the Deci-
sional Diffie-Hellman assumption over a carefully chosen custom elliptic curve
that supports efficient proofs. While this offers a nice tradeoff between the ef-
ficiency of proving statements about arithmetization-friendly primitives and
plausibility of assumptions, the assumption is not exactly the same as DDH
over a standardized curve.

• They opt for a SNARK-based approach (specifically Bulletproofs [BBB+18]),
which is very communication efficient (around a kilobyte for a proof) but
computation intensive; they report 943ms on commodity hardware for a single
execution.
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In contrast, our dishonest majority protocol occupies a different point on the
spectrum: it supports standardized ciphers for nonce derivation, and is compu-
tationally very light at the expense of higher bandwidth.

Threshold EdDSA. Due to the fact that the EdDSA signing algorithm de-
rives r as a non-linear function of some preprocessed seed, securely comput-
ing EdDSA in a threshold setting exactly as per its specification is quite chal-
lenging. Current implementations of threshold EdDSA either require elaborate
(randomized) MPC protocols [BST21] or abandon deterministic nonce deriva-
tion altogether and simply implement randomized threshold Schnorr over the
correct curve [LPR19]. As an example, the Unbound library [LPR19] drops the
determinism requirement with the justification that a nonce jointly sampled in
a multiparty protocol will be uniformly random if even one of the parties uses
good randomness. However this does not protect a device using bad random-
ness from a malicious adversary controlling a party in the system. Moreover we
contend that in practice it is common for all parties in the system to be using
similar implementations, hence inducing correlated randomness-related vulner-
abilities. Additionally faults/bugs may occur at the system or hardware levels,
which further motivates the need for threshold signing protocols that do not
assume that any party in the system has reliable randomness.

In this work we are not concerned with exactly computing the correct EdDSA
signing equation in a distributed setting, as this will likely require expensive
MPC [BST21]. Instead we would like to construct a threshold Schnorr protocol
that embodies the spirit of deterministic nonce derivation; in particular our
primary goal is to construct a multiparty protocol to compute Schnorr signatures
where each particpant runs a deterministic and stateless signing algorithm. Also
note that the work of Bonte et al. [BST21] is in the incomparable honest majority
setting, and highly interactive.

3 Our Techniques
The task at hand can be roughly characterized as follows: parties in the system
first sample some state during a “key generation” phase. When given a message
to sign later, they must securely derive the signing material from the joint state
they sampled earlier. Moreover, this derivation must be deterministic and should
not create new state, i.e. signing material for each message must only rely on the
key generation state and the message itself. The template of sampling a PRF
key during key generation and applying this PRF on the message to be signed
to derive signing material works well in the semi-honest setting as discussed,
but falls apart when adversaries deviate from the protocol.

The canonical method to upgrade a semi-honest protocol to malicious secu-
rity without an honest majority is for parties to commit to some initial random-
ness, and subsequently prove that they computed each message honestly relative
to the committed randomness [GMW87]. What this entails for threshold Schnorr
is for parties to commit to a PRF key during distributed key generation, and
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when signing a message, prove that the discrete log of their claimed nonce is
indeed the result of applying the PRF on the public message using the com-
mitted key. In particular for some public x,Ri,Commit(ki), party Pi must prove
that Fki

(x) ·G = Ri where F is a PRF. We encapsulate this mechanism in the
functionality FF·G later in this paper.

3.1 What existing proof technologies suit our task?
As per our desiderata that we set in Section 1.3, we wish to prioritize standard
assumptions, light computation, and retaining round efficiency. We examine the
different proof technologies available to us with this lens, as follows:

SNARK-based. The recent progress in succinct proof systems [BFS20,
BCR+19, BBB+18, Gro16] provides a tempting avenue to explore, as a SNARK
attesting to the correctness of nonce generation yields a conceptually simple
approach. We highlight here that we wish to rely on standard assumptions, the
implication being that we would like to use a time-tested and vetted, preferably
standardized PRF. While there has been tremendous progress in constructing
SNARK/STARK-friendly ciphers [BSGL20], efficiently proving statements in-
volving more traditional non-algebraic ciphers (such as SHA/AES) has remained
elusive using any SNARK technology. For instance the fastest such succinct proof
system at present (Spartan [Set20]) would require over 100ms to prove a single
AES computation (≈ 214 R1CS constraints [Kos]) on a modern laptop as per
their implementation.

Generic MPC. Advances in generic MPC [KRRW18, HSS17, KPR18] have
brought the secure computation of sophisticated cryptographic functions into the
realm of practicality. However they are all inherently interactive and random-
ized (with many being heavily reliant on preprocessing), posing fresh challenges
in the deterministic/stateless setting. Additionally even the most advanced con-
stant round techniques [KRRW18, HSS17] require several rounds of interaction,
marking a departure from conventional threshold Schnorr which needs only three
rounds.

Zero-knowledge for Composite Statements. Chase et al. [CGM16] con-
struct two protocols in the ZKGC paradigm [JKO13] that bind algebraic and
non-algebraic bitwise encodings of the same value, so that the algebraic encoding
may be used for efficient sigma protocols while the non-algebraic encoding can
be used to evaluate a garbled circuit. Roughly, the two methods are as follows,
with the following tradeoffs:

1. Homomorphic bitwise commitments to the witness: This method produces
smaller proofs, and is even extended to the MPC-in-the-head setting by
Backes et al. [BHH+19]. However this fundamentally requires exponentiations
for each bit of the input, i.e. O(|q|) asymptotically and hundreds concretely
for our parameter range, which would require many tens of milliseconds at
least to compute on commodity hardware. We therefore do not pursue this
line further.

2. Algebraic MAC applied to the witness: This method produces larger proofs, as
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the MAC is computed by garbling an Õ(s · |q|) circuit. However this avoids
public key operations (besides OT) and presents a promising direction to
investigate.

Equipped with an understanding of the landscape of proof systems, we expand
on the results that we summarized in Section 1.4.

4 Organization
We first establish the technical background in Section 5. We then expand on
our solutions to the gaps that we identified in Section 1.4: Section 6 details the
garbling gadget for exponentiation, and Section 7 elaborates on how to construct
Committed OT from UC Commitments. Section 8 shows how to combine these
ideas to build a nonce verifying mechanism, and finally Section 9 constructs an
n-party protocol resilient to n− 1 corruptions based on this mechanism.

5 Preliminaries
Security Model. We construct and prove our protocols secure in the Universal
Composability framework of Canetti [Can01]. We assume synchronous networks,
with well-defined upper bounds on adversarial message delay.
Standard Helper Functionalities.We define choose all-but-one OT F( `

`−1)OT
in Appendix B, and some other useful standard functionalities in Appendix C.

5.1 Garbling Schemes and Zero-knowledge
We first recall the syntax of garbled circuits, in the language of Bellare et
al. [BHR12]. A garbling scheme G comprises: a garbling algorithm Gb that on
input a circuit C produces a garbled circuit C̃ along with encoding information
en and decoding information de. The encoding algorithm En maps an input x
to a garbled input X̃ relative to en. The evaluation algorithm Ev then evaluates
C̃, X̃ to produce a garbled output Ỹ , which is then decoded by De using de
to a clear output y. The verification algorithm Ve given C̃, en validates their
well-formedness, and extracts the decoding information de if they are so.

For the purpose of the paper, we will assume that G is projective [BHR12],
i.e. garbled input X̃ = (eni,xi

)i∈[|x|]. We require the garbling scheme to be
privacy-free [FNO15], i.e. satisfy two main security properties:

• Authenticity2: let C̃, en, de ← Gb(C, 1κ) and X̃ ← En(x, en), and ŷ 6= C(x)
for an adversarially chosen C, x, ŷ. It should be computationally infeasible for

2This is slightly weaker than the standard notion of authenticity [BHR12], which requires
that any output other than C(x) is hard to forge. It is sufficient for ZKGC if it is hard to forge
an output only for any ŷ 6= C(x) specified before C̃, X̃ are generated. Our gadget achieves
this weaker notion, however it can easily be upgraded to the stronger notion if required by
executing the gadget twice with independent randomness, and checking that they decode to
the same output.
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any PPT adversary A(C̃, X̃) to output Ẑ such that De(de, Ẑ) = ŷ.

• Verifiability: given C̃, en, the algorithm Ve produces decoding information
de if C̃ is well-formed (i.e. a legitimate output of Gb). Alternatively if C̃ is
malformed, Ve outputs ⊥ with certainty.

Additionally we need ‘Uniqueness’, i.e. that ifC(x) = C(x′), then Ev(C̃,En(en, x)) =
Ev(C̃,En(en, x′)) for any valid C̃, en. We give the formal definitions in Ap-
pendix D.

5.1.1 Committed Oblivious Transfer

Committed Oblivious Transfer (COT) offers the same interface as regular OT,
but it also allows a ‘reveal’ phase where the both the sender’s messages are
revealed to the receiver, while the receiver’s choice bit stays hidden. We encap-
sulate this notion (along with additional bookkeping to account for statelessness)
in functionality F∗COT. Additionally in order to facilitate a round compression
optimization in the higher level protocol, F∗COT lets the sender lock its messages
with a ‘key’, and reveals these messages upon the receiver presenting the key.
We defer the formal details to Section 7.

5.1.2 Zero-knowledge from Garbled Circuits

We are now ready to recall a description of the original ZKGC protocol [JKO13].
The prover P holds a private witness x (of which the ith bit is xi), such that
C(x) = 1 for some public circuit C.

1. The verifier V garbles the verification circuit, C̃, en, de ← Gb(C, 1κ). Both
parties engage in |x| parallel executions of Committed Oblivious Transfer,
with the following inputs in the ith instance: V plays the sender, and inputs
eni,0, eni,1 as its two messages. P plays the receiver, and inputs xi as its
choice bit in order to receive eni,xi .

2. P assembles X̃ = (eni,xi
)i∈[|x|] locally. V sends C̃ to P , who then computes

Ỹ ← Ev(C̃, X̃), and sends Commit(Ỹ ) to V .

3. V opens its randomness from all the COTs to reveal en in its entirety

4. P checks Ve(C̃, en) = 1, and if satisfied decommits Commit(Ỹ ). V accepts iff
De(Ỹ , de) = 1

Intuitively the above protocol is sound due to authenticity of the garbling scheme:
a malicious P ∗ who inputs x′ such that C(x′) 6= 1 to the OT will receive X̃ ′ such
that De(Ev(C̃, X̃ ′), de) = 0, and so to make V accept P ∗ will have to forge a
valid Ỹ that is not the outcome of ‘honest’ garbled evaluation. Zero-knowledge
comes from the verifiability and unique evaluation properties of the garbling
scheme: an incorrect garbled circuit C̃∗ will be rejected in step 4 by P (who has
not sent any useful information to V yet), and conditioned on C̃ being a valid
garbled circuit, the uniqueness property hides which input was used to arrive at
the output.
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5.1.3 Extensions to ZKGC

The work of Chase et al. [CGM16] examines how to integrate proofs of algebraic
statements into the garbled circuit based zero-knowledge framework, in order to
prove composite statements. Roughly, their technique has P commit to a MAC
of the witness z = ax + b (computed via the garbled circuit/OT) along with
Ỹ using a homomorphic commitment scheme. Once V reveals the randomness
of the circuit, a, b become public and P leverages the homomorphism of the
commitment in order to prove additional algebraic statements about the witness
via Sigma protocols, such as the relation between x, z.

Subsequently Ganesh et al. [GKPS18] showed how to compress the original
[JKO13] protocol to three rounds using a conditional disclosure of secrets tech-
nique, essentially by having V encrypt the OT randomness necessary for step 4
using the correct Ỹ .

6 Exponentiation Garbling Gadget
In this section, we give our new garbling gadget that translates a standard Yao-
style representation of a binary string (i.e. with wire labels) to an algebraic
encoding of the same value in the target elliptic curve group. As we intend to
compose this gadget with the Half Gates garbling scheme [ZRE15] we give the
construction and proof assuming FreeXOR style keys [KS08]. Consequently we
prove security assuming a correlation robust hash function (strictly weaker than
circular correlation robustness [CKKZ12] as needed by FreeXOR/HalfGates).
Note that this structure is not required by our scheme, and security can easily
by proven assuming just PRFs if desired.
Algorithm 6.1. Gexp. Privacy-free Exponentiation Garbling Gadget

This scheme allows to garble the gadget f : {0, 1}η 7→ G, in particular
f(x) = 〈u,x〉 ·G where u ∈ (Z∗q)η is a public vector of group elements, the
vector x is a length η bit string, andG ∈ G generates an elliptic curve group
G. Note that the garbled output is encoded arithmetically, and as such can
not be composed with (i.e. fed as input to) a standard binary circuit garbling
scheme. All algorithms make use of the key derivation function KDF.

Gb(1κ, g): .

1. Sample ∆← {0, 1}κ and a← Z∗q

2. For each i ∈ [η],

(a) Sample ki ← {0, 1}κ

(b) Compute bi = KDF(i, ki)
(c) Set C̃i = KDF(i, ki ⊕∆)− (bi + ui · a)

3. Set b =
∑
i∈[η] bi and B = b ·G
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4. Compute encoding information en =
[
∆, {ki}i∈[η]

]
5. The decoding information is de = (a,B)

6. Output C̃, en, de

En(en, x): .

1. Parse
[
∆, {ki}i∈[η]

]
from en, and for each i ∈ [η]: set Xi = ki ⊕ xi ·∆

2. Output X̃ = {(xi, Xi)}i∈[η]

Ev(C̃, X̃): .

1. Parse {(xi, Xi)}i∈[η] from X̃

2. For each i ∈ [η]: Compute zi = KDF(i,Xi)− xi · C̃i

3. Compute z =
∑
i∈[η] zi, and output Z̃ = z ·G

De(de, Z̃): Parse (a,B) from de and output a−1 · (Z̃ −B)

We first give the exact definition required of KDF in order to secure the
garbling scheme. Informally, KDF is correlation robust if KDF(x ⊕∆) appears
random even under adversial choice of x when ∆ is chosen uniformly and hidden
from the adversary.

Definition 6.2 (Correlation Robust Hash Function). Let the security parameter
κ determine a 2κ-bit prime q, and be an implicit parameter in the following
stateful oracles OKDF and OR defined as follows:

• OKDF(i, x): Upon first invocation, sample ∆← {0, 1}κ. Return KDF(i, x⊕∆)

• OR(i, x): If not previously queried on x, sample F (i, x)← Zq. Return F (i, x).

A hash function KDF is correlation robust if OKDF and OR are computationally
indistinguishable to any PPT adversary with unrestricted oracle access.

We are now ready to state the security theorem for Gexp.

Theorem 6.3. Assuming KDF is a correlation robust hash function, Gexp is a
privacy-free garbling scheme for the function fu(x) = 〈u,x〉 ·G.

Proof. Correctness. Observe that for each i ∈ [η] the evaluator computes

zi = KDF(i,Xi)− xi · C̃i

Substituting C̃i = KDF(i, ki ⊕∆) − (bi + ui · a) and Xi = ki ⊕ xi ·∆ into the
above equation, we obtain:

zi = KDF(i, ki ⊕ xi ·∆)− xi · (KDF(i, ki ⊕∆)− (bi + ui · a))
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The above expression therefore simplifies to two cases:

zi =
{

KDF(i, ki) when xi = 0
bi + ui · a when xi = 1

Since KDF(i, ki) = bi, we can simplify the above to zi = bi + xi · ui · a. We
therefore have that

z =
∑
i∈[η]

zi =
∑
i∈[η]

(bi + xi · ui · a) = b+ a · 〈u,x〉

And therefore Z̃ = z · G = B + a · 〈u,x〉 · G. Clearly the decoding procedure
a−1 · (Z̃ −B) yields 〈u,x〉 ·G.

Verifiablity. Revealing en allows each bi to be computed and C̃i to be de-
crypted, and clearly if every C̃i = KDF(i, ki ⊕ ∆) − (bi + ui · a) for the same
value of a, the values C̃, X̃ will always evaluate consistently for all inputs.

Authenticity. We prove that the encoded output is unforgeable (i.e. authen-
tic) via hybrid experiments. Recall that the experiment for authenticity of a
garbling scheme works as follows: the adversary A sends a circuit f and input
x to the challenger, which then responds with C̃, X̃ where C̃, en, de ← Gb(f)
and X̃ = En(en, x). If A is able to produce valid garbled output Ẑ such that
De(de, Ẑ) 6= f(x) then the adversary wins.

Hybrid H1. We first define a hybrid experiment H1 that changes the way C̃, X̃
is computed. In particular, C̃, X̃ are jointly produced using f, x rather than by
separate garbling and encoding procedures, as detailed below:

1. Sample ∆← {0, 1}κ and a← Z∗q

2. For each i ∈ [η],

(a) Sample ki ← {0, 1}κ

(b) If xi = 0 then
i. Compute bi = KDF(i, ki)
ii. Set C̃i = KDF(i, ki ⊕∆)− (bi + ui · a)

(c) Otherwise
i. Compute bi = KDF(i, ki ⊕∆)
ii. Set C̃i = KDF(i, ki)− (bi + ui · a)

3. Set b =
∑
i∈[η] bi and B = b ·G

4. Compute X̃ = {ki}i∈[η]

5. The decoding information is de = (a,B)
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6. Output C̃, X̃, de

The distribution of C̃, X̃ in this hybrid experiment is identical to the real
experiment. Observe that the only change is that the ‘active’ key (i.e. key seen
by the evaluator) on the ith wire is defined to be ki in H1, whereas in the real
experiment the active key is ki⊕xi ·∆. As the inactive key in both experiments
is simply the active key ⊕∆, this is merely a syntactic change. Therefore we
have that for all adversaries A, functions and inputs fu,x and any string Ẑ:

Pr
[
Ẑ ← A(C̃, X̃) : (C̃, en, de)← Gb(fu), X̃ ← En(en,x)

]
= Pr

[
Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H1(fu,x)

] (1)

Hybrid H2. In this hybrid experiment, the inactive key is changed from ki⊕∆
to a uniformly random value. In particular, the code for this hybrid experiment
is identical to the last except for the following two changes:

Experiment H1 Experiment H2

Step 2(b)ii C̃i = KDF(i, ki ⊕∆)− (bi + ui · a) C̃i ← Zq
Step 2(c)i bi = KDF(i, ki ⊕∆) bi ← Zq

A distinguisher for the values (C̃, X̃) produced by H1 and H2 immediately
yields a distinguisher for the correlation robustness property of KDF. The re-
duction simply runs the code of H1, and in place of using KDF in Step 2(b)ii
and Step 2(c)i, it queries the challenge oracle O with the same arguments. In
the case that O = OKDF = KDF this exactly produces the distribution per H1,
and in the case O = OR (i.e. truly random function) the distribution per H2 is
exactly produced, resulting in a lossless reduction to the correlation robustness
property of KDF. We therefore have that there is a negligible function negl such
that for all PPT adversaries A and Ẑ ∈ G:∣∣∣∣∣ Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H2(fu,x)]

−Pr[Ẑ ← A(C̃, X̃) : (C̃, X̃, de)← H1(fu,x)]

∣∣∣∣∣ ≤ negl(κ) (2)

Hybrid H3. This hybrid experiment is the same as the last, with the exception
that C̃i ← Zq for each i ∈ [η]. This differs from Step 2(c)ii, which computes
C̃i = KDF(i, ki) − (bi + ui · a) when xi = 1. However in H2 when xi = 1 the
value bi is sampled uniformly from Zq and never exposed anywhere else in C̃, X̃
anyway, effectively acting as a one-time pad. Therefore the distribution of C̃, X̃
remains unchanged from H2. In particular,

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H2(fu,x)

]
= Pr

[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H3(fu,x)

] (3)

Hybrid H4. This experiment is the same as the last, except that the definition
of the decoding information de = (a,B) is postponed to after C̃, X̃ are defined.
This induces no change in the distribution of C̃, X̃ as in H3 they are computed
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independently of a,B. The value a is derived the same way (uniformly sampled
from Z∗q), whereas now B is computed as B = Z − a · Y where Y = fu(x) and
Z = Ev(C̃, X̃). The distribution of (a,B) is unchanged from H3, note that by
definition De(de,Ev(C̃, X̃)) = fu(x) in both experiments. Therefore:

Pr
[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H3(fu,x)

]
= Pr

[
De(de, Ẑ) = Y : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H4(fu,x)

] (4)

We can now bound the probability that an adversary is able to forge an
output: consider any Ŷ ∈ G such that Ŷ 6= Y . In order to induce De(de, Ẑ) = Ŷ ,
the adversaryA(C̃, X̃) must output Ẑ such that Ẑ−Z = a(Ŷ −Y ). As Ŷ −Y 6= 0
and a is sampled uniformly from Z∗q only after Ẑ, Z, Ŷ , Y have already been
defined, the probability that this relation is satisfied is exactly 1/(q − 1).

More precisely, for any fu, x ∈ {0, 1}η, Ŷ ∈ G such that Ŷ 6= fu(x) and
unbounded adversary A,

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, X̃, de)← H4(fu,x)

]
= 1/(q − 1) (5)

For our choice of parameters, we have 1/(q− 1) ≤ 2−κ which is negligible in
κ.

Combining equations 1-5 we conclude that for any fu, x ∈ {0, 1}η, Ŷ ∈ G
such that Ŷ 6= fu(x) and PPT adversaryA, the following probability is negligible
in κ:

Pr
[
De(de, Ẑ) = Ŷ : Ẑ ← A(C̃, X̃), (C̃, en, de)← Gb(fu), X̃ ← En(en,x)

]
The garbling scheme Gexp is therefore correct, verifiable, and authentic, and so
the theorem is hence proven.

7 Committed OT from UC Commitments
In this section, we give the details of our approach to constructing our committed
OT from UC commitments. Recall that we need an OT protocol where the
receiver commits to its choice bits during an offline phase, and the sender is
able to send (and subsequently open) message pairs relative to the same choice
bit. This is because the receiver’s choice bits will correspond to the prover’s
witness (i.e. the PRF key for nonce derivation) which can be committed once
during key generation; signing corresponds to proving different statements about
the same witness.

We give here the exact functionality F∗COT for unlockable oblivious transfer.
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Functionality 7.1. F∗COT. Unlockable Committed OT
This functionality allows a receiver R to commit to a choice bit, and sub-
sequently allows a sender S to send indexed message pairs, of which the
receiver obtains the one corresponding its choice bit. S provides a key key
to lock its messages, which R may present to unlock both messages. The
sender’s messages remain secure iff an index is never reused for two different
message pairs. Additionally any index that is ‘revealed’ subsequently offers
no security when reused. All messages are adversarially delayed.

Choose: Upon receiving (sid, choose, b) from R, and if b ∈ {0, 1} and no
such message was previously received, store (sid, chosen, b) in memory and
send (chosen) to S.

Transfer: Upon receiving (sid, transfer, ind, key, m0,m1) from S, if (sid,
chosen, b) exists in memory then:

• If R is not corrupt, store (sid, ind, key,m0,m1) and send (sid, message,
ind, mb) to R

• Otherwise:

1. If (sid, ind,m′0,m′1) exists in memory such that m0 6= m′0 or m1 6= m′1
then send (sid, reused-index,m0,m1,m

′
0,m

′
1) to R

2. If (sid, index-used, ind) exists in memory, then send (sid, revealed-
index, ind, m0,m1) to R.

3. If neither of the previous conditions hold, then store (sid, ind, key,
m0,m1) and send (sid, message, ind,mb) to R.

Reveal: Upon receiving (sid, reveal, ind, key) from R, if (sid, ind, key,m0,m1)
exists in memory, then send (sid, messages,m0,m1) toR. Store (sid, index-
used, ind) in memory.

Why is this challenging? Consider the following simple attempt at in-
stantiating this object: during the preprocessing phase, the sender samples two
PRF keys k0, k1, of which the receiver obtains kb via OT. In order to transmit a
message pair m0,m1 online, assuming some public instance-specific information
x, the sender computes c0 = Fk0(x) ⊕m0, c1 = Fk1(x) ⊕m1 and sends them
to the receiver, who is able to decrypt mb. In order to ‘open’ the messages, the
sender gives Fk0(x),Fk1(x) to the receiver, who then obtains m1−b. While this
protects the sender against a malicious receiver, the flaw lies in that it doesn’t
bind the sender to any particular message pair m0,m1. For instance during the
opening phase, the sender could provide Fk0(x), r∗ (for some r∗ 6= Fk1(x)). If
the receiver’s choice bit was 0, it does not notice this deviation and outputs
m∗1 = c1 ⊕ r∗, as opposed to m1 = c1 ⊕ Fk1(x) which would have been the out-
put if the receiver’s choice bit was 1. Inconsistencies of this flavour propagate
upwards to induce selective failure attacks in the ZKGC protocol. We leave the
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exact attack implicit. This issue is easily solved by using a PRF which allows
outputs to be efficiently verified such as a Verifiable Random Function [MRV99].
However to the best of our knowledge, all such known primitives require public
key operations, which would defeat the purpose of having moved the OTs offline.

To recap our idea: assume that C is a commitment scheme that permits
straight-line extraction. In particular there exists an extractor which, given a
commitment and an extraction key ek (corresponding to the commitment key
ck), outputs the committed message. This is a property that is conducive to
arguing security under concurrent composition [Can01]. However in the ‘real’
protocol no party has ek; the receiver has a verification key vk which it uses
to validate openings to commitments, but the existence of ek is only required
for the proof. We will characterize the commitment scheme as a collection of
concrete algorithms (rather than working in an FCommit hybrid model) and so
in principle the trapdoor ek can created by a generic setup functionality and
given to the receiver. We use such a commitment scheme to realize the notion
of committed OT that we need as follows: create two pairs of keys (ck0, vk0, ek0)
and (ck1, vk1, ek1), and provide sender S with both ck0, ck1 and receiver R with
ekb, vk1−b. In order to send a message pair m0,m1, S commits to m0 using
ck0 and m1 using ck1. Then R is able to extract mb using ekb immediately.
Subsequently when it’s time to reveal both messages, S provides decommitment
information for m0,m1, and R uses vk1−b to validate m1−b.

In more detail, the commitment scheme C comprises the following algorithms:

• One-time setup:

– Gen-ck(1κ; ρS) 7→ ck. Samples the committer’s key with randomness ρS .
– Gen-vk(ck; ρR) 7→ vk. Samples the receiver’s verification key using ck with

randomness ρR.
– Gen-ek(ck) 7→ ek. Determines the extraction key given ck.
– Gen-td(vk) 7→ td. Determines the trapdoor for equivocation given vk.

• Per message with index ind:

– Commit(ck, ind,m) 7→ C, δ. Produces commitment C and decommitment
information δ for message m and index ind.

– DecomVrfy(vk, ind,C, δ,m) 7→ {0, 1}. Commitment verification by R.
– Ext(ek, ind,C) 7→ m ∪ {⊥}. Extracts the committed message from C.
– SCom,R∗(td). A simulator that produces and equivocates commitments.

Rather than enumerating a series of definitions that the scheme must satisfy, we
use the above interface to construct a protocol, and require that the protocol
must UC-realize our commitment functionality. The structure of the commit-
ment functionality FCom and the protocol πCom and Simulator SCom are straight-
forward in their usage of C. Protocol πCom makes use of a helper functionality
F setup

Com which simply runs the one-time setup algorithms. We give the formal
details in Appendix A.
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Commitment schemes that are of interest to us allow protocol πCom to be
simulated by simulator SCom with respect to functionality FCom. Also note that
by virtue of the definition, commitment is inherently stateless; no state has to
be maintained across commitment instances that use different ind values.

Definition 7.2. A commitment scheme C is a preprocessable UC commit-
ment if protocol πCom[C] can be simulated by SCom[C] with respect to functional-
ity FCom in the UC experiment where an adversary statically corrupts up to one
party, in the F setup

Com -hybrid model.

We stress that while we refer to C as the preprocessable UC commitment
scheme, the actual protocol for the UC experiment is πCom[C], which is merely
a wrapper for the algorithms specified by C.

7.0.1 Instantiating FCom

Efficiently instantiating the UC commitment functionality (of which FCom is a
relaxation) has been studied extensively in the literature [DN02, Lin11, CJS14].
However the subset of such works most relevant here are those that operate in the
offline-online paradigm, where expensive message-independent public key oper-
ations are pushed to an offline phase and (de)committments online only require
cheap symmetric key operations. Such protocols have been constructed in a line
of works [DDGN14, GIKW14, CDD+15, FJNT16] where a number of oblivious
transfers are performed offline to establish correlations, and (de)committing on-
line derives security from the fact that the receiver knows some subset (but not
all) of the sender’s secrets. Some of these works [CDD+15, FJNT16] are quite
practical; their technique is roughly to have the sender commit to a message by
first encoding it using an error correcting code, then producing additive shares of
each component of the resulting codeword, and finally sending the receiver each
additive share encrypted by a pseudorandom one-time pad derived by extending
a corresponding PRG seed. The receiver has some subset of these seeds (chosen
via OT offline) and obtains the corresponding shares of the codeword. The com-
mitted message stays hidden as the receiver is missing one additive share of each
component. To decommit, the sender reveals the entire codeword and its shares,
and the receiver checks consistency with the shares it already knows. Soundness
comes from the property that changing the committed message requires chang-
ing so many components of the codeword that the receiver will detect such a
change with overwhelming probability. The trapdoor for extraction is the entire
set of PRG seeds that are used to encrypt the codeword components. As the
sender must encrypt a value that is close to a codeword using these seeds, the
extractor is able to decrypt and decode the near-codeword to retrieve the com-
mitted message. Extraction is possible as the simulator knows all PRG seeds,
and the sender must have encrypted a value sufficiently close to a real codeword
in order to have a non-negligible chance of the receiver accepting it later.

Cascudo et al. [CDD+15] report a concretely efficient instantiation of this
idea by using binary BCH codes. However existing constructions are designed
to amortize the cost of (de)committing large numbers of messages, and as such
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they are heavily reliant on maintaining state for the PRG. It is feasible to modify
their constructions to be stateless by the standard method of replacing the PRG
with a PRF, but the resulting cost per instance would save little compared to
exponentiation; for instance the protocol of Frederiksen et al. [FJNT16] would
require over 800 PRF invocations per instance at a 40 bit security level. While
this cost disappears over many simultaneous instances in their setting, we un-
fortunately can not amortize our costs as independent instances must not share
state.

Our Technique. Our commitment scheme essentially implements the same
high-level idea, but with a repetition code. The sender S has ` PRF keys k1, · · · , k`,
of which the receiverR is given a random subset of `−1 (say all but i ∈ [`]). In or-
der to commit to a message µ for index ind, S sends Fk1(ind)⊕· · ·⊕Fk`

(ind)⊕µ
to the receiver. In order to decommit, S reveals µ and Fk1(ind), · · · ,Fk`

(ind),
given which R computes F∗ki

= µ
⊕

j∈[`]\i Fkj (ind) and verifies that it matches
Fki claimed by S. Intuitively, S has to guess exactly which key R is missing
in order to fool it. This has soundness error 1/`, however simply repeating this
procedure sufficiently many times in parallel (with independent keys) boosts the
protocol to have negligble soundness error. This description omits some details,
such as how the repetitions are bound together, and optimizing communication,
so we describe the commitment scheme itself in terms of the language we laid
out earlier.
Algorithm 7.3. C. Commitment scheme

This set of algorithms instantiates a commitment scheme C. The security
parameter κ fixes statistical security parameter s and integers ` and r such
that r log2(`) = s. The (de)commitment protocols make use of a random
oracle RO for equivocation, but notably the extractor does not observe
queries to the RO (meaning that it can be run without a backdoor for RO).
The protocols additionally use a collision resistant hash function CRHF.

Gen-ck(1κ; ρS): .

1. For each j ∈ [r] and l ∈ [`], sample kj,l ← {0, 1}κ

2. Sample k∗ ← {0, 1}κ

3. Output ck = k∗, {kj,l}j∈[r],l∈[`]

Gen-vk(ck; ρR): .

1. Parse {kj,l}j∈[r],l∈[`] from ck, and for each j ∈ [r], sample integer
ij ← [`]

2. Output vk =
{

(kj,l)l∈[`]\ij

}
j∈[r]

Gen-ek(ck): Output ck
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Gen-td(vk): Output {ij}j∈[`]

CommitRO(ck, ind,m): .

1. Compute µ = Fk∗(ind), and for each j ∈ [r] set ctj = µ
⊕
l∈[`]

Fkj,l
(ind)

2. Set ct = {ctj}j∈[r] , h = RO(µ), ξ = µ⊕m

3. Set δ = CRHF
({

Fkj,l
(ind)

}
j∈[r],l∈[`]

)
, and output C = (ct, h, ξ), δ

DecomVrfy(vk, ind,C, δ,m): .

1. Parse {ij}j∈[`] = vk, and ct, h, ξ from C

2. Compute µ = m⊕ ξ and verify RO(µ) ?= h

3. For each j ∈ [r] compute F∗j,kij
= µ⊕ ctj

⊕
l∈[`]\ij

Fkj,l
(ind)

4. For each j ∈ [r], set F[j, l] = Fkj,l
(ind) for l ∈ [`] \ ij and F[j, ij ] =

µ⊕ ctj
⊕

l∈[`]\ij
Fkj,l

(ind)

5. Verify δ ?= CRHF
(
{F[j, l]}j∈[r],l∈[`]

)
Ext(ek, ind,C): .

1. Parse {kj,l}j∈[r],l∈[`] from ck, and ct, h, ξ from C

2. For each j ∈ [r], compute µ∗j = ctj
⊕
l∈[`]

Fkj,l
(ind)

3. If ∃j ∈ [r] such that RO(µ∗j ) = h, then output m = µ∗j ⊕ ξ

4. If no such µ∗j exists, then output ⊥

SCom,R∗(td): See proof of Theorem 7.4.

Theorem 7.4. Assuming F is a pseudorandom function and CRHF is a collision
resistant hash function, C is a preprocessable UC commitment in the local random
oracle model.

Proof. (Sketch.) Recall that the actual protocol for the UC experiment is πCom[C].
We first argue why the extractor Ext succeeds except with probability 2−s. First
note that except with negligible probability, there is at most one µ queried to RO
such that RO(µ) = h. The extractor iteratively computes µ∗j = ctj

⊕
l∈[`]

Fkj,l
(ind)

to find this µ. We analyze the exact event in which the extractor fails but the
sender produces an accepting decommitment m∗, δ∗. Define µ∗ = m ⊕ ξ. Con-
sider the state induced by running DecomVrfy on these inputs but a pair of
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distinct vk, vk′: as vk 6= vk′ there must exist j ∈ [`] such that ij 6= i′j (where i, i′
are parsed from vk, vk′ respectively). As the extractor failed, we know that

ctj
⊕
l∈[`]

Fkj,l
(ind) 6= µ∗

This means that when using vk, DecomVrfy computes

F[j, ij ] = µ∗ ⊕ ctj
⊕

l∈[`]\ij

Fkj,l
(ind) 6= Fkj,ij

(ind)

whereas when using vk′, DecomVrfy computes F[j, ij ] = Fkj,ij
(ind). As this in-

duces a disagreement about the set {F[j, l]}j∈[r],l∈[`] when using vk, vk′,DecomVrfy
will not accept on both inputs (unless there’s a collision in CRHF). As there are
2s different choices of vk and no two choices lead to DecomVrfy accepting the
same m∗, δ∗, the probability that the adversary is successful in inducing the
extractor to fail is at most 2−s.

Equivocation is easier to show: the simulator can run the honest algorithm
with a dummy message, and by PRF security the value µ is hidden from the
verifier (as vk omits one PRF key in each set). In order to equivocate to a message
m, the simulator simply programs RO on input µ so that RO(µ)⊕ ξ = m.

How to implement the setup? Observe that the structure of the verification
key is to choose all but one out of the ` keys in each of the r batches. This is
directly achieved by r invocations of F( `

`−1)OT.
Efficiency. A commitment to a message m (assume |m| = κ) is of size

(r + 3) · κ bits, and in terms of computation requires r · ` PRF evaluations and
hashing a r ·` ·κ bit message via CRHF. Decommitment requires the same effort.

Parameters. Looking ahead, we will introduce a privacy amplifying op-
timization in the ZKGC protocol so that for s bits of statistical security, the
receiver’s security in the Committed OT protocol it uses (and therefore sound-
ness of the Commitment scheme under the hood) need only achieve s/2 bits of
statistical security. We therefore calibrate our parameters here appropriately.
A reasonable instantiation of parameters would be ` = 4, s = 30, κ = 128,
and r = 15 (i.e. a 30-bit statistical soundness level) with AES-128 as the PRF,
and SHA-512 as the CRHF and RO. This means that a single commitment to a
128-bit message requires 288 bytes (32 bytes to decommit), 60 AES-128 evalu-
ations, and hashing a 0.96 kilobyte message via SHA-512. The work done by R
in verifying a commitment is almost the same. Looking ahead, we will use a pair
of these commitments to replace a single OT instance, providing a significant
improvement in computation time.

7.1 Committed OT from Preprocessable UC Commitments
Using commitment scheme C, we now have an clean template for a protocol to
build committed OT. We first define a helper functionality F setup

COT to handle the
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preprocessing stage. Intuitively,F setup
COT samples two commitment keys ck0, ck1 for

the sender and corresponding verification and extraction keys vk0, vk1, ek0, ek1,
and gives vk0, vk1, ekb to the receiver upon its choice of bit b. The formalism is
straightforward and so we postpone it to Appendix B. Unfortunately it is unclear
how to generically construct F setup

COT using the commitment scheme, but for our
specific case we can construct a custom protocol based on the same Bellare-
Micali construction that we used for F( `

`−1)OT. We give the exact construction
in Appendix B.
Protocol 7.5. πCOT[C]. Committed Oblivious Transfer

This protocol is run between a sender S and a receiver R, and is param-
eterized by a commitment scheme C. This protocol makes use of the ideal
oracle F setup

COT and random oracle RO : {0, 1}∗ 7→ {0, 1}4κ.

Setup: R has private input b ∈ {0, 1}

1. S and R send (sid, init) to F setup
COT

2. R additionally sends (choose, b) to F setup
COT , and receives

(sid, keys, ekb, vk0, vk1) in response.

3. S receives (sid, ck-keys, ck0, ck1) from F setup
COT

Transfer: S has private inputs m0,m1, key, and ind is public input.

1. S computes C0, δ0 = Commit(ck0, ind,m0) and
C1, δ1 = Commit(ck1, ind,m1)

2. S encrypts the decommitment information with key as ν = RO(key)⊕
(m0, δ0,m1, δ1)

3. S sends C0,C1, ν to R

4. R outputs mb = Ext(ekb, ind,Cb)

Reveal: R does the following with inputs ind and key:

1. R computes (m0, δ0,m1, δ1) = RO(key)⊕ ν

2. R outputs
DecomVrfy(vk0, ind,C0, δ0,m0) ∧ DecomVrfy(vk1, ind,C1, δ1,m1)

Theorem 7.6. Assuming C is a preprocessable UC commitment (Def. 7.2),
protocol πCOT UC-realizes F∗COT in the presence of an adversary corrupting up
to one party, in the F setup

COT -hybrid random oracle model.

The theorem directly follows from the definition of preprocessable UC com-
mitments, and the fact that encryptions with the random oracle carry no infor-
mation until the correct pre-image is queried.
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7.1.1 Efficiency

There are three components to analyze: the setup, transfer, and reveal phases.
Setup. We do not analyze the exact cost of setup, beyond that it requires

O(`rκ/ log κ) curve multiplications, and as many field elements transmitted.
Transfer and Reveal. This is the important metric, as the transfer and

reveal phases are executed when a message has to be signed. A transfer consists
of two independent instances of preprocessable UC commitments for S, of which
R simply receives one and runs Ext on the other. A reveal requires no work
for S, and two decommitment verifications for R. In our specific instantiation,
the work done by S when committing and R when verifying is roughly the
same. Additionally R can reuse the work of Ext in verifying a commitment.
Based on Section 7.0.1, the work done by each party in total for a transfer
and reveal of a message pair is 120 AES invocations, and hashing a 1.92KB
message via SHA-512. The bandwidth consumed is two UC commitments and
their decommitments, so 0.64KB. Note that these parameters are for a 30-bit
statistical security level, which is inadequate by itself, but will be sufficient in
the ZKGC context due to a privacy amplifying technique.

8 Provable Nonce Derivation
In order to clarify the target, we give the ideal functionality FF·G for proving
deterministic nonce derivation, with a conditional disclosure property woven in.
Functionality 8.1. FF·G. Deterministic Nonce Derivation

This functionality is accessed by a prover P and a verifier V , and is param-
eterized by the keyed function F : {0, 1}κ × {0, 1}κ 7→ Zq, and the group
(G, G, q). In principle, the public instance x = (m,R∗m) for which the prover
has witness w = k satisfies relation f(x,w) only when R∗m = Fk(m) ·G. All
messages are adversarially delayed.

Key Generation: This phase is run exactly once for each sid. Any re-
quests to the functionality with an sid for which Key Generation has not
yet been run are ignored.

1. Wait to receive (sid, input-key, k) from P .

2. If k ∈ {0, 1}κ, then store (sid, key, k) and send (sid, initialized) to
V .

Verify Nonce: Upon receiving (sid, verify-nonce,m,R∗m) from P and
(sid, verify-nonce,m,R∗m, z) from V , if (sid, key, k) exists in memory,m ∈
{0, 1}κ, and R∗m ∈ G then:

1. Compute rm = Fk(m) and Rm = rm ·G.
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2. If R∗m
?= Rm then send (sid, secret,m, z) to P and then

(sid, verified,m,R∗m) to V . Otherwise send (sid, fail,m,R∗m) to V .

This is essentially a specific instantiation of the standard zero-knowledge
functionality, with the exception that the prover commits its witness w first,
and subsequently multiple statements x are supplied to the functionality, which
verifies that R(x,w) = 1. This is directly achieved by replacing the commit-
ted OT functionality used by ZKGC with F∗COT which allows the receiver to
commit to a choice bit and subsequently receive/open multiple message pairs
independently without ever revealing the choice bit. Note that the circuit to
be garbled (C(k, x) = Fk(x) · G) is supported by HalfGates with our garbling
gadget. Finally, the disclosure of the secret z conditioned on the validity of
the statement/witness is the same as the technique introduced by Ganesh et
al. [GKPS18]. We give the explicit protocol below.
Protocol 8.2. πF·G. Deterministic Nonce Derivation

This protocol is parameterized by the security parameter κ, elliptic curve
group (G, G, q) (|q| = 2κ), PRF F : {0, 1}κ × {0, 1}κ 7→ Zq, vector u, and
two parties Prover P and Verifier V . This protocol makes use of the ideal
oracle F∗COT, random oracle RO : {0, 1}∗ 7→ Zq, and garbling scheme G.
Denote by F ·G the circuit C(k, x) that computes bit vector y = Fk(x) via
the Boolean representation of F, and outputs Y = 〈u,y〉 ·G

Key Registration: Run once, with P using private input k:

1. P computes the bit decomposition of k as k0k1k2, · · · kκ

2. For each i ∈ [κ], P sends (i, choose, ki) to F∗COT

3. V waits to receive (i, chosen) from each i ∈ [κ]

4. V samples kV ← {0, 1}κ

Derive Nonce: With common input m ∈ {0, 1}κ and Rm ∈ G, and secret
input z for V :

1. P and V compute ind = CRHF(m,Rm)

2. V does the following:

(a) Derive randomness needed for garbling, ρG = RO(kV , ind, Gb)
(b) Generate garbled circuit C̃, en, de = Gb(F ·G; ρG)
(c) Parse encoding and decoding information (eni,0, eni,1)i∈[κ] = en and

(a,B) = de respectively
(d) Compute the OT key key = a ·Rm +B

(e) Compute the CDS ciphertext ζ = RO(key)⊕ z
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(f) Send (C̃, ζ) to P
(g) For each i ∈ [κ], send (i, transfer, ind, key, eni,0, eni,1) to F∗COT

3. Upon receiving (C̃, ζ) from V and (i, message, ind, eni,ki
) for each i ∈ [κ]

from F∗COT, P does the following:

(a) Assemble garbled input X̃ = (eni,ki)i∈[κ] and evaluate the garbled
circuit to obtain Ỹ = Ev(C̃, X̃). Set key = Ỹ

(b) For each i ∈ [κ]: Send (i, ind, key) to F∗COT and receive (eni,0, eni,1)
in response

(c) Assemble encoding information en = (eni,0, eni,1)i∈[κ]

(d) Verify that Ve(C̃, en) = 1, and send key to V if so
(e) Output the CDS value z = ζ ⊕ RO(key)

4. V accepts if the correct key is received from P .

The proof of security for this protocol is essentially identical to that of
Jawurek et al. [JKO13]. We give a sketch here for completeness.

Theorem 8.3. Assuming G is a privacy-free garbling scheme and CRHF is
a collision-resistant hash function, πF·G UC-realizes FF·G in the presence of an
adversary statically corrupting up to one party, in the F∗COT-hybrid local random
oracle model.

Proof. (Sketch) We describe how to simulate when the prover and verifier are
corrupt as separate cases, and subsequently argue indistinguishability from the
real execution.

Corrupt prover P ∗. The prover P ∗ has little room to cheat. As the verifier
has no private input, the simulator simply runs the verifier’s code, with the
only difference being that rather than accepting/rejecting based on whether P
produces key alone, the simulator rejects any instancem,R∗ where R∗ 6= Fk(m)·
G (as per k received on behalf of F∗COT). In order to argue indistinguishability
from the real protocol, it suffices to show that P ∗ is unable to derive key for
any instance R∗ 6= Fk(m) · G. Given an adversary P ∗ that claims at most N
derived nonces, runs in time T , and succeeds in falsely proving at least one
incorrect nonce with probability ≥ ε, we construct an efficient adversary for the
authenticity property that succeeds with probability ≥ ε/(NT ). The reduction
works as follows:

1. Receive k on behalf of F∗COT, and sample i← [N ]

2. Run the code of honest V for every instance of nonce derivation except in-
stance i

3. Compute the correct nonce for this ith instance, Rm = Fk(m) ·G
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4. If the P ∗’s claimed nonce for this instance R∗m = Rm, then abort

5. If not, then send F ·G, (k,m,R∗m) to the authenticity challenger, and receive
C̃, X̃ in response.

6. Sample ζ ← {0, 1}κ, and send X̃ to P ∗ component wise on behalf of F∗COT

7. Send C̃, ζ to P ∗ for the ith instance on behalf of V

8. If P ∗ does not send key to V , upon P ∗ terminating (in which case Ŷ = key),
choose Ŷ at random from the set of queries made by P ∗ to RO combined
with the set of key values sent to the ‘reveal’ interface of F∗COT

9. Send Ŷ to the authenticity challenger and halt.

Note that the view of P ∗ in this reduction is the same as in the real protocol, up
until the point that it queries key to RO orF∗COT for the ith instance. Conditioned
on the adversary having created a valid forgery (probability ≥ ε), the reduction
finds the correct index for the forgery with probability ≥ 1/N , and subsequently
the correct query made to RO /F∗COT with probability ≥ 1/T . Overall, the
advantage of the reduction is therefore ≥ ε/(NT ). As N,T ∈ poly(κ) and G is
authentic, ε must be negligible.

Corrupt verifier. The simulator for a corrupt verifier receives (eni,0, eni,1)i∈[κ]
on behalf of F∗COT, extracts de = Ve(C̃, en) (aborting if it fails). Finally it parses
(a,B) = de, computes key = a · R + B, and sends key to V iff it matches key∗
received from V on behalf of F∗COT as the lock on the transmitted messages.
Uniqueness of garbled outputs of the garbling scheme immediately gives us that
the simulation is identical to the real protocol.

8.1 A Privacy Amplifying Optimization
While the ZKGC protocol makes only oracle use of F∗COT, we can make an
instantiation-specific optimization which will likely apply to any similarly struc-
tured instantiation, where the receiver only has statistical security inherited from
statistical soundness of the decommitment/reveal phase. Currently, a naive in-
stantiation would protect each choice bit of the receiver’s (and hence private
witness bit) with s bits of statistical security, i.e. there is at most a 2−s proba-
bility of an adversary subverting the reveal phase by opening its message to a
different one than committed earlier. As each instance of protocol πCOT makes
use of independent randomness, the probability that a malicious sender is able
to subvert the reveal phases of a pair of commitments is 2−2s. Therefore if we
are willing to tolerate one bit of leakage, we can in some sense consider the
soundness of the reveal phase to be doubled.
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Plugging the leak. The prover samples a random bit r ← {0, 1} during the
one-time key setup phase. Now instead of directly using its witness bits xi as
the choice bit to the ith instance of F∗COT, the prover instead uses x′

i = xi⊕r as
the choice bit to the ith instance. Finally the prover also inputs r as the choice
bit to the |x|+ 1th instance of F∗COT. When the time comes to evaluate a circuit
C(x), the prover and verifier instead use the circuit C ′(x′, r) = C(x′

1⊕ r||x′
1⊕

r|| · · · ||x′
|x| ⊕ r) to cancel out the effect of r. Since XOR gates come for free

in a garbled circuit [KS08], this adds essentially no overhead beyond the single
extra instance of F∗COT for r. Now the input to C ′ can tolerate a single bit of
leakage; any one bit leaked from x′||r is perfectly independent of x.

Security. This clearly does not harm security against a corrupt prover, as
the encoded input x′||r supplied to F∗COT unambiguously specify its candidate
witness x just as earlier. As for when simulating for a corrupt verifier, in case
one of the extractors for a πCOT instance i reports an extraction error for the
key ki,b corresponding to bit b (this happens with probability 2−s, but recall
that the target security level is 2s bits) the simulator tosses a coin b′. If b′ = b,
then the simulator aborts the protocol (corresponding to a cheat being caught
in the real protocol). Otherwise, the simulator simply runs the honest prover’s
protocol for the ith bit going forward, effectively setting x′

i = ¬b. The subtle
point is that failing to extract ki,b does not hamper the simulator’s ability to
extract garbled circuits’ embedded decoding information in the future: in case
i = |x| + 1, the value compromised is r, which does not influence any output
wires anyway. In case i ≤ |x|, the simulator still obtains ki,¬b by running the
honest prover’s code, and the availability of both keys on the r wire allow for
the retrieval of both keys for xi by evaluating the garbled circuit with x′

i ⊕ 0
and x′

i ⊕ 1 (i.e. substituting both values of r). Note that the evaluation will
be ‘correct’ since the garbled circuit is checked for correctness independently of
F∗COT.

Therefore in order to achieve s′ = 60 bits of statistical security for ZKGC,
one can parameterize the underlying OT protocol with s = 30 bits of soundness
and remove the resulting leakage as described above.

8.2 Estimated Efficiency
We give estimates for an Ed25519 [BDL+12] style configuration. In particular,
we assume a 256-bit curve, with SHA-512 as the PRF used to derive nonces
just as in the EdDSA specification. SHA-512 has 58k AND gates [AMM+]. The
nonce derivation key is 128 bits.

• Garbled Circuit. We can use a privacy-free garbled circuit in this con-
text [FNO15], as the evaluator knows the entire input. In particular we can
use the privacy-free variant of the Half Gates garbling scheme [ZRE15] which
produces only one 128-bit ciphertext per AND gate. Each ciphertext is com-
puted with two AES-128 invocations, and evaluated with one. The exponen-
tiation gadget produces one 256-bit ciphertext for each output wire of the
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Boolean circuit. Consequently in the course of a single proof, V garbles the
circuit (116k AES invocations), and P evaluates and verifies it (116k AES in-
vocations). The bandwidth consumed is 928KB to transmit the garbled circuit
C̃.

• F∗COT. As discussed in Section 7.1.1, a single transfer and reveal instance costs
120 AES invocations and hashing a 1.92KB message via SHA-512 to com-
pute, and 0.64KB in bandwidth. A single proof here requires 128 concurrent
transfers and reveals via F∗COT, bringing the computation cost to 16k AES
invocations and hashing a 245KB message via SHA-512 for each P and V ,
and 81.92KB of bandwidth consumption.

Overall burden. In summary, P and V have roughly the same workload,
dominated by 132k AES invocations and hashing a 245KB message. Each party
additionally performs up to three curve multiplications, 256 additions in Zq, at
little overhead. Bandwidth for (|C̃|+ |F∗COT|) is 1.01MB.

The figures above are derived assuming SHA-512 is used for nonce deriva-
tion as is done by Ed25519, however it is likely that exploring standardized
ciphers with smaller circuits such as AES will lead to substantial efficiency im-
provements. As an example, to derive a 256-bit nonce with bias < 2−60 one
could replace SHA-512 with three invocations of AES-128, which would incur
a Boolean gate cost of ≈ 19k AND gates [AMM+]. This would bring the com-
putation and bandwidth cost of C̃ down by a factor of 3, to 39k PRF calls and
307KB respectively. Note that in both scenarios (AES-128 and SHA-512), C̃
induces the dominant cost, as opposed to our F∗COT instantiation.

Given the cost breakup above, it is evident that the logistics for input en-
coding and exponentiation are no longer the bottleneck, and the cost of proving
correctness of a derived nonce is now essentially dominated by the cost of gar-
bling/evaluating and verifying the garbled circuit of the PRF (usually in the
order of milliseconds [GLNP15, HK20]) used for nonce derivation.

9 Multiparty Dishonest Majority Threshold Sign-
ing

With the most complex component of stateless deterministic threshold signing
- verifiable nonce derivation - instantiated, we are equipped to construct a clean
multiparty signing protocol. The outline is as follows:

• Setup: All parties run canonical distributed key generation [Ped91] to obtain
additive shares ski of a secret key sk (for public pk), and every pair of parties
initializes an instance of FF·G to commit to a nonce derivation key ki. Note
that we do not explicitly enforce any consistency across parties. Each party
also samples a key k∗ to derive randomness online.

• Signing m: Each party Pi derives its nonce Rm,i = Fki
(m) and sends it to

all other parties. Consistency is verified by standard echo-broadcast [GL05]
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in parallel with the next round. Every party derives its local random tape
going forward by applying Fk∗ on the digest of the view from the first round,
i.e. v = CRHF(Rm,0||Rm,1||, · · · ||Rm,n). Each party Pi sets (zi,j)j∈[n]\i =
Fk∗(j||v) and instructs FF·G to deliver zi,j to Pj only if Rm,j is the correct
nonce. Finally each Pi sets the nonce to be Rm =

∑
iRm,i and computes its

signature share

σi = (ski ·H(pk, Rm,m) + rm,i) +
∑

j∈[n]\i

(zi,j − zj,i)

and sends it to all parties. The signature is then computed as σ =
∑
i σi.

Intuitively, Pi’s share adds the mask zi,j to its contribution, and Pj ’s share
removes this mask by subtracting zi,j . Note that this is possible only if Pj
obtained zi,j from FF·G by having sent the correct Rm,j . Adding up all parties’
σis cancels out the z values (if everyone is honest), and what remains is simply
sk ·H(pk, Rm,m) + r which is a valid signature on m.

We first give the exact functionality realized:
Functionality 9.1. Fn,Sign. n-party Schnorr Signing

This functionality is run among n parties P1, · · ·Pn, and is parameterized
by the group (G, G, q) and function H : {0, 1}∗ 7→ Zq. All messages are
adversarially delayed.

Key Generation: This phase is run exactly once, and must be run before
any subsequent requests.

1. Wait to receive (init) from all parties.

2. Sample secret key sk← Zq and set the shared public key pk = sk ·G

3. Send (public-key, pk) to all parties

4. Initialize function F : {0, 1}∗ 7→ Zq ∪ {⊥} to be ⊥ everywhere unless
otherwise specified.

Sign: Upon receiving (sign,m) from all parties,

1. If F(m) = ⊥, then sample F(m)← Zq.

2. Compute rm = F(m) and Rm = rm ·G, and send (nonce,m,Rm) to all
parties.

3. Upon receiving (proceed,m) from all parties, compute

σm = sk ·H(pk, Rm,m) + rm

and send (signature,m, (σm, Rm)) to all parties.

We give the n-party threshold signing protocol below.
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Protocol 9.2. πn,Sign. n-party threshold Schnorr
This protocol is parameterized by the security parameter κ, elliptic curve
group (G, G, q) (|q| = κ), PRF F : {0, 1}κ × {0, 1}κ 7→ Zq, and n parties
(Pi)i∈[n]. This protocol makes use of the ideal oracles FF·G and FRDL

Com−ZK,
and collision resistant hash function CRHF : {0, 1}∗ 7→ {0, 1}κ. The hash
function used by Schnorr’s signature scheme is H : {0, 1}∗ 7→ Zq.

Distributed Key Generation: Each Pi does the following:

1. Sample nonce derivation key ki ← {0, 1}κ

2. Sample secret sharing randomness key k∗ ← {0, 1}κ

3. For each j ∈ [n] \ i, sidi,j will be used for an instance of FF·G where
Pi is the prover, and Pj is the verifier. Send (sidi,j , input-key, ki)
to FF·G and wait for (sidj,i, initialized) in response.

4. Sample secret key share ski ← Zq and set public key share pki =
ski ·G

5. Send (commit, i, pki, ski) to FRDL

Com−ZK

6. Upon receiving (committed, j) from FRDL

Com−ZK for each j ∈ [n] \ i,
send (reveal) to FRDL

Com−ZK

7. Wait to receive (revealed, pkj) from FRDL

Com−ZK for each j ∈ [n] \ i

8. Assemble the shared public key pk =
∑
i∈[n] pki

Sign: With common input msg ∈ {0, 1}∗, each Pi does the following:

• Round 1:

1. Set m = CRHF(msg)
2. Derive nonce share rm,i = Fki

(m) and set Rm,i = rm,i ·G
3. Send Rm,i to each Pj for j ∈ [n] \ i
4. Wait to receive Rm,j from each Pj for j ∈ [n] \ i

• Round 2:

5. Compute digest of previous round, vi = CRHF(Rm,1, Rm,2, · · · , Rm,n)
6. For each j ∈ [n], generate CDS value zi,j = Fk∗(j||vi) and condition-

ally disclose it to Pj by sending (sidj,i, verify-nonce,m,R∗m,j , zi,j)
to FF·G. Prove own nonce by sending (sidi,j , verify-nonce,m,R∗m,i)
to FF·G.

7. Send vi to all parties
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8. For each j ∈ [n], wait to receive vj from Pj and (sidj,i, secret,m, zj,i)
from FF·G

• Round 3:

9. Abort if a single vj 6= vi
10. Assemble shared nonce Rm =

∑
i∈[n] Rm,i

11. Compute signature share such that it masks/adds every CDS value
generated locally, and unmasks/removes every CDS value received
from other parties:

σi = (ski ·H(pk, Rm,m) + rm,i) +
∑

j∈[n]\i

(zi,j − zj,i)

12. Send σi to all parties
13. For each j ∈ [n]\i, wait to receive σj from Pj and (sidj,i, verified,m,R∗m,j)

from FF·G

14. Assemble the signature σ =
∑
j∈[n] σj

15. If (Rm, σ) is not a valid signature on msg, or (sidj,i, fail,m,R∗m,j) is
received from FF·G for any j ∈ [n] then abort.

16. Otherwise, output (Rm, σ)

Theorem 9.3. Assuming F is a pseudorandom function and CRHF is a collision-
resistant hash function, πn,Sign UC-realizes Fn,Sign in the presence of an adver-
sary statically corrupting up to n−1 parties, in the FF·G,FRDL

Com−ZK-hybrid model.

Proof. (Sketch) Simulating this protocol for an adversary corrupting n− 1 par-
ties is done as follows: let the honest party by indexed by j ∈ [n]. The sim-
ulator receives ki on behalf of FF·G and ski on behalf of FRDL

Com−ZK from each
corrupt Pi, and upon receiving pkfrom Fn,Sign, reveals pkj = pk −

∑
i∈[n]\j pki

to corrupt parties on behalf of FRDL

Com−ZK. When signing a message msg, with
m = CRHF(msg) the simulator first receives nonce Rm from Fn,Sign, and sends
Rm,j = Rm − (

∑
i∈[n]\j Fki

(m)) ·G to all parties on behalf of Pj . On receiving
Rm,i from each Pi, if this exact set of Rm,i values has not previously been seen,
the simulator samples a fresh (zj,i)i∈[n]\j ← Zn−1

q (otherwise reuses these values
from the last time). For each i ∈ [n] \ j, if Rm,i = Fki

(m) · G the simulator
sends zj,i to Pi on behalf of FF·G. If even one of the Rm,i values is incorrect,
the simulator samples a uniform σj ← Zq and sends it to each Pi and aborts.
Otherwise, the simulator asks Fn,Sign for a signature, receiving σ in response,
and computes σj as follows:

σj = σ −
∑

i∈[n]\j

(ski ·H(pk, Rm,m) + Fki
(m)) +

∑
i∈[n]\j

(zj,i − zi,j)

where zi,j is received from Pi on behalf of FF·G. The simulator sends σj to all
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parties on behalf of Pj .
Indistinguishability of the simulation is argued as follows: first, by collision

resistance of CRHF, no two messages or sets {Rm,i} induce the same random tape
for Pj . Second, as F is a PRF, the pseudorandom Rm,j values in the real protocol
are computationally indistinguishable from their uniformly random counterparts
in the simulation. The same holds for zj,i values. Finally the only non-syntactic
difference between the simulation and the real protocol is that when ∃i ∈ [n]
such that Rm,i 6= Fki

(m) · G, the simulator produces a uniformly random σj
instead of computing it as a function of σ received from Fn,Sign. This induces
no change in the view of the adversary, as in the real protocol FF·G withholds
zj,i from Pi in this event (so the adversary has no information about this value
in its view), and so zj,i acts as a one-time pad within σj in the real protocol.

Additionally in the event that there is more than one honest party, collision-
resistance of CRHF immediately guarantees that no two parties will have an
inconsistent view of {Rm,i} - any inconsistency will induce honest parties to
abort before they reveal any information about σ in the final round.

9.1 Efficiency
The protocol is essentially a thin wrapper on top of FF·G, and consequently
the cost is dominated by running FF·G between every pair of parties. Every
pair of parties Pi, Pj shares two instantiations of FF·G, one in which Pi plays
the prover and Pjthe verifier, and another with the roles reversed. However by
the structure of our protocol πF·G, instantiating FF·G in both directions induces
little computational overhead on top of a single instantiation: while the verifier
garbles the circuit the prover sits idle, and while the prover evaluates the garbled
circuit the verifier has nothing to do. This means that when Pi is working as
the verifier in one instance of FF·G with Pj , it will be idling in its role as the
prover in the other instance of FF·G with Pj , and vice versa.

For this reason, we expect a two-party instantiation of πn,Sign to incur the
same bandwidth and computation cost per party as calculated in Section 8.2.
This cost is multiplied by n for an n party instantiation.
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A UC Commitments
We first give the commitment functionality itself.
Functionality A.1. FCom. Commitments

This functionality allows a sender S to commit to an indexed message, and
reveal it at a later point in time. The sender’s message remains secure iff an
index is never reused for a different message. Additionally any index that
is ‘revealed’ subsequently offers no security when reused. All messages are
adversarially delayed.

Initialize: Wait for (init) from both parties, and store (init) in memory.

Commit: Upon receiving (commit, ind,m) from S, if (init) exists in mem-
ory,

• If R is not corrupt, store (ind,m) in memory and send (committed, ind)
to R

• Otherwise:

1. If (ind,m′) exists in memory such thatm 6= m′ then send (reused-index,m′,m)
to R

2. If (index-used, ind) exists in memory, then send (revealed-index, ind,m)
to R

3. If neither of the previous conditions hold, then store (ind,m) and send
(committed, ind) to R

Reveal: Upon receiving (reveal, ind) from S, if (ind,m) exists in memory,
then send (deommitted,m) to R. Store (index-used, ind) in memory.

High level idea. As a helper for this protocol we first embed Gen-vk,Gen-ck in
a ‘setup’ functionality F setup

Com , which establishes for the committer and receiver
their respective keys (a corrupt party may supply the randomness ρS/ρR to
F setup

Com ). The protocol itself consists of simply having S run Commit to commit
to a message, and R verify openings with DecomVrfy. The simulator for this
protocol runs Gen-ek or Gen-td while acting on behalf of F setup

Com during setup.
Subsequently the simulator uses the resulting keys ek or td to extract the mes-
sage from commitments produced by a corrupt sender via Ext, or to equivocate
messages to a corrupt receiver via SCom,R∗ respectively.

We begin by giving the exact description of F setup
Com below:
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Functionality A.2. F setup
COT . Commitment Setup

This is a helper functionality for the UC-secure commitment protocol πCom,
run between a pair of parties S,R (one of whom may be corrupt). Given
algorithms Gen-ck,Gen-vk for commitment scheme C, this functionality sim-
ply runs them to distribute the correct keys to S and R. Let |ρS | and |ρR|
be the size of the random tapes required by Gen-ck and Gen-vk respectively.
All messages are adversarially delayed.

Setup: Upon receiving (init) from both parties, do the following:

1. If neither party is corrupt, sample ρS ← {0, 1}|ρS | and ρR ← {0, 1}|ρR|.

2. If S is corrupt, wait for (ck-rand, ρS ∈ {0, 1}|ρS |) from S and sample
ρR ← {0, 1}|ρR|. If R is corrupt, wait for (vk-rand, ρR ∈ {0, 1}|ρR|) from
R and sample ρS ← {0, 1}|ρS |.

3. Compute ck = Gen-ck(1κ; ρS) and vk = Gen-vk(1κ, ck; ρR).

4. Send (com-key, ck) to S and (ver-key, vk) to R.

Accept no further commands.

With the helper functionality in place, we give the protocol for commitment
πCom below.
Protocol A.3. πCom[C]. Commitment

This protocol is run between a sender S and a receiver R, and is param-
eterized by a commitment scheme C. This protocol makes use of the ideal
oracle F setup

Com .

Setup: Run once:

1. S and R send (init) to F setup
Com

2. S receives (com-key, ck) and R receives (ver-key, vk) from F setup
Com

Commit: With common input ind and private input m:
S computes C, δ = Commit(ck, ind,m) and sends C to R

Decommit: With common input ind:

1. S sends m, δ to R

2. R validates DecomVrfy(vk, ind,C, δ,m) ?= 1

Equally important is to define the simulator for the above protocol.
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Simulator A.4. SCom[C]. Simulator for Protocol πCom

The simulator is parameterized by a commitment scheme C, and acts on
behalf of the ideal oracle F setup

Com .

Corrupt sender: S∗

1. Setup:

(a) Receive (init) and (ck-rand, ρS) from S∗ on behalf of F setup
Com

(b) Compute ck = Gen-ck(1κ; ρS) and ek = Gen-ek(ck)

(c) Sample ρR ← {0, 1}|ρR| and set vk = Gen-vk(1κ; ρR)
(d) Send (com-key, ck) to S∗ on behalf of F setup

Com

2. Commit: With common input ind:

(a) Receive C from S∗ on behalf of R
(b) Compute m = Ext(ek, ind,C) and send (commit, ind,m) to FCom

3. Decommit: With common input ind:

(a) Receive m, δ on behalf of R
(b) Compute b = DecomVrfy(vk, ind,C, δ,m) and send (reveal, b) to
FCom

Corrupt receiver R∗: run SCom,R∗ as necessary.

B Committed OT Setup
We first define a functionality F( `

`−1)OT.

Functionality B.1. F( `
`−1)OT. All-but-one OT

This functionality allows a sender S to send ` messages and a receiver R
to obtain all but one of them, while keeping S oblivious to which one was
omitted. All outgoing messages are adversarially delayed.

Choose: Upon receiving (choose-all-but, c) from R, and if c ∈ [`] and
no such message was previously received, store (chosen, c) in memory and
send (chosen) to S.

Transfer: Upon receiving (transfer, {ki}i∈[`]) from S, if (chosen, c) exists
in memory then send (messages, {ki}i∈[`]\c) to R.

The functionality F( `
`−1)OT can be realized assuming hardness of the Com-

putational Diffie-Hellman problem in the same curve as the signature (in the
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random oracle model), by a simple adaptation of the classic Bellare-Micali OT
protocol [BM90].

We now describe how to realize the all-but-one Oblivious Transfer function-
ality F( `

`−1)OT. The functionality F( `
`−1)OT can be realized assuming hardness of

the Computational Diffie-Hellman problem in the same curve as the signature
(in the random oracle model), by a simple adaptation of the classic Bellare-
Micali OT protocol [BM90], which we briefly recall: S samples a ← Zq, and
sends A = a · G to R. Then, R samples ` − 1 scalars indexed by all but c, as
(bi)i∈[`]\c ← Z`−1

q , and setsBi = bi·G for each i ∈ [`]\c, andBc = A−
∑
i∈[`]\c Bi.

R sends (Bi)i∈[`] to S, who verifies that
∑
i∈[`] Bi = A, and uses Bi as a public

key to encrypt message ki. Observe that the receiver will be able to decrypt all
messages except the one encrypted with Bc. In order to make this UC secure,
the sender must prove knowledge of discrete log of A, and the receiver must
prove knowledge of all-but-one discrete logs among (Bi)i∈[`], which is done via
FRDL

.ZK
The COT helper functionality is formally defined as follows:

Functionality B.2. F setup
Com [C]. Committed OT Setup

This is a helper functionality for the committed OT protocol πCOT, run
between a pair of parties S,R (one of whom may be corrupt). Let |ρS |
and |ρR| be the size of the random tapes required by Gen-ck and Gen-vk
respectively. All messages are adversarially delayed.

Setup: Upon receiving (sid, init) from both parties, do the following:

1. If neither party is corrupt, sample ρS0 , ρS1 ← {0, 1}2|ρS | and ρR0 , ρ
R
1 ←

{0, 1}2|ρR|.

2. If S is corrupt, wait for (sid, ck-rand, ρS0 , ρ
S
1 ∈ {0, 1})2|ρS | from S and

sample ρR0 , ρR1 ← {0, 1}2|ρR|. IfR is corrupt, wait for (sid, vk-rand, ρR0 , ρ
R
1 ∈

{0, 1})2|ρR| from R and sample ρS0 , ρS1 ← {0, 1}2|ρS |.

3. Set commitment keys ck0 = Gen-ck(1κ; ρS0 ) and ck1 = Gen-ck(1κ; ρS1 )

4. Set verification keys vk0 = Gen-vk(ck0; ρR0 ) and vk1 = Gen-vk(ck1; ρR1 )

5. Compute extraction keys ek0 = Gen-ek(ck0) and ek1 = Gen-ek(ck1)

6. Upon receiving (sid, choose, b ∈ {0, 1}) from R, send (sid, keys, ekb, vk0, vk1)
to R, and (ck-keys, ck0, ck1) to S.

Accept no further commands.

We now give the exact protocol to realize the setup functionality F setup
COT .

Intuitively, the idea is for the sender to supply A ∈ G, which the receiver splits
into an additive sharing C0, C1 so that only one of the corresponding discrete
logarithms (specifically that of Cb) is known. Following this, for each j ∈ [r],
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R further splits C0, C1 into ` additive shares each. Since R knows the discrete
log of Cb, is also knows the discrete logs of every additive share. However since
R does not know the discrete log of C1−b, it will be missing the discrete log of
exactly one of its additive shares.
Protocol B.3. πsetup

COT . Setup protocol tailored to C
This protocol is run between a sender S and a receiver R. Parameters of
the scheme are κ, and curve group (G, G, q). This protocol makes use of
the ideal oracles FRDL

( `
`−1)ZK

, FRDL

ZK , and a random oracle RO.

Setup: P has no private input, and V has private input b ∈ {0, 1}.

1. P samples ck0 ← {k0,j,l ∈ {0, 1}κ}j∈[r],l∈[`] and ck1 ← {k1,j,l ∈ {0, 1}κ}j∈[r],l∈[`]

2. V samples (ij)j∈[r] ← [`]r

3. P samples the OT sender’s key, a ← Zq and sends A = a ·G to V and
(prove, a, A) to FRDL

ZK

4. V waits for (proven, A) from FRDL

ZK

5. V samples cb ← Zq and computes Cb = cb ·G, and c1−b = A− C

6. V does the following, for each j ∈ [r]:

(a) Sample (cb,j,l)l∈[`] ← Z`q such that
∑
l∈[`] cb,j,l = cb, and set Cb,j,l =

cb,j,l ·G for each l ∈ [`]
(b) Derive all keys for instance b as kb,j,l = RO(cb,j,l ·A) for each l ∈ [`]
(c) Sample (c1−b,j,l)l∈[`]\ij ← Z`−1

q , and set C1−b,j,l = c1−b,j,l · G for
each l ∈ [`] \ ij

(d) Derive all keys but one for instance 1−b as k1−b,j,l = RO(c1−b,j,l ·A)
for each l ∈ [`] \ ij

(e) Set the remaining C1−b,j,l = C1−b −
∑
l∈[`]\ij C1−b,j,l

(f) Assemble length 2`− 1 vector that has every c·,j,· value except the
one indexed by 1− b, j, ij : cj = {cb,j,l}l∈[`] ∪ {c1−b,j,l}l∈[`]\ij

(g) Send (prove-all-but-one, ij , cj , (C0,j,l, C1,j,l)l∈[`]) to FRDL

( 2`
2`−1)ZK

7. V sends C0, C1, (C0,j,l, C1,j,l)j∈[r],l∈[`] to P

8. P verifies that C0 + C1 = A, and does the following for each j ∈ [r]:

(a) Wait to receive (proven-all-but-one, (C0,j,l, C1,j,l)l∈[`]) from FRDL

( 2`
2`−1)ZK

(b) Verify that
∑
l∈[`] C0,j,l = C0 and

∑
l∈[`] C1,j,l = C1
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(c) For each l ∈ [`]: Compute k0,j,l = RO(a · C0,j,l) and k1,j,l = RO(a ·
C1,j,l)

9. P outputs ck = {k0,j,l, k1,j,l}j∈[r],l∈[`]
V outputs vk = {kb,j,l}j∈[r],l∈[`]} ∪ {(k1−b,j,l)l∈[`]\ij}j∈[r]

Theorem B.4. Assuming that the Computational Diffie-Hellman problem is
hard in G, protocol πsetup

COT UC-realizes F setup
COT in the FRDL

( 2`
2`−1)ZK

,FRDL

ZK -hybrid local
random oracle model.

We postpone the proof of the above theorem to the full version of this paper.

C Useful Functionalities
Functionality C.1. Committed ZKPoK for Discrete Log

(
FRDL

Com−ZK

)
This functionality is parameterized by the party count n and the elliptic
curve (G, G, q). In each instance, one party Pi is the prover, and the others
verify.

Commit Proof: On receiving (sid, com-proof, x,X, I) from party Pi where
x ∈ Zq and X ∈ G, if (sid, com-proof, ·, ·, ·) does not exist in mem-
ory, then send (sid, committed, i) to every party Pj for j ∈ I and store
(com-proof, x,X, I) in memory.

Decommit Proof: On receiving (sid, decom-proof) from party Pi, if there
exists in memory a record (sid, com-proof, x,X), then:

1. If X = x ·G, send (sid, accept, X) to every party Pj for j ∈ [n].

2. Otherwise send (sid, fail) to every Pj for j ∈ [n].

Instantiating this functionality can be done with Schnorr’s proof of knowl-
edge of discrete logarithm Sigma protocol, plugged into any straight-line ex-
tractable sigma protocol to NIZK compiler in the random oracle model [Fis05].
Functionality C.2. Prove knowledge of all-but-one discrete logarithms

(
FRDL

( `
`−1)ZK

)
This functionality is parameterized by two parties P and V , and the elliptic
curve (G, G, q). On receiving (prove, I, (xi)i∈I , (Xi)i∈[n]) from P for an

integer n and set of indices I ⊂ [n] such that |I| = n− 1, xi ∈ Zq, Xi ∈ G,
if xi ·G = Xi for each i ∈ I, then send (proven, (Xi)i∈[n]) to V .

Instantiating this functionality can be done with Schnorr’s proof of knowl-
edge of discrete logarithm Sigma protocol in conjunction with the transforma-
tion of Cramer, Damgård and Schoenmakers to prove logical combinations of in-
stances with Sigma protocols [CDS94], plugged into any straight-line extractable
sigma protocol to NIZK compiler in the random oracle model [Fis05].
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D Garbling Scheme Definitions
We recall here the formal definitions of garbling schemes.

Definition D.1. (Correctness) A garbling scheme G is correct if for all input
lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the
following probability is negligible in κ:

Pr
(

De(Ev(C̃,En(en, x)), de) 6= C(x) : (C̃, en, de)← Gb(1κ, C)
)
.

Definition D.2. (Authenticity) A garbling scheme G is authentic if for all
input lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n,
and all probabilistic polynomial-time adversaries A, the following probability is
negligible in κ:

Pr
(
Ŷ 6= Ev(C̃,X)
∧De(Ŷ , de) 6= ⊥

: X = En(x, en), (C̃, en, de)← Gb(1κ, C)
Ŷ ← A(C, x, C̃,X)

)
.

Definition D.3. (Verifiability) A garbling scheme G is verifiable if for all input
lengths n ≤ poly(κ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and PPT
adversaries A, the following probability is negligible in κ:

Pr
(

De
(
Ev(C̃,En(x, en)), de

)
6= C(x) : (C̃, en)← A(1κ, C)

Ve
(
C, C̃, en

)
= de

)

For completeness, we also require the following property of a verifiable garbling
scheme:

∀
(
C̃, en, de

)
← Gb (1κ, C) , Ve

(
C, C̃, en, de

)
= 1
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