
Online Planning for Target Object Search in Clutter under Partial
Observability

Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian Chen and Christopher Amato

Abstract— The problem of finding and grasping a target
object in a cluttered, uncertain environment, target object
search, is a common and important problem in robotics. One
key challenge is the uncertainty of locating and recognizing each
object in a cluttered environment due to noisy perception and
occlusions. Furthermore, the uncertainty in localization makes
manipulation difficult and uncertain. To cope with these chal-
lenges, we formulate the target object search task as a partially
observable Markov decision process (POMDP), enabling the
robot to reason about perceptual and manipulation uncertainty
while searching. To further address the manipulation difficulty,
we propose Parameterized Action Partially Observable Monte-
Carlo Planning (PA-POMCP), an algorithm that evaluates
manipulation actions by taking into account the effect of the
robot’s current belief on the success of the action execution. In
addition, a novel run-time initial belief generator and a state
value estimator are introduced in this paper to facilitate the PA-
POMCP algorithm. Our experiments show that our methods
solve the target object search task in settings where simpler
methods either take more object movements or fail.

I. INTRODUCTION

Searching for a specific object in a cluttered scene is a
common task in our daily lives. To find the target object,
we need to reason about which other objects could occlude
the target and rearrange objects to look for the desired one.
While humans are inherently capable of solving this task, it
is quite challenging for a robot to solve due to incomplete
knowledge of the environment. The robot has to locate
and recognize objects based on noisy sensor data, and the
outcome of manipulation actions can be uncertain.

Consider a service robot in an office environment that has
been tasked with retrieving a stapler from a tabletop (see
Fig. 1(left)). From the robot’s camera view, the stapler is fully
occluded (see Fig. 1(right)). The robot has to first reason
about which objects the stapler is likely to be hidden behind,
and then either move around to gather more information from
a different viewpoint or sequentially remove these objects in
an efficient manner to be able to see and pick up the stapler.
Occlusions caused by objects surrounding the stapler prevent
the robot’s perception system from accurately identifying the
object’s class and position. Not only does this make it harder
to decide how to move the objects, but it also increases the
likelihood of manipulation failures.

To overcome these challenges, we make three main con-
tributions. First, we model the problem as a partially ob-
servable Markov decision process (POMDP) [1]. In contrast
to previous work, our model can be used to solve more

Khoury College of Computer Sciences, Northeastern Uni-
versity, Boston, MA 02115, USA {xiao.yuch, katt.s, tenpas.a,
chen.shengji}@husky.neu.edu, c.amato@northeastern.edu

Fig. 1. A service robot is searching for a stapler (Left) which is fully
occluded under its current view (Right).

general problem instances that are not constrained by either
the number of hidden objects or the configuration of the
objects. Second, to find solutions to our model, we introduce
PA-POMCP, an extension of POMCP [2], a state-of-the-art
online POMDP solver, by parameterizing the actions with
respect to the robot’s current belief. Third, we propose a run-
time initial belief generator that allows the robot to reason
about the locations of hidden objects.

To evaluate our method, we perform experiments both in
simulation and on a robot. In simulation, our method can
generate solutions in significantly fewer steps than baseline
methods, and solve problem settings where these simpler
methods fail to find a solution. We also demonstrate the
practicality of our approach on a Fetch robot in a number of
challenging real-world scenarios.

II. RELATED WORK

Many early approaches address the target object search
problem by reducing it to an active visual search prob-
lem [3]–[6]. Wong et al. [7] extend the previous work to
solve the problem by allowing the robot to manipulate the
objects to facilitate its detection. However, their method does
not try to reduce the number of manipulation actions required
to fetch the target object.

Recent work by Dogar et al. [8] generates plans based on
a graph that models the visibility and accessibility relations
between objects. Yet, they assume the target object to be
the only hidden object. Srivastava et al. [9] propose a
sample-based backtracking search algorithm that generates
an offline policy for picking up a particular red cylinder
blocked by many other blue cylinders. Chitnis et al. [10]
improve upon the previous work by learning a policy for plan
refinement and by using expert demonstrations that guide
exploitation. However, both approaches simplify the object
search problem without taking partial observability in the
real world into account.

Li et al. [11] propose a POMDP model for an object search
problem in a space confined environment (e.g., a shelf)
and solve their model with an approximate online planner,

DESPOT [12]. Nevertheless, they do not account for fully
occluded objects and require a segmentation method that
reports the exact number of objects in the environment. This
requirement significantly reduces perception uncertainty. Be-
sides, their planning framework does not allow robot base
movement and cannot handle potential manipulation failures.

Compared to related work, our approach is scalable and
robust to any number of hidden objects and any degree of
occlusions between objects that occur in the task. To tackle
potential manipulation failures, we propose an extended
version of POMCP, called Parameterized Action POMCP
(PA-POMCP), that takes these failures into account.

III. PROBLEM FORMULATION

We start with an overview of POMDPs, then describe our
target object search problem and POMDP model.

A. POMDP Preliminaries

Partially observable Markov decision processes
(POMDPs) [1] provide a framework for sequential decision
making problems with uncertainty in observations as well
as action outcomes. Formally, a POMDP can be defined as
a tuple 〈S,A,Ω, T ,O,R〉, where S is a set of world states,
A is a set of actions, and Ω is a set of observations. The
state transition function, T (s, a, s′) = p(s′ | s, a), gives a
probability distribution over next state s′ ∈ S after taking
action a ∈ A under current state s ∈ S. The observation
model is a probability distribution over observations for each
resulting state and action, O(s′, a, o) = p(o | s′, a). The
state transition function captures the effects of the robot’s
actions and the observation model captures the effects of
sensor noise. The immediate reward function R(s, a) gives
a real-valued reward for taking action a in state s.

Because the world is partially observable, the robot does
not have full knowledge of the current state s. Instead, it
keeps track of a belief state b: a probability distribution over
the state s ∈ S . The robot starts with an initial belief b0.
Bayes’ rule bt ∝ p(ot | st, at−1, bt−1)p(st | at−1, bt−1)
is used to calculate a new belief bt given the received
observation on time step t. A POMDP policy π is a mapping
from belief states to actions. The objective of POMDP
solution methods is then to find a policy that optimizes the
expected sum of discounted rewards given an initial belief:

V π(b0) = E

[∞∑
t=0

γtR(st, at)]

∣∣∣∣ at = π(bt)

]
, (1)

where the discount factor γ ∈ [0, 1) determines the impact
of future rewards on current decision making.

B. Target Object Search

In this paper, we address target object search in a cluttered
environment. In general, the target object might be directly
visible, partially occluded by surrounding objects, or even
fully hidden somewhere. The objective in this task is to locate
and fetch the target object, which often requires the robot
to change perspective and manipulate other objects in an
efficient way.

We assume that the robot knows the exact number of
objects in the environment and has a geometric model for
each of them. Yet, to identify these objects, the robot has
to access an object detector that returns the 3D pose and
the type (name string) of each detected object. The data
captured by the robot’s camera is usually very noisy due
to the various degrees of occlusions of different objects.
This makes the task harder because the robot needs to take
the occlusions into account when it decides whether to go
to other viewpoints or not, how to move the objects in
succession and how to reach the target object in the end.

C. POMDP Model Formulation

State Space. For N objects, the state s = [srob, sobji |i =
1, . . . , N] consists of the robot’s state and each object’s state.
The robot’s state, srob = 〈x, y, z, φ〉, involves the robot’s
3D position (x, y, z) in the world coordinate system and
orientation as an angle φ about the z axis (vertical axis with
respect to the ground). Each object’s state sobji = 〈posi, ti〉,
where posi = (x, y, z, θ) is the object’s 3D position and
orientation under the world coordinate system; ti ∈ {0, 1}
indicates whether obji is the target or not. The state space is
thus (5N+4)-dimensional and continuous. In this paper, we
assume that the robot can access the true orientation of each
object. Nevertheless, our model can be easily extended to
cases where the orientation is partially observable by adding
orientation to the observation space (see below).

Action Space. There are four action classes:
MOVE BASE(x, y, z, φ) navigates the robot to a specific
location and orientation to change the point of view;
MOVE OBJ(i) picks up obji and places it into a predefined
placing area; FETCH OBJ(i) grasps obji and declares it is
the target object, resulting in a terminal state; NO TARGET
affirms the target object does not exist on the table and
terminates the task. MOVE OBJ(i) and FETCH OBJ(i) are
detailed in Section IV-A.

Observation Space. Observation o = [orob, oobji |i =
1, . . . , N] includes an observation of the robot’s state (as-
sumed to be fully observable), and an observation of each
object (assumed to be partially observable), where oobji =
〈pi, ti, occli〉 is comprised of three attributes: estimated po-
sition pi, type ti and occlusion ratio occli.

The observation space is discretized by partitioning the
continuous position space into a grid based on sensor fidelity.
Each object’s estimated position pi is calculated by mapping
the object’s estimated 3D position, returned by running
segmentation on the point cloud data, to the grid. A string
‘Moved’ is assigned to pi when obji has been moved away.
The estimated position pi of the hidden object has a value
NONE if the object has not been detected in the current view.
Type ti has three values: 0 or 1 indicates whether obji is the
target object or not, which can be determined by checking
if the resulting label of obji, given by the object recognizer,
matches with the target’s; NONE type means the class of obji
is not recognized due to the occlusion or the sensor’s noise.

Perception uncertainties in cluttered environments are
mostly caused by occlusions between objects. Accounting for

Fig. 2. Occlusion ratio calculation on the sensor’s image plane. (Left)
One example with 7 objects on a table under robot’s view. (Middle)
Segmentation result. (Right) Occlusion ratio of each object on the camera’s
image plane.

the occlusion ratio in POMDP observation models for object
manipulation tasks has been proposed previously [11], [13].
However, unlike previous work, we calculate the occlusion
ratio in a different way. We first project the bounding boxes
returned by the segmentation to the camera’s image plane,
and then calculate the intersection ratio between the resulting
irregular polygons for each object (one example shown in
Fig. 2). The occlusion ratio space in our model is then further
discretized into three levels: occli = ‘not occluded’ when the
occlusion ratio of obji is 0.0; occli = ‘partially occluded’
when the occlusion ratio of obji is less than 0.3, otherwise
occli = ‘fully occluded’.

Rewards. The rewards are inspired by the time re-
quired to execute each action. The reward of running action
MOVE BASE is −200. Successfully moving obji by exe-
cuting MOVE OBJ(i) gives a reward of −100. Otherwise,
a penalty of −1000 is allocated if obji cannot be grasped.
The reward of executing FETCH OBJ(i) is 100 if obji is
the target and currently reachable. Otherwise, the reward is
−1000. Action NO TARGET gives a reward of 100 if the
target is not on the table. Otherwise, the reward is −1000.

IV. APPROACH

The POMDP model of target object search presented
in Section III-C has a continuous state space and an ob-
servation space that grows exponentially in the number
of objects. Fortunately, Partially Observable Monte-Carlo
Planning (POMCP) [2], an online search method, has proven
to be a scalable solver for large POMDPs [14]–[16].

At each time step, POMCP approximates the utility of
the available actions at the current belief. It does so by
incrementally building a look-ahead tree consisting of action-
observation histories in a sample-based manner (as seen in
Fig. 3). The samples represent interactions with a black-
box simulator from the current belief until task completion.
After every sample, a new leaf node is added to the tree—
biasing tree expansion toward visited beliefs. The nodes
contain statistics of how often they have been visited and
their expected returns to allow exploration and exploitation
to be considered within the tree using the Upper Confidence
Bounds (UCB) method [17]. As more samples are generated,
the utility estimates approach the true values, but the optimal
action will often have the highest value with many fewer
samples [2]. The action with the highest utility is chosen
and the process repeats until the task has been completed.

We extend POMCP to Parameterized Action POMCP (PA-
POMCP) that aims to deal with action failures due to partial
observability, which is detailed below and summarized in

Algorithm 1 PA-POMCP (B, A, num sims)
1: A : B ← Parameterize action space A given the current belief B
2: h0 ← ()
3: for i← 1 · · ·num sims do
4: s ∼ B
5: SIMULATE(s, 0, h0)
6: a : b← argmaxb∈B Q(h0)
7: return a : b

Algorithm 2 SIMULATE(s, d, h)
1: if ISTERMINAL(h) or d =max depth then
2: return 0
3: if h /∈ Tree then
4: CONSTRUCTNODE(h)
5: return SVE(s) // Call state value estimator
6: if d = 0 then
7: a : b←UCBSELECTION(h) // Parameterized with entire belief
8: param a← a : b
9: else

10: a : s←UCBSELECTION(h) // Parameterized with sampled state
11: param a← a : s

12: (s′, o, r) ∼ G(s, param a)
13: h′ ← (h, param a, o)
14: R← r + γ·SIMULATE(s′, d+ 1, h′)
15: N(h, param a)← N(h, param a) + 1

16: Q(h, param a)← Q(h, param a) +
R−Q(h,param a)
N(h,param a)

17: return R

Algorithms 1 and 2. PA-POMCP requires a prior distribution
over the state space as the initial belief. To generate the
distribution, we introduce a run-time initial belief generator
that creates a set of particles as the initial belief (Section IV-
B). Finally, we present a state value estimator for PA-
POMCP that uses heuristics to guide the look-ahead tree
search (Section IV-C).

A. Parameterized Action POMCP (PA-POMCP)

POMCP typically assumes that the available actions are
known a priori. However, in robotic manipulation under
uncertainty, actions often require the exact position and
orientation of the object. Inspired by Hsiao et al. [18],
we propose a generalization of POMCP that parameterizes
the action space with respect to the agent’s belief, called
Parameterized Action POMCP (PA-POMCP).

At the beginning of each planning step, PA-POMCP
parameterizes action space A given the current belief B,
represented by A : B. For example, in our experiments,
actions MOVE OBJ(i) and FETCH OBJ(i) are parameterized
by taking the mean position of the obji in the current belief.
A simulation then starts by selecting a parameterized action

Fig. 3. A search tree constructed by PA-POMCP.

ai : bi ∈ A : B given a certain state sampled from the belief
(see the actions under the root node in Fig. 3 denoted a : b),
after which the black-box simulator returns an observation
and a new state. At this point, the simulation continues as
usual. For reasons of efficiency and accuracy, the belief is
not maintained at later nodes in the POMCP tree. Therefore,
in later simulation steps, we assume full knowledge of the
state and the pose of obji and those actions in the tree are
only parameterized with the particular state returned by the
simulator (denoted by a : s in Fig. 3). As a result, the
values in PA-POMCP will only be approximations of the
true values that consider manipulation uncertainty at later
steps. Nevertheless, as an online planning method, it is most
important to choose the correct action, which will often be
maintained. Furthermore, the location uncertainty will be
considered in a later planning step. After a fixed number
of simulations, PA-POMCP selects the parameterized action
with the highest estimated value. This process continues until
all steps of the problem are completed.

B. Run-Time Initial Belief Generator

We represent a belief as a set of particles in a particle
filter. Each particle is a sampled state of the objects in the
environment, s = [sobji |i = 1, . . . , N], that contains the
position, orientation (assumed to be exactly known), and
type of each object. The robot’s state is not included in
this particle filter because it is fully observable. Instead
of manually specifying a prior over the state space, we
designed a Run-Time Initial Belief Generator. This generator
enables the robot to reason about the potential locations of
hidden objects based on its perception and then automatically
generate a belief.

The pipeline of generating one valid particle consists of
four steps. First, we segment the point cloud to obtain each
object’s estimated position and draw a sample (x, y, z) from
a Gaussian distribution centered at that position. Second,
we locate the detected objects in the OpenRave simulator
at the sampled positions. Third, for any undetected (hidden)
objects, we randomly pick one of the detected objects and
sample a position behind it for the hidden object. Fourth, we
place the hidden object at the position sampled in Step 3 in
the OpenRave simulator and calculate its occlusion ratio. If
the occlusion ratio is larger than an upper bound (0.95 in
our case), this particle is considered to be valid and will be
added to the particle set. Otherwise, the particle is discarded.

Fig. 4. An example of generating a valid particle. Left to Right: (a)
A scenario with seven objects. (b) The segmentation result shows that
six objects have been detected. (c) The detected objects are placed at the
locations sampled from the segmentation result in the OpenRave simulator.
The hidden object is assumed to be occluded by the red box, and is placed
at a location sampled from the shaded region. (d) From the robot’s view,
the occlusion ratio of the hidden object is 1.0: the robot is not able to detect
it. This particle thus is consistent with the situation in (a).

Fig. 5. Target object search domain. (Left) Domain settings. (Right) Seven
objects from YCB with their geometric models.

For each object in each particle, we uniformly set the type
to be 0 or 1. This indicates that the robot is highly uncertain
about which object is the target object in the beginning. An
example of generating a particle using our pipeline is shown
in Fig. 4. To form an initial belief, we repeatedly run the
above pipeline until a fixed number of valid particles has
been generated.

C. PA-POMCP with State Value Estimator

POMCP traditionally evaluates a state s at a leaf node by
utilizing a rollout policy πrollout. However, running a rollout
policy is a time-consuming operation, and the variance of the
rollout estimator is also high due to the stochasticity of the
environment, which we want to avoid. Also, defining a good
rollout policy is often hard. As seen in Fig. 3, PA-POMCP
estimates the value of a state s for a leaf node in a more
efficient way by using a State Value Estimator (SVE).

Given a state s, our SVE(s) first calculates the number (N)
of objects that exist in the environment and have not been
moved. We assume that the moved object will not impact
successive decision making or manipulation actions. If the
target object is occluded in state s, SVE(s) returns the value∑N−2
n=0 γ

n(−100) + γN−1(100) which provides an upper
bound value of a policy that moves every nontarget object
away and fetches the target object in the end. If the target
object is not occluded in state s, SVE(s) provides a value
of 100 and assumes that the target can be directly grasped.
Further, if the robot already moved the target object away
without realizing it, the state s will receive a large penalty
of value

∑N−1
n=0 γ

n(−100)− γN (1000). This means that the
robot has removed all the remaining objects and mistakenly
declared that no target object exists in the environment in
the end. In addition, under all above cases, as long as there
exists one object out of the robot’s workspace, a penalty of
-200 is added for moving to other locations.

V. EXPERIMENTS IN SIMULATION

We performed experiments in simulation to demonstrate
the effectiveness of our approach on a range of domains.

a) Domain Settings: The particular target object search
domain we now address includes a table and seven different
objects from the YCB Benchmarks—Object and Model Set
[19] (see Fig. 5). The tabletop is divided into three areas: one
task arrangement area and two object placing areas. In each
placing area, there are eight predefined selectable locations
to release the object. There are two predefined positions,
one at the front and one at the back of the table, and the
robot is allowed to move between them. Grasping poses for

each object are encoded in a Grasping Database that can
be accessed during planning [20]. The observation space is
discretized by partitioning the task arrangement area into a
6× 6 grid. The type of each object is unknown to the robot,
but a type observation is generated by a fine-tuned Fast R-
CNN object recognition module [21]. To make the problem
more challenging, we select the smallest object (Lego) as the
target, because it is easily blocked by other objects. Note that
the Lego can only be grasped from the top.

b) Experimental System: The architecture of the ex-
perimental system is shown in Figure 6. A Gazebo [22]
environment with a fetch robot and seven YCB objects is
used to simulate the real world. Based on the first observation
oinit, the Initial Belief Generator provides a set of particles
(400) as the initial belief Binit, which is then passed to
PA-POMCP to launch the planning. PA-POMCP evaluates
each parameterized action ai : bi by iterative interaction
with an OpenRave simulator [23]. After a fixed number
of simulations (600), PA-POMCP selects the parameterized
action with the highest estimated value. The robot executes
the parameterized action, receives a new observation oreal,
and updates the belief for the next planning step.

Fig. 6. Experimental system architecture.

A. Experimental Scenarios

Six selected scenarios with the initial beliefs generated by
our initial belief generator are shown in Fig. 8 from (a) to
(f). We briefly specify the purpose of each scenario below.

Scenario 1. Check if our planning framework is able to
tell the robot to only perform manipulations on the objects
(mustard bottle, cracker box and bleach bottle) which the
target is likely to be hidden behind.

Scenario 2. Test if our planning framework is able to find
the optimal solution to fetch the target without moving its
base when all the objects in the scene can be detected by the
robot and within its workspace in the beginning.

Scenario 3. Demonstrate that our planning framework is
scalable to any number of hidden objects by starting with
two hidden objects: Lego and tomato can.

Scenario 4. Show that our framework can deal with
settings where objects close to the target need to be moved in
a specific order. Here, if the target, Lego, is located between
the mustard bottle and the cube (see Fig. 7). These objects
block each other successively: the tomato can needs to be
moved first, followed by the cube, and finally the Lego.

Scenario 5&6. Demonstrate that our framework is able to
quickly learn that moving to the other side of the table is
the optimal choice under two conditions: 1) all the potential

locations of the target object are out of the robot’s current
workspace, 2) on the other side of the table, the target object
can be fetched with less effort than at the current position.

Fig. 7. (Left) Scenario 4 settings (top view). (Right) The challenge of
scenario 4 where most of the greedy policies fail by directly grasping the
cube without removing tomato can first.

B. Results and Discussion

We compare our framework, PA-POMCP, with five greedy
policies by performing 100 runs on the above scenarios. At
the beginning of each run, the hidden objects are randomly
placed at the locations where they are not visible to the robot.
The average values over the 100 runs are shown in Table I.

The greedy strategies used in the experiments include:
Greedy-M, which randomly moves all the non-target objects
away with priority on the non-occluded ones and fetches the
target object in the end; Greedy-T, which follows a similar
approach as the previous one, but fetches the target object
as soon as it is not occluded; Greedy-S, which first checks
if any object is close to the target (within 10cm, which is
the width of robot’s gripper), and moves it away instead of
immediately fetching the target one when it is not occluded;
Greedy-O, which prefers to move the non-occluded object
which reduces the current total occlusion ratio the most,
and fetches the target instantly when it is exposed; and
Greedy-OS, which combines Greedy-S and Greedy-O. When
the robot intends to move an object which is out of the
workspace, the greedy policies will navigate the robot to the
opposite side first. All the greedy policies are purely based
on the robot sensor’s feedback.

The results shown in Table I demonstrate that PA-POMCP
significantly outperforms the greedy policies in all six scenar-
ios. Especially in scenario 4&6, when a similar challenging
layout happens (see Fig. 7), PA-POMCP effectively solves
this puzzle by realizing the successive blocking relationship
between the objects and removing them in the appropriate
order. In contrast, Greedy-OS, Greedy-O and Greedy-S be-
came stuck in an infinite loop trying to remove the cube due
to its proximity to the target, but without figuring out that
the tomato can needs to be moved first. Notice that, while
Greedy-M solved this difficult problem, it ended with a very
low average value because the noisy sensor often incorrectly
detected the occlusion relationship between objects, which
caused the robot to randomly select to move the cube when
the sensor’s feedback reported both the cube and tomato
can were occluded. These results strongly indicate that our
approach can deal with uncertainty in both perception and
manipulation.

To test the robustness of our planning framework, 100
random scenarios were created by uniformly sampling the
position for each object in the task arrangement area and

(a) (b) (c) (d) (e) (f)
Fig. 8. Initial configuration of six simulation scenarios with robot view (Top) and initial belief particles (Bottom). Bottom, each point represents the
possible position (bottom center) of the corresponding object, distinguished by colors: Lego, cube, cup, tomato can, mustard bottle, cracker
box, bleach bottle, the boundary of top grasping workspace at current position, the boundary of top grasping workspace at opposite side.

TABLE I
AVERAGE PERFORMANCE WITH (STANDARD ERRORS) OF PA-POMCP AND GREEDY POLICIES UNDER SCENARIO 1 TO SCENARIO 6.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

PA-POMCP −129.0± 5.2 −106.0± 2.4 −236.0± 11.1 −258.0± 21.1 −210.0± 10.7 −158.0± 7.8
Greedy-OS −524.0± 11.6 −187.0± 3.7 −410.0± 22.2 -Inf −533.0± 6.7 -Inf
Greedy-O −555.0± 16.9 −1193.0± 2.6 −930.0± 34.9 −989.0± 71.4 −587.0± 11.8 -Inf
Greedy-S −451.0± 18.4 −237.0± 10.8 −401.0± 17.8 -Inf −3480.0± 203.7 −1682.0± 177.6
Greedy-T −470.0± 19.0 −1229.0± 11.4 −946.0± 40.1 −1030.0± 69.9 −3392.0± 200.6 −1954.0± 157.7
Greedy-M −645.0± 13.4 −500.0± 0.0 −592.0± 10.0 −776.0± 9.5 −3310.0± 236.1 −1850.0± 186.1

retaining the non-trivial ones. We then ran each method on
each scenario once. This time, we compare PA-POMCP with
other greedy policies based on both the average value and the
success rate (see Table II). The results show that our method
solves all the random scenarios and always finds the solutions
while moving fewer objects than the greedy policies. Most of
the greedy methods often fall into an infinite loop, focusing
on moving a particular object away without realizing it is
blocked by others.

VI. HARDWARE EXPERIMENTS

We performed experiments on a Fetch robot [24]. We
evaluated our methods using the six scenarios described in
Section V-A. The robot starts with an initial belief including
200 particles and runs 400 simulations per planning step
to figure out the best action under the current belief. The
robot successfully performed the task in each scenario, and
the solutions found were the same as in our simulation
experiments. Fig. 9 depicts the sequential decisions made
by the robot in Scenario 6. According to the initial belief
(see Fig. 8f), the target object is likely out of the current
workspace, however, it can always be reached from the
opposite side. The robot then moves to the other side of
the table first, which is also the most efficient way to locate

TABLE II
AVERAGE PERFORMANCE WITH (STANDARD ERRORS) OF PA-POMCP

AND GREEDY POLICIES OVER 100 RANDOM SCENARIOS.

Average Value Success Rate

PA-POMCP −138.0± 14.6 1.00
Greedy-OS -Inf 0.79
Greedy-O -Inf 0.46
Greedy-S -Inf 0.84
Greedy-T −878.0± 74.3 0.44
Greedy-M −1300.0± 140.8 1.00

both hidden objects (tomato can and Lego). From this side,
our observation model correctly detects the interval between
the cube and the tomato can, so that the robot directly moves
the cube away and fetches the target object in the end.

Fig. 9. Sequential actions performed by the robot with PA-POMCP in
Scenario 6. (Upper Left) Initial settings. (Upper Right) Move base to the
other side of the table. (Lower Left) Move cube away. (Lower Right) Fetch
the target object (Lego).

VII. CONCLUSION

In this paper, we address the target object search problem
in clutter with a POMDP model that can deal with intricate
occlusion relationships between objects as well as manipu-
lation uncertainty. We propose PA-POMCP that allows us
to efficiently solve the POMDP model. PA-POMCP uses
a novel run-time initial belief generator that reasons about
the potential locations for hidden objects, parameterized
actions to effectively reduce the action space, and a state
value estimator to estimate the values at leaf nodes. Our
experiments in both simulation and on hardware demonstrate
the efficiency and robustness of our planning framework.
Acknowledgements. This research was funded by ONR
grant N00014-17-1-2072.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[2] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Advances in Neural Information Processing Systems 23, 2010, pp.
2164–2172.

[3] A. Aydemir, K. Sj, J. Folkesson, A. Pronobis, and P. Jensfelt, “Search
in the real world: Active visual object search based on spatial rela-
tions,” in IEEE International Conference on Robotics and Automation
(ICRA), 2011, pp. 2818–2824.

[4] Y. Ye and J. K. Tsotsos, “Sensor planning for 3d object search,”
Computer Vision and Image Understanding, vol. 73, no. 2, pp. 145 –
168, 1999.

[5] K. Sjö, D. G. Lopez, C. Paul, P. Jensfelt, and D. Kragic, “Object search
and localization for an indoor mobile robot.” Journal of Computing
and Information Technology, vol. 17, no. 1, pp. 67 – 80, 2009.

[6] A. Aydemir, M. Göbelbecker, A. Pronobis, K. Sjöö, and P. Jensfelt,
“Plan-based object search and exploration using semantic spatial
knowledge in the real world,” in Proceedings of the 5th European
Conference on Mobile Robots (ECMR), 2011.

[7] L. L. S. Wong, L. P. Kaelbling, and T. Lozano-Prez, “Manipulation-
based active search for occluded objects,” in IEEE International
Conference on Robotics and Automation (ICRA), 2013, pp. 2814–
2819.

[8] M. Dogar, M. Koval, A. Tallavajhula, and S. Srinivasa, “Object search
by manipulation,” Autonomous Robots, October 2013.

[9] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE International Conference on
Robotics and Automation (ICRA), 2014.

[10] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev,
C. Lin, and P. Abbeel, “Guided search for task and motion plans using
learned heuristics,” in IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 447–454.

[11] J. K. Li, D. Hsu, and W. S. Lee, “Act to see and see to act: POMDP
planning for objects search in clutter,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5701–
5707.

[12] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online POMDP
planning with regularization,” in Advances in Neural Information
Processing Systems 26, 2013, pp. 1772–1780.

[13] J. Pajarinen and V. Kyrki, “Robotic manipulation of multiple objects
as a POMDP,” Artificial Intelligence, vol. 247, no. C, pp. 213–228,
2017.

[14] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” in IEEE Transactions
on Computational Intelligence and AI in games, vol. 4, no. 1, 2012,
pp. 1–43.

[15] S. Katt, F. A. Oliehoek, and C. Amato, “Learning in POMDPs with
Monte Carlo tree search,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 2017, pp. 1819–1827.

[16] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for
POMDPs with continuous state, action, and observation spaces,”
in Proceedings of the Twenty-Eighth International Conference on
Automated Planning and Scheduling (ICAPS), 2018, pp. 259–263.

[17] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[18] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Robust grasping
under object pose uncertainty,” Autonomous Robots, vol. 31, no. 2–3,
2011.

[19] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “Benchmarking in manipulation research: Using the Yale-
CMU-Berkeley object and model set,” IEEE Robotics Automation
Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[20] A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose
detection in point clouds,” The International Journal of Robotics
Research, vol. 36, no. 13-14, pp. 1455–1473, Dec. 2017.

[21] R. Girshick, “Fast R-CNN,” in IEEE International Conference on
Computer Vision (ICCV), 2015.

[22] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), vol. 3, 2004,
pp. 2149–2154.

[23] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep., 2008.

[24] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch
& freight : Standard platforms for service robot applications,” in
Workshop on Autonomous Mobile Service Robots, International Joint
Conference on Artificial Intelligence, 2016.

