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Abstract

In this thesis, we study the question of achieving cryptographic security on
devices that leak information about their internal secret state to an external at-
tacker. This study is motivated by the prevalence of side-channel attacks, where
the physical characteristics of a computation (e.g. timing, power-consumption,
temperature, radiation, acoustics, etc.) can be measured, and may reveal use-
ful information about the internal state of a device. Since some such leakage is
inevitably present in almost any physical implementation, we believe that this
problem cannot just be addressed by physical countermeasures alone. Instead, it
should already be taken into account when designing the mathematical specifica-
tion of cryptographic primitives and included in the formal study of their security.

In this thesis, we propose a new formal framework for modeling the leakage
available to an attacker. This framework, called the continual leakage model, as-
sumes that an attacker can continually learn arbitrary information about the inter-
nal secret state of a cryptographic scheme at any point in time, subject only to the
constraint that the rate of leakage is bounded. More precisely, our model assumes
some abstract notion of time periods. In each such period, the attacker can choose
to learn arbitrary functions of the current secret state of the scheme, as long as
the number of output bits leaked is not too large. In our solutions, cryptographic
schemes will continually update their internal secret state at the end of each time
period. This will ensure that leakage observed in different time periods cannot be
meaningfully combined to break the security of the cryptosystem. Although these
updates modify the secret state of the cryptosystem, the desired functionality of
the scheme is preserved, and the users can remain oblivious to these updates. We
construct signatures, encryption, and secret sharing/storage schemes in this model.

vi
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Chapter 1

Introduction

Information Leakage. One of the central tenets of computer science is that
computation can be analyzed abstractly and independently of the physical pro-
cesses that ultimately implement it. This is the paradigm usually followed in
cryptography, where we analyze cryptosystems as abstract algorithms that get in-
puts and generate outputs using some internal secret state.! In particular, this
paradigm assumes that the secret state of the cryptosystem stays perfectly hidden
from the attacker, beyond what the algorithmic specification of the cryptosystem
is designed to reveal via its outputs. Unfortunately, this abstraction may fail to
properly model the real world, where various physical attributes of a computation
executing on a physical device (e.g. its timing, power-consumption, temperature,
radiation, acoustics, etc.) can be measured and may leak useful information about
the internal state of the computation. Attacks that use such information to break
security are called side-channel attacks, and they have been analyzed and exploited
in many recent works, breaking real-world implementations of “provably secure”
cryptosystems. For example, Kocher et al. [KJJ99] show how to retrieve the secret
key of a smart-card running the DES cryptosystem, just by observing its power
consumption. See e.g. [Koc96, KJJ99, QS01, AARR02, QKO02, BE03, Rel, ECR]
and the references therein for many other examples.

Moreover, there are many other scenarios, beyond side-channel attacks, where
some information about the internal secret state of a device can leak to an attacker.
For example, the device could be infected by a virus sending information about its
internals to a remote adversary. Alternatively, some partial remnants of the secret
state may remain on a device even after an attempt has been made to erase them
or after the device is powered down and is made accessible to an attacker (e.g. see
the “cold-boot attack” of Halderman et al. [HSH*08]).

In all such scenarios, some unanticipated and unspecified information about

LOften, this is just a static secret key, but stateful cryptographic schemes (e.g. stream ciphers)
have also been considered. The idea of an evolving state will be crucial to this thesis.



the secret state of a cryptosystem is leaked to an attacker and hence the standard
theoretical security guarantees and proofs of security, which do not take leakage
into account, become meaningless. Therefore, the prevalence of such attacks poses
a major challenge to the applicability of cryptographic theory to practice.

Physical vs. Algorithmic Defenses. The obvious defense against leakage
attacks is to design better physical implementations, which minimize the amount
of leakage available to an attacker. Indeed, we must always require some security
guarantees from the physical implementation, since it is clear that cryptographic
security cannot be achieved if the implementation readily reveals its entire secret
state to the outside world. Nevertheless, we believe that it is insufficient to rely on
this approach alone since it seems futile to expect that any physical implementation
of a computational task will be completely free of all information leakage. Moreover,
being overprotective on the physical level may be unnecessarily expensive and
cumbersome. An alternative and complementary approach is to design resilient
algorithmic specifications of cryptosystems, which maintain security despite the
availability of some leakage on the physical device on which they are ultimately
implemented. This thesis will focus on the latter approach.

Ad-Hoc Countermeasures. There has been much prior research from the cryp-
tographic hardware community, combining physical and algorithmic countermea-
sures against various specific attacks on various specific hardware architectures.
See [ECR] for an overview of this general line of research. Unfortunately, most
of the proposed countermeasures are ad-hoc and are only backed up by heuristic
and informal security arguments. In particular, such countermeasures might po-
tentially be broken by new side-channel attacks or even just small variants of the
attack that they were designed to protect against. This cyclic “attack-fix” phi-
losophy is fundamentally different from the provable security approach taken by
modern cryptography, where a schemes should be proven secure against general
adversaries and not only particular attacks.

Theory of Leakage Resilience. In this thesis, we take a methodical approach,
by studying resilience to leakage within the framework of modern cryptography,
with formal definitions and proofs of security. Our first contribution is to define
a (new) general model of leakage, which is independent of any particular hard-
ware architecture, and is likely to capture realistic examples of current and future
side-channel attacks. This model, called the continual leakage model, essentially
assumes that the attacker can continually leak arbitrary information about the in-
ternal secret state of a cryptosystem, subject only to the constraint that there is
a known upper bound on the rate of leakage, measured as the number of leaked
bits per unit time or per computation. We then present constructions of various



cryptographic primitives and formally prove that they remain secure in this model,
under well-studied computational hardness assumptions.

This thesis is based on our corresponding publications [DHLW10a, DLWW11].
Although the continual leakage model and the solutions that we propose are new,
the idea of modeling leakage formally and constructing provably secure counter-
measures has a rich history and has received much attention in recent years. We
first give a survey of prior work in Chapter 2. Then, in Chapter 3, we present our
continual leakage model in more detail and give an informal overview of our results
for this model. Finally, we will begin the technical exposition in Chapter 4.



Chapter 2

Prior Models and Results

In this section, we give a survey of the prior work on leakage resilience and
various prior models of leakage. Although this is useful for understanding the his-
tory and the choices that we made when defining the continual-leakage model, the
contents of this survey are not needed in order to understand the technical content
of future chapters. Therefore the impatient reader who immediately wants to see
our model and results can safely (but without encouragement) skip to Chapter 3.

2.1 Models of Full Leakage

Many prior works consider the setting where a device can become completely
compromised and its entire secret state is leaked to an attacker. This is an ex-
tremely pessimistic model of leakage, and it is clear that we cannot maintain
security if the secret state of the device provides the full functionality which we
are trying to protect (e.g. the ability to sign arbitrary messages or to decrypt
arbitrary ciphertexts). Therefore, these works consider interesting settings where
the compromised device may not need to be fully functional on its own.

2.1.1 Threshold Cryptography

One setting in which full leakage has been studied is the distributed setting,
where multiple parties/devices are needed to jointly accomplish a sensitive task.
For example, Shamir’s secret sharing [Sha79] shows how to securely store a se-
cret value across multiple devices so that it remains secret even if small subsets
of the devices are fully compromised (but larger subsets can recover the value).
Work on secure multiparty computation [Yao82, GMWS87, BGWS8S8] shows how to
securely perform arbitrary computations in such distributed fashion, while work
on threshold cryptosystems [DF89, SDFY94, Gem97] shows how to efficiently dis-
tribute specific cryptographic tasks like encryption or signatures. Some works also



consider proactive security [HJKY95, FGMY97], where the “shares” of the devices
are periodically updated so as to protect against a mobile adversary who corrupts
different subsets of devices in different time periods.

2.1.2 Forward Security

Another setting in which the study of complete leakage is interesting is com-
monly referred to as forward security [DvOW92, And97, BM99, AR00, MMMO02,
CHKO3]. In this setting, a cryptographic scheme is implemented on a single de-
vice, but this device has an evolving state which provides evolving functionality in
different time periods. For example, in a forward-secure signature scheme, there
is a static verification key but the signing key of the device evolves in each time
period and the signatures that the device produces at some time 7' only verify
with respect to the given period T. Forward security requires that, if the secret
state of the scheme is fully leaked in some time period 7', the functionality that
was available in the past stays protected (e.g. the attacker will be unable to forge
signatures for time-periods 1,...,7 — 1). In addition to signatures, we know how
to do encryption, identification and key agreement in this setting.

2.1.3 Key-Insulated Cryptography

The work of Dodis et al. [DKXY02, DKXYO03] on key-insulated cryptography
merges threshold cryptography and forward security, inheriting some of the benefits
and restrictions of each. In particular, this setting considers two distinct devices:
a secure “base” who never gets compromised and an insecure client who may get
compromised at different time periods. As in the setting of forward security, the
state of the client and the functionality of the cryptosystem evolves over time
(e.g. signatures are produced and verified with respect to some fixed time period
T). Moreover, the client has the ability to perform the various cryptographic
operations (e.g. signing) on its own in each time period, without the help of the
base. However, unlike the setting of forward security, the client must now contact
the base to evolve its secret state into the next time period. The attacker can fully
compromises the client in some time periods, but security should be maintained
for all other time periods, past as well as future. For example, in a key insulated
signature scheme, the attacker should be unable to produce signatures that verify
with respect to any time period in which the client was not compromised. An
extended security notion called intrusion-resilient cryptography [IR02, DFKT03,
DFK™04] allows the base to get compromised in some time periods as well, and if
the base/client are ever compromised simultaneously then at least forward-security
is maintained and past time-periods remain secure.



2.2 Models of Partial Leakage

If we want to consider leakage resilience for devices which already contain the
very functionality that we are trying to protect (e.g. devices storing a fully func-
tional secret key of an encryption or signature scheme), than we must consider
models where the leakage is incomplete. Many such models appeared in the liter-
ature, differing on which components of a device can leak, the type/complexity of
the allowed leakage, and the amount of allowed leakage.

2.2.1 Oblivious RAMs

Perhaps the first model to consider incomplete leakage is that of oblivious RAMs
[Gol87, GO96, Ajt10, DMNT11]. This model assumes an architecture where a (large)
random-access memory is controlled by an adversary, and hence its contents and
the access pattern to it can leak completely. On the other hand, The proces-
sor along with some (small) cache is assumed to be perfectly secure and leakage
free. Assuming such hardware architecture, it is shown to implement any (pos-
sibly large) computation securely. Unfortunately, solutions in this model already
assume that the leak-free processor can store small secret keys and perform small
cryptographic computations securely, without any leakage. In particular, the RAM
is encrypted and the processor securely decrypts each block of memory when it
is accessed — the difficult aspect of the solutions is to ensure that the pattern of
“which memory blocks are accessed and when” does not reveal useful information.
The work of [Ajt11] shows how to construct oblivious RAMS that remain secure
even if the decrypted contents of some small fraction of accessed locations can
leak to the attacker. Still, all models of oblivious RAM assume fairly non-trivial
secure hardware, which can at minimum perform encryption/decryption without
producing any leakage on the secret key.

2.2.2 Exposure resilient cryptography

The study of ezposure resilient cryptography [Dod00, CDHT00, DSS01] consid-
ers partial leakage, where an attacker can leak an arbitrary but sufficiently small
subset of the bits of the secret state of a device. These works propose a solution
where the secret state is encoded using a tool called an all or nothing transform
(AONT), initially studied by [Riv97, Boy99]. An AONT can efficiently encode
any secret value into a codeword so that leaking any (small enough) subset of the
bits of the codeword does not reveal any information about the secret, but, given
the entire codeword, the secret can be efficiently reconstructed. Alternatively, one
can think of an AONT as a (gap) secret-sharing scheme where the shares are bits.
Known constructions of statistically secure AONTSs can maintain security even if



a (1 — ¢€) fraction of the bits of the encoding can leak, for any constant € > 0.
There are three main criticisms of exposure resilient cryptography, which later
works attempt to address. Firstly, in using exposure-resilient cryptography to
protect a cryptographic scheme against leakage, we can encode the secret state
of the device to protect it — but what do we do if we want to perform some
computation using the encoded state? The natural solution is to first decode
the original state and then run the original computation on it. However, this is
completely insecure if the attacker can get even some simple leakage during the
computation, when the secret state is decoded and manipulated in the clear. In
other words, exposure-resilient cryptography allows us to protect storage, but not
computation. Secondly, if an attacker has prolonged access to a physical device
and the ability to make many side-channel observations, it is not clear how to
justify that the total number of bits leaked is bounded overall. This question is
partially addressed by [CDH"00], which considers a method for (deterministically)
updating the encoding so that a different subset of the bits can leak from each
updated version. However, the update is assumed to be leak free. Thirdly,
exposure-resilient cryptography may be overly restrictive in the type of leakage, by
only allowing an attacker to probe individual bits of the state, but not allowing
her to learn any global properties. For example, AONTs do not provide any
guarantees if the attacker can learn the hamming weight of the codeword or the
XOR of all the bits of the codeword, even though the amount of leakage in such
cases is small. Indeed, since the hamming weight of the state usually corresponds
to the amount of power flowing through the device, learning the hamming weight
is the basis of various practical differential power analysis (DPA) side-channel
attacks (e.g. [KJJ99]). The work of [DDV10] can be seen as addressing exactly
this criticism and extending AONTSs to other (less) restricted types of leakage on
a codeword, such as assuming that two halves of the codeword leak arbitrarily but
independently and that the amount of leakage on each half is bounded.

2.2.3 Private circuits

The work of Ishai et al. on private circuits [ISW03] shows how to encode the
secret state of a device and perform arbitrary computations on it privately, even if
some sufficiently small subset of the wires of the circuit performing the computation
can leak to an attacker in each invocation. That is, there is a general compiler
which takes any computation and its secret state and outputs a compiled stateful
circuit that operates on an encoded state and achieves the same functionality. The
attacker can continually invoke the compiled circuit on arbitrary inputs, and learn
the values of some subset of the wires during the computation of the compiled
circuit, but will not learn anything useful beyond just the outputs of the original
computation (formalized via the simulation paradigm). Since the subset of the



wires that can leak may correspond to the encoded secret state, the encoding
is also necessarily an AONT (albeit with sub-optimal parameters). Therefore, we
can view work on private circuits as addressing the first two criticisms of exposure-
resilient cryptography by: (1) showing how to securely run arbitrary computations
on an AONT-encoded state without decoding it and (2) only bounding the number
of wires that can leak per invocation (but not overall) by updating the encoded
secret state in each invocation. Constructions of private circuits can be instantiated
so as to meet any bound ¢ on the number of wires that can leak, by making the
compiled circuit sufficiently large depending on ¢. Unfortunately, the fraction of
wires that can leak tends to 0 in this solution. The work of [Ajt11] gives a solution
where the fraction of wires that leaks is a small constant, but the subset of wires
that leaks is random and not adverasrial.

Private circuits already provide a way to protect general computations against
a well-defined class of leakage attacks. The main criticism of private circuits is
inherited from exposure-resilient cryptography — by restricting the type/complexity
of allowed leakage to getting individual wire values, we may fail to capture many
real-world side-channel attacks, such as DPA attacks that may leak the hamming
weight of the wires. Another criticism is that, by focusing on leakage of wires
in a circuit, we get tied down to a specific hardware architecture, which may be
undesirable in practice.

2.2.4 Private Circuits for ACO and Noisy Leakage

Faust et al. [FRR*10] extend the idea of private circuits to other restrictions
on the type of allowed leakage, beyond just leaking some subset of the wire values.
In particular, two possible distinct models are considered:

e In each invocation of the circuit, the attacker can leak an arbitrary ACO
function! of all the wire values in the circuit, as long as the output length of
this leakage function is bounded by some known upper bound. The size of
the compiled circuit grows with the bound, but the fraction of information
that can leak in this solution approaches 0.

e In each invocation of the circuit, the attacker learns a noisy reading of every

wire in the computation. That is, for some fixed probability bound p € (1, %],
the attacker independently gets the value of each wire with probability p and
a flipped value with probability (1 — p). The size of the compiled circuit
grows with (1 —p)~!, but the fraction of the total information in the circuit

that leaks approaches 1 as p does.

LA function is in the class ACO if it can be represented by a polynomial-size, constant depth
circuity composed only of NOT gates and unbounded fan-in AND and OR, gates.



These models are interesting and useful since (1) ACO functions can reveal some
global properties of the circuit, such as the approximate hamming weight, which
may better capture realistic leakage, and (2) the amount of information that can
leak in the second solution corresponds to almost the entire state of the circuit.
Unfortunately, the solutions have a drawback as compared to [[SW03] in that they
require some simple leak-free gadgets, which can sample a random value from a
public distribution in a leak-free way. It is currently unknown how to get rid of
such secure gadgets in these solutions. Moreover, the type of allowed leakage in
these solutions is still significantly restricted.

2.2.5 Only Computation Leaks Information (OCLI)

Micali and Reyzin [MRO04] introduce the axiom that “computation, and only
computation, leaks information” (OCLI). That is, computation is somehow divided
into steps and, during each computational step, only the portion of the secret state
that is accessed in this step can (partially) leak. Any other part of the state which
is not accessed will not leak during that step. The work of [MRO04] does not
specify the type/amount of leakage available during each step, but instead shows
general reductions for building advanced leakage-resilient primitives from simpler
leakage-resilient ones, for abstract classes of such leakage.

The work of Dziembowski and Pietrzak [DPO08] proposes a concrete model of
leakage under the OCLI axiom, where only the amount of information that leaks
during each computational step is bounded by some (small) leakage bound ¢. More
concretely, in each computational step 4, the attacker can choose any (polynomial
time) function f with ¢-bit output, and learn the value f(state;) where state; is
the portion of the state that is accessed during step i. Under these conditions, the
works of [DP08, Pie09] construct leakage-resilient stream ciphers, which output a
random stream of bits. Even if an attacker can get leakage during various invo-
cations of the stream cipher, the randomness produced by any invocation during
which there isn’t any leakage will look uniformly random. The tolerated leakage
bound ¢ is logarithmic in the security parameter under standard assumptions, or
possibly even a large fraction of the size of the accessed state under sufficiently
strong exponential hardness assumptions. The work of [FKPR10] shows how to
build signature schemes in this model, and [KP10] proposes a construction of a
public-key encryption schemes (but only having heuristical security arguments).
Several works [PSPT08, SMY09, YSPY10] also consider different variants of the
OCLI model, focusing on more practical approaches to modeling the limited side-
channel attacks that are often used in real life (at the expense of theoretical gen-
erality) and on the symmetric-key primitives which are most commonly attacked.

The work of Goldwasser et al. [GKRO8] on one-time programs can be seen as
showing how to securely compile any computational task so that it can later be



securely evaluated on a single arbitrary input (or some a-priori bounded number
of inputs) under the OCLI axiom, even if the entire portion of the state that is
accessed by the computation is leaked to the attacker. The works of Juma and
Vahlis [JV10] and Goldwasser and Rothblum [GR10] show how to compile any
computation into one which can be securely executed on an arbitrary number of
inputs under the OCLI axiom, as long as the amount of information leaked during
each computational step is bounded (and this is also shown to be necessary).?
Unfortunately, both of these latter works also require some additional leak-free
gadgets, with the ability to sample from a publicly known random distribution in
a leak-free way. It remains an open problem whether it is possible to get rid of all
leak-free gadgets in such constructions.

Limitations. Constructions of leakage-resilient primitives under the OCLI ax-
iom already provide protection against a large and meaningful class of side-channel
attacks. Still, it is debatable whether all natural leakage satisfies the OCLI ax-
iom. For example, the cold-boot attack of Halderman et al. [HSHT08] shows an
example of a leakage attack where some remnants of the secret keys can remains
in memory even after a device is powered down and the memory can be retrieved
by an attacker. This occurs even if these areas of memory are not being accessed
by any computation. Another disadvantage of relying on the OCLI axiom is that
the definition of which portion of a state is “accessed by a computation” depends
on the model of computation and on the specific hardware architecture. It may be
hard to analyze this property on real systems where e.g. an entire page of memory
is accessed even if a computation only needs to read a single bit on the page.

We note that the main technique for constructing schemes under the OCLI
axiom, introduced by [DPO08], is to split the secret state into a small number of
components (often just 2), and have each computational step operate on only a
single component at a time. The OCLI axiom is only used to argue that each
component leaks individually, and the attacker cannot leak global functions of all
components. As noted in e.g. [DP08, JV10], this can also be considered its own
meaningful axiom, which may be reasonable even if the OCLI axiom does not hold.
We will return to this idea when we discuss our results on secret-sharing in the
continual-leakage model.

2.2.6 The Bounded-Leakage Model

The bounded-leakage model (also called the memory-attack model in some prior
works) was introduced by Akavia et al. [AGV09] with the goal of removing the

’In all three works, security is defined via the simulation paradigm where leakage on the
internals of the compiled computation can be simulated given only the “ideal” inputs and outputs
of the original computation.
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OCLI axiom. This model places absolutely no restrictions on which components
leak or the type/complexity of the leakage, but only bounds the overall amount
of observable leakage. That is, the attacker can learn arbitrary information about
the entire internal secret state of a device, as long as the total amount of leaked
information (measured in bits) is bounded by some leakage bound ¢. This is for-
malized by allowing the attacker to specify an arbitrary poly-time leakage function
f o+ {0,1}* — {0,1}* and learn the value f(state), where state is the entire se-
cret state of the device, including the secret key sk and all of the internal secret
randomness that the scheme uses throughout its lifetime.?

It is relatively easy to see that one cannot perform general computations se-
curely on such device. Indeed, it is impossible to even store a message with com-
plete privacy on a leaky device, while ensuring that it remains efficiently retrievable
from the device — a single bit of leakage of the internal state can always just re-
veal (say) the first bit of the message. However, it turns out to be possible to
implement many specific cryptographic schemes on such leaky devices without
sacrificing the security of the cryptosystem. In fact, any signature or public-key
encryption scheme is secure in this model, as long as the amount of leaked informa-
tion is logarithmic in the security parameter — otherwise it would be easy to break
the scheme without any leakage just by guessing what the leakage should have
been.? Prior work shows how to construct public-key (identity-based) encryption
[AGV09, NS09, ADN*10, CDRW10, BG10, HL11], signatures and key agreement
schemes [ADW09a, KV09, DHLW10b, BSW11] and various related primitives in
the bounded-leakage model, where the amount of leakage ¢ can be an arbitrarily
large polynomial in the security parameter, and/or a (1 — ¢€) fraction of the secret-
key size, for any € > 0. That is, almost the entire secret key can leak without
compromising security!

Benefits of General Leakage. The main benefit of the bounded-leakage model
is its generality and simplicity, which make it highly applicable as well as easy to
use. For example, if we analyze leakage on (just) the secret key of a deterministic
cryptosystem, then it already implies security against leakage on the entire compu-
tation of the cryptosystem, including any intermediate values derived during the
computation. This is because a poly-time leakage-function can just compute all of
the intermediate values on its own given only the secret key.> Moreover, in contrast

3Simplified versions of this model, where state only includes the secret key but not all of the
randomness, have also been considered.

4When defining security for encryption schemes, we must assume that the leakage only occurs
before the attacker sees the challenge ciphertext, as otherwise a single bit of leakage could just
output the first bit of the message by decrypting the ciphertext insdie the leakage function.

SFor randomized cryptosystems, these intermediate values may also depend on the random
coins of the cryptosystem and so we must analyze leakage on the secret key and the random
coins.
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to all of the other models we discussed so far, the bounded-leakage model is inde-
pendent of the hardware architecture and the implementation. Leakage-resilience
in this model is a property of only the algorithmic description of a cryptosystem
and not its implementation. If a cryptosystem is shown to be resilient to bounded
leakage, then any implementation of it on any hardware architecture is resilient.

Limitation of Bounded Leakage. The main criticism of the bounded-leakage
model is that it may be unrealistic to assume that the overall amount of observed
leakage is bounded. This may be a reasonable assumption about the leakage pro-
duced by a single side-channel measurement on a single operation of the device.
But if an attacker can get prolonged access to a device, she may take many side-
channel measurements over time, and therefore the overall amount of observed
leakage will exceed any a-priori bound. Indeed, the vast majority of practical
side-channel attacks work by fully recovering the entire secret key after sufficiently
many measurements, and therefore will remain applicable even against “leakage-
resilient” schemes in the bounded-leakage model.

In other words, the bounded-leakage model gives us the amazing guarantee
that, as long as the leakage is “incomplete” (sufficiently bounded so as not to
contain the entire key), then the cryptosystem remains secure — but it does not
provide any mechanism for ensuring that continual side-channel leakage remains
incomplete and does not recover the entire key. This is in contrast with many
of the models we mentioned earlier (e.g. [ISW03, MR04, DP08]), which explicitly
consider continual leakage (usually per invocation of the cryptosystem) and provide
such a mechanism. In particular, these other models crucially rely on the idea of
evolving the secret state of a cryptosystem over time, to ensure that the attacker
cannot leak too much information about any single value. The bounded-leakage
model provides no such mechanism.

Related Models and Applications

The generality of the bounded-leakage model has another benefit, in that this
model appears to have many applications beyond side-channel attacks. In fact,
there is much work (some preceding [AGV09]) which considers variants of the
bounded-leakage model for various different applications.

Weak Randomness. The study of cryptography with weakly random secrets,
considers a setting where the secret key can come from some arbitrary and un-
known distribution, only guaranteed to have a sufficient level of (min-)entropy.
Although, in the bounded-leakage model, the secret key is initially chosen hon-
estly (usually uniformly random), it becomes weakly random if we condition on
the leakage seen by the adversary. Therefore, the two settings are very related
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and results usually translate from one setting to another. Most of the prior
work concerning weak secrets is specific to the symmetric key setting and much of
this work is information-theoretic in nature. For example, the study of privacy-
amplification [BBR88, Mau92, BBCM95, MW97, RW03, DKRS06, KR09, DW09]
shows how two users who share a weakly random secret can use it to agree on a
uniformly random key.

Virus Attacks. The bounded-leakage model was also considered earlier from the
point of view of virus attacks, where a system is compromised by a virus leaking
information to an external attacker. The main point of these work, which used the
name bounded retrieval model [CLW06, Dzi06, CDD*07, ADW09a, ADNT10], is to
construct efficient schemes with a huge secret key (say, many Gigabytes long) that
maintain security even if a large amount of the secret key leaks. In other words,
these works essentially consider the bounded-leakage model with an additional
efficiency requirement — the operations of the cryptosystem must remain efficient,
independently of how large of a secret key we may want to use. In particular, the
cryptosystem cannot even read the entire key to perform its various operations
such as signing or encrypting/decrypting.

Many of the ideas for the bounded-retrieval model evolved from the earlier
bounded-storage model [Mau92, AR99, ADR02, Lu02, Vad04], where a huge ran-
dom string is made publically available to all parties (honest and adversarial) but
the parties have limited storage capacity and hence cannot store all of it. Indeed,
the data stored by the attacker can be considered “leakage” on the huge random
string.

Entropy Leakage and Auxiliary Inputs. Lastly, following [AGV09], several
variants of the bounded-leakage model introduce different measures for the amount
of leakage seen by the attacker. In all these variants the attacker can learn arbitrary
poly-time computable functions of the secret state. The basic version of the model
measures the amount of leakage by the output lengths of these functions. The
work of [NS09] considers an entropy based approach, where the amount of leakage
is defined as the amount of entropy loss that the leakage causes on the secret key.
The main benefit is that some leakage attacks (e.g. power-analysis) produce a
large output (e.g. the entire power-trace), but most of it is not useful and hence
the entropy loss should still be small. Several variants of the entropy-based defini-
tion are also considered in [DHLW10a, BSW11]. The works of [DKL09, DGK*10]
consider a further generalization called the auziliary-input model. In this version,
the leakage amount is measured by the loss in the computational hardness of re-
covering the secret key given the leakage. This captures resilience against leakage
that completely determines the secret key information theoretically, as long as it
is hard to recover the secret key from the leakage computationally. Moreover,
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the auxiliary-input model may be useful if a secret-key is re-used for many differ-
ent applications (signatures, encryption, etc.), each of whose security is analyzed
individually and is known to not reveal the entire key.

Unfortunately, it is tricky to come up with formal definitions that match the
intuition of the entropy and auxiliary-input based models. Current definitions are
often confined to very specific schemes/scenarios and are hard to extend to others,
lack robustness (for example, leaking ¢ bits twice in these models may not be the
same as leaking 2¢ bits), and are generally harder to work with. Therefore, in this
thesis, we will always measure the amount of leakage just by its size, as in the
basic version of the bounded-leakage model. Doing so may not be as restrictive as
it first seems. The model already manages to capture attacks where large amounts
of information about the secret key are leaked, as long as this leakage is efficiently
compressible. Moreover, even if we do not know how to efficiently compress some
form of leakage, resilience in this model will rule out any attacks that eventually
only rely on some compressed version (e.g. attacks that use a long incompressible
power trace but only extract some simple features from it). Lastly, it turns out
that many of the results in the basic version of the bounded-leakage model can
often also be translated to some of the more general variants.

2.3 Tampering and Active Physical Attacks

Leakage is one form of a physical attack, in which the attacker can passively
learn more information than what is specified by the algorithmic description of a
cryptosystem. Another form of physical attack is tampering, where the attacker
can actively influence/modify the functioning of the cryptosystem, beyond what
the algorithmic description allows. For example, by hitting a device with radiation,
an attacker can introduce some random faults into the state and computation of
a cryptosystem. This may already be enough to completely break an otherwise
secure cryptosystem [BDL97, BS97|, just by observing the outputs produced by
the faulty computation.

Although we will not consider tampering in this thesis, we mention several
prior works that consider formal models of resilience to tampering attacks. Firstly,
the works of [GLM*03, DPW10, CKM10] consider resilience against tampering on
(just) the secret state of a device (but not on computation). These works propose
a solution concept which is analogous to the use of AONTSs in exposure-resilient
cryptography — namely, the state of the device is encoded in some special form
so that tampering with the encoding cannot meaningfully modify the encoded
value. In particular, the work of [DPW10] introduces an abstract notion of “non-
malleable codes” to capture this property. The work of Ishai et al. [IPSWO06], on
the other hand, considers a model where an attacker can tamper with memory and
computation in a limited way. In particular, it is assumed that the attacker can
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modify the values of a small subset of the individual wires of a circuit performing
an arbitrary computation. A similar setting with various interesting tradeoffs is
considered in [FPV11]. Unfortunately, it seems much more difficult to come up
with general models of tampering than it is for leakage.
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Chapter 3

The Continual-Leakage Model
and Overview of Results

In this thesis, we propose a new model of leakage resilience, called the continual-
leakage model (CLM).! The main goal of the CLM is to get the “best of both
worlds” — the generality of the bounded-leakage model together with a mechanism
for evolving the secret state so as to defend against the reality of continual leakage.
That is, we will allow the attacker to continually learn arbitrary information about
the internal secret state of a cryptosystem, as long as the rate of leakage is bounded.

3.1 Overview of the CLM

Key updates. In addition to the usual functionality of a cryptographic primitive
(e.g. signature, encryption,...), cryptosystems in the CLM come with an additional
randomized update procedure for updating the secret key sk’ < Update(sk). This
update process can be called an arbitrary number of times and should not have
any visible effect on the functionality of the cryptosystem to the outside world. For
example, signatures produced under each updated version of the secret key should
always verify under the static verification key, using a fixed verification procedure.
We leave it up to the implementation to decide when or how frequently to call the
update procedure, and this may correspond to physical time (e.g. every second) or
to the operations of the cryptosystem (e.g. after every signing operation). We will
assume that when a device concludes running an update, it manages to perfectly
erase/overwrite the old key and all of the random coins and intermediate values
used during prior operations.?2 We define a time period to be the span of time that
begins at the conclusion of one update and ends at the conclusion of the next one.

!This model was introduced concurrently by our publication [DHLW10a] and by the work of
Brakerski et al. [BKKV10], which we discuss in further detail later.
2If these erasures are imperfect, we can just think of the unerased data as leakage.
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Security in the CLM. The main security guarantee of the CLM is that the
cryptosystem remains secure even if the attacker can leak up to ¢ bits of information
about the (current) secret state of the cryptosystem in each time period, where ¢
is called the leakage bound. More precisely, in each time period, the attacker can
adaptively specify an arbitrary (poly-time) leakage function f :{0,1}* — {0,1},
and learn the output f(state), where state contains all information about the secret
state of the cryptosystem in that time period. More precisely, in each period the
value state includes the current secret key sk, all of the random coins (if any) used
by the cryptographic operations during the time period, and the random coins
used to update the secret key into the next time period. Therefore, this model
captures continual leakage on the entire state and computation in each time period,
including all the intermediate values created during a computation, since these are
all poly-time computable functions of state. 3

Remarks on the Model. The CLM captures the idea that we are only bounding
the rate of leakage: if the device performs updates at fixed time intervals, then we
are bounding the number or leaked bits per unit time, and if the device performs
updates after each operation, then we are bounding the number of leaked bits
per operation. We impose no a-priori bound on the overall number of leaked bits
during the lifetime of the system.

The CLM is strictly more powerful than the bounded leakage model, which we
can now think of as a restriction of the CLM to a single time period. Also, it is
strictly more powerful than the OCLI model of [MR04, DP08], since, in each time
period, the leakage is a global function of the entire state, and not only the portion
of the state that is accessed by computation. In fact, essentially all of the prior
models of partial leakage can be thought of as some restrictions of the CLM.

The main difficulty of constructing secure schemes in the CLM lies in showing
how to perform updates so that leakage in different time periods cannot be mean-
ingfully combined to reconstruct a full secret key that breaks the cryptosystem.
In contrast to the bounded-leakage model, allowing even ¢ = 1 bits of leakage is
non-trivial here. Notice that the updates must necessarily be randomized; other-
wise the leakage functions could always pre-compute the value of the secret key in
some future time period ¢ and leak it in full by learning one bit of it at a time in
periods 1,2,...,7 — 1.

We now give an overview of our results, showing how to construct secure prim-

3For simplicity, we will not consider leakage on the randomness of the key generation algorithm
for our cryptosystems. We can justify this by assuming that this algorithm is run securely before
the cryptosystem is “used in the field”. Nevertheless, most of our results can be extended to
allowing some small amount of leakage on the key generation algorithm as well (usually just
logarithmic in the security parameter) and it remains an interesting open problem to design
systems tolerating more such leakage.
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itives that remain secure in the CLM. We call such primitives continual-leakage
resilient (CLR), or more precisely ¢(-CLR, if they allow ¢ bits of leakage in each
time period.

3.2 CLR One-Way Relations and Signatures

We begin by considering a continual-leakage resilient version of one-wayness,
which is the most basic security property in cryptography.

Defining Security. A one-way relation (OWR) consists of an efficient NP re-
lation R(pk, sk) = 1 over public keys pk (the statement) and secret keys sk (the
witness), along with an efficiently samplable distribution (pk, sk) + KeyGen(1*)
over the relation R. The basic one-wayness security property only requires that, if
we sample a random (pk, -) < KeyGen(1?), then no efficient attacker can find any
matching sk* such that R(pk, sk*) = 1.4

To define a CLR OWR, we also introduce a randomized update sk’ < Update(sk)
that updates the secret key while preserving the relation R(pk,sk’) = 1. We
consider a security game where we choose (pk,sk;) <+ KeyGen(1*), and keep
updating the secret key in each period ¢ using randomness w; to get sk, <
Update(ski;wy), sk < Update(ska;ws), . ..

We first consider a restricted security notion assuming leak-free updates, where
the attacker only leaks on the keys but not on the update randomness. The
attacker initially gets the public key pk. It then runs for arbitrary many time peri-
ods, where in each period 7, it can adaptively choose a poly-time leakage function
f : {0,1}* — {0,1}* and learn the answer f(sk;). We say that the scheme is
secure if the attacker can never produce sk™ such that R(pk,sk™) = 1. We also
define the regular notion of CLR OWR, where the attacker gets to see f(state;)
for the full state; = (sk;,w;) including the randomness of updates.

Results. We first show how to construct /~-CLR OWRs with leak-free updates,
where the leakage bound ¢ can be made an arbitrarily large polynomial in the
security parameter, and a (% — €) fraction of the key size, for arbitrary € > 0.
We do so by first specifying a general framework for reasoning about continual
leakage, and then show hot to instantiate this framework using a new primitive
called a homomorphic NIZK, which we finally instantiate concretely under the

linear assumption in prime-order bilinear groups (see Section 4.3).

4Syntactically, a one-way relation is weaker than a one-way function since we do not require
that pk = f(sk) for some efficient function f but only that we can sample the tuple (pk, sk)
jointly. However, if we disregard leakage, then one-way relations exist iff one-way functions do.
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We then show that any (-CLR-OWR with leak-free updates also satisfies full
¢-CLR OWR security for any ¢ < /¢, but the reduction suffers a security loss
exponential in ¢/. Therefore, we can get full ¢/ CLR security where the leakage ¢’
is logarithmic in the security parameter under standard assumptions, and would
need exponential hardness assumptions to tolerate larger ¢’. This essentially follows
by “guessing” the value of the leakage on the updates. Lastly, we show how to
generically convert CLR OWRs into CLR Signatures, relying on prior work for
constructing leakage-resilient signatures in the bounded-leakage model [ADWO09a,
KV09, BSW11, JGS11]. We mention that, using CLR Signatures, it’s possible to
directly construct many other useful cryptographic primitives with CLR security,
such as CLR identification schemes and key-agreement protocols.

3.3 CLR Public-Key Encryption

Definition. In addition to the usual functionality of public-key encryption (PKE),
we again require the existence of an update procedure for updating the secret key.
The security definition is similar to that of a one-way relation, and the attacker can
adaptively leak up to ¢ bits of information on each secret key (and the randomness
of the update) in each time period, for arbitrarily many time periods. After con-
tinually leaking such information, semantic security should be preserved and the
attacker should be unable to distinguish encryptions of any two messages. Note
that there is an important caveat here: the attacker cannot leak any more infor-
mation on the secret key after seing the challenge ciphertext. This is a necessary
restriction in this model: if the attacker could leak even one bits of information
about the secret key that depends on the challenge ciphertext, she could leak (say)
the first bit of the encrypted message, breaking semantic security.® Note that the
relation between the public and secret keys of CLR PKE is necessarily also a CLR
OWR. Therefore, constructions of CLR PKE will give us alternate constructions
of fully secure CLR OWR (with leaky updates) where the leakage can be sub-
stantially larger than in the construction of the previous chapter. However, the
construction is much less generic than the previous one.

Results. Concurrent to our work [DHLW10a] on CLR one-way relations and
signatures, the work of Brakesrski et al. [BKKV10] gave a similar result for CLR

5As you may recall, this issue already comes up in the bounded leakage model. The work of
[HL11] explores other security guarantees, weaker than semantic security, that PKE can satisfy in
these models. Another approach toward getting rid of this restriction, suggested in [ADWO09a],
is the use interactive authenticated key-agreement protocols (e.g. based on leakage-resilient
signatures) to securely communicate. This way, the message remains hidden as long as there
is no leakage during the protocol execution in which it is sent, but continual leakage can occur
before and after.
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public-key encryption with leak-free updates, based on the linear assumption in
bilinear groups. Following that, the work of Lewko et al. [LLW11] showed how to
construct a CLR PKE with full security (including leakage on the updates) where
the leakage bound ¢ can be an arbitrarily large polynomial in the security parameter
(and a constant fraction of the key size). However, the resulting scheme and proof
are fairly complicated and require strong assumptions on composite-order bilinear
groups. In this thesis, we present a new scheme (from our corresponding work
[DLWW11]), which is based on the ideas of [LLW11], but is vastly simpler and
can be proven secure under the more standard linear assumption in prime-order
bilinear groups. We also present the scheme in several stages, starting with simpler
schemes that achieve weaker notions of security and progressively building up to the
full scheme with full security. This presentation connects the main ideas behind
several prior works on leakage-resilient encryption including [NS09], [BKKV10]
and [LLW11]. Lastly, our final encryption scheme will be the starting point of our
construction of CLR Secret Sharing, which we discuss next.

3.4 CLR Secret Sharing (Storage)

Storing Secrets on Leaky Devices. Finally, we ask a basic question of how to
simply store a secret value (message) on continually leaky devices while preserving
its secrecy. Unfortunately, in the bounded and continual leakage models, it is
impossible to store a message secretly on a single leaky device from which it is
efficiently retrievable, because a single leaked bit of the internal state of such device
can reveal (say) the first bit of the message. There are two natural alternatives to
overcoming this difficulty:

1. We can weaken the leakage model and restrict the attacker to only learning
some limited class of leakage function of the internal state of the device. This
class should capture realistic attacks but cannot be powerful enough to recover
the stored secret, even though there is an efficient method for doing so.

2. We can consider a model where the secret is shared between two or more devices,
each of which leaks individually in the continual leakage model. The attacker
can continually learn arbitrary bounded-length functions of the internal state
of each individual device, but not of the combined joint state of all the devices.

We will frame our discussion in terms of the second approach. However, this
can also be naturally viewed as a concrete instantiation of the first approach, where
we think of the state of a single device as divided into multiple components, and
leakage is restricted to the limited class of functions that each depend on only a
single component. This may be a natural and realistic class of leakage attacks if the
components of the state are e.g. stored in different areas of memory and accessed
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separately by the device. In particular, this can be seen as a strengthening of the
“only computation leaks information” (OCLI) model. In the OCLI model, the
various components leak individually but only when accessed by a computation,
while here they leak individually but all the time. We note that this strengthening
was explicitly considered by prior works in the OCLI model, starting with Dziem-
bowski and Pietrzak [DP08] in the case of stream ciphers. Although prior results
in various models of continual leakage construct many basic and advanced crypto-
graphic primitives, they do not address the simple question of storing a consistent
value secretly on leaky devices. Indeed, they rely on the fact that one does not
need to store a consistent secret key over time to e.g. decrypt, sign, or generate a
random stream.

Defining CLR Sharing. More concretely, we will consider schemes for sharing
a value between two devices, each of which is leaking information individually in
the continual leakage model. We assume that each device has its own individual
notion of time periods, but these notions can differ across devices and they need
not be synchronized. At the end of each time period, a device updates its share
using some local fresh randomness. This update is conducted individually, and the
devices do mot communicate during the update process. At any point in time, no
matter how many updates occurred on each device, the shares of the devices can
be efficiently combined to reconstruct the shared secret message.

For security, we allow the attacker to continually learn arbitrary (efficiently
computable) functions of the internal state of each device .The attacker can choose
the functions adaptively and can alternate leakage between the devices. The in-
ternal state of each device in each time period consists of the current version of
its share and the randomness of the update process used to derive the next share.
We only restrict the attacker to leaking at most ¢ bits of information from each
device during each time period. For security, we require that the shared mes-
sage remains semantically secure throughout the lifetime of the system. We call a
scheme satisfying these criteria an ¢-continual-leakage-resilient sharing (¢-CLRS).

Results. Our main result is to construct an /-CLRS scheme between two devices,
for any polynomial leakage-bound ¢ and where the share size scales linearly in ¢, so
that a constant fraction of each share can leak in each time period. The security
of our scheme is based on the linear assumption in prime-order bilinear groups.
In fact, the main tool of our construction is exactly our encryption scheme from
the previous section; to share a message we simply encrypt it and make one share
the secret key and the other share a ciphertext.Taking any of the recent results
on CLR-PKE, we get a method for updating (just) the key share. We also get
the guarantee that the message remains hidden even if the attacker continually
leaks on the key share and later gets the ciphertext share in full. We then show an
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alternate way of creating ciphertexts, which allows us to define a natural procedure
for updating them analogously to how secret keys are updated. Lastly, we prove
a new and delicate security property, showing that even if an attacker interleaves
leakage on the secret key and the ciphertext shares, the message remains hidden.

We also show that in contrast to standard secret sharing, /-CLRS cannot be
realized information theoretically, even for ¢ = 1 bit of leakage.

Relation to Other Primitives. It is useful to compare CLRS schemes to other
primitives from the literature. Most obviously, standard secret sharing schemes
[Sha79] provide security when some subset of the shares are fully compromised
while others are fully secure. In CLRS schemes, all shares leak and hence none are
fully secure. The idea of updating shares to protect them against continual com-
promise was also considered in the context of proactive secret sharing [HJIKY95].
However, the motivation there was to protect against a mobile adversary that cor-
rupts different subsets of the shares in different time periods, while in our case all
shares leak in all time periods. Another important connection is to the leakage-
resilient storage scheme of [DDV10]. This gives an information-theoretic solution
for sharing a secret securely on two leaky devices/components in the bounded leak-
age model, where the overall amount of leakage on each share is bounded. The
work of [DF11] extends this information theoretic solution to the continual leakage
model, but requires that devices have access to some correlated randomness gen-
erated in a leak-free way (e.g. using leak-free hardware) and update their shares
interactively. In contrast, we do not assume any leak-free hardware. Also, our
updates are performed individually, and we show that this comes at the necessary
expense of having computational assumptions.

Related to the above model, prior (unpublished) work by [AGH10] was the first
to propose the two processor distributed setting for public key decryption, where
the systems secret state is shared by both processors, and is subject to continual
memory leakage attacks, where the attacker is restricted to leak from each of the
processors share of the secret state separately. Their ultimate goal was the security
of the public key encryption scheme rather than the maintenance of a particular
secret, which is addressed by an interactive secret state refresh protocol in their
work.

Lastly, we mention the prior works [JV10, GR10], which consider general com-
pilers for executing arbitrary computations privately on leaky devices. Both works
provide solutions in variants of the “only computation leaks information model”,
but require some additional leak-free hardware. Implicitly, these works also ad-
dress the question of storing a value secretly on leaky devices, since the state of the
computation must be somehow stored consistently. However, the use of leak-free
hardware in these solutions greatly simplifies the problem of storage and avoids
virtually all of the challenges that we address in the current work. We believe that
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our work provides an important first step in the direction of building general com-
pilers without any leak-free hardware, since the question of (just) securing storage
must be addressed as a part of any solution to the larger question of securing com-
putation. One elegant solution to the latter problem would be to design secure
computation protocols where two (or more) continually leaky devices can securely
compute functions of a secret value that is shared between them under our CLRS
scheme, in such a way that leakage on the computation does not reveal anything
more then the output value and some additional independent leakage on the input
shares.

23



Chapter 4

Preliminaries

Notation and Conventions. If X is a probability distribution or a random
variable then z <— X denotes the process of sampling a value x at random according
to X. If S is a set then s <~ S denotes sampling s according to the uniformly
random distribution over the set S. For a randomized algorithm or function f, we
use the semicolon to make the randomness explicit i.e. f(w;r) is the output of f
with input w using randomness r. Otherwise, we let f(z) denote a random variable
for the output of f(z; R) where R is uniformly random. As usual in computer

science, all logarithms are base 2 by convention so that log(z) = log,(z). We
use Kleene star notation letting {0, 1}* = (J, {0, 1}" denote all finite-length bit
strings. For a bit string s € {0,1}*, we let |s| denote the bit length of s.

Throughout the paper, we let A denote the security parameter which determines
the level of security that we are hoping to achieve. A function v(\) is called
negligible, denoted v(\) = negl(\), if for every integer ¢ there exists some integer
N, such that for all integers A > N. we have v(A) < 1/X° (equivalently, v(\) =
1/X3*M). A function p(\) (usually associated with some probability) is called
overwhelming if p(A) = 1 — negl(\). We will implicitly assume a uniform model of
computation throughout the paper and identify efficient algorithms with Turing
Machines that run in polynomial time in the security parameter \. !

Computational Indistinguishability. Let X = {X,} ey and Y = {Y) }aen be
two ensembles of random variables. We say that X, Y are (t, ¢)-indistinguishable
if for every distinguisher D that runs in time #(\) we have

|Pr[D(X)) = 1] — Pr[D(Y)) = 1]| < % +e(N).

IThis is just for concreteness. All results will also hold in the non-uniform setting under cor-
responding non-uniform hardness assumptions. In particular, all our reductions will be uniform.
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We say that X,Y are computationally indistinguishable, denoted X =~ Y if
for every polynomial ¢(-) there exists a negligible €(-) such that X,Y are (¢, ¢)-
indistinguishable.

4.1 Statistical Distance, Entropy, Extractors

Statistical Indistinguishability. The statistical distance between two random
variables X, Y is defined by

SD(X,Y) = %Z IPr[X = 2] — Pr]Y = 2]].

stat
~

We write X Sgtﬁ Y to denote SD(X,Y) < € and just plain X = Y if the statistical
distance is negligible in the security parameter. In the latter case, we say that X, Y
are statistically indistinguishable.

Entropy and Extractors. The min-entropy of a random variable X is

H..(X) < —log(max Pr[X = z]).
This is a standard notion of entropy used in cryptography, since it measures
the worst-case predictability of X. We often find it useful to work with a gen-
eralized version of min-entropy, called average conditional min-entropy, defined
by[DORS08] as

Ho(X[2)% “log ( E [ max Pr[X = #|Z = 2] D — _log ( E [2—Hw<X\Z:Z>]) .
27 T 27

This measures the best guess for X by an adversary that may observe an average-

case correlated variable Z. That is, for all (inefficient) functions A, we have

Pr[A(Z) = X] < 27H=(XI%) and there exists some A which achieves equality. The

following lemma says that conditioning on ¢ bits of information, the min-entropy

drops by at most ¢ bits.

Lemma 4.1.1 ([DORS08]). Let X,Y,Z be random variables where Y takes on
values in a set of size at most 2¢. Then Hoo(X|(Y, Z)) > Hoo(X,Y)|2) — £ >

H.(X|Z) — ¢ and, in particular, Hoo(X|Y) > Hoo(X) — .
We now define the notion of an (average case) randomness extractor.

Definition 4.1.2 (Extractor [NZ96, DORS08]). A randomized function Ext : X —
Y is an (k,€)-extractor if for all rv. X,Z such that X is distributed over X

stat

and Hoo(X|Z) > k, we get (Z,R,Ext(X;R)) =. (Z,R,Y) where R is a random
variable for the coins of Ext and Y 1is the uniform over ).
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Lemma 4.1.3 (Leftover-Hash Lemma [NZ96, DORS08]). Assume that the family
H of functions h : X — ), is a universal hash family so that for any x # 2’ € X
we have Pr, 5 [h(z) = h(z")] < 1/|Y|. Then the randomized extractor Ext(x;h) =

h(x) is a (k,e€)-extractor for any k, e satisfying k > log(|Y|) + 21og (1/€).

Two-Source Extractors. We will also rely on the notion of a two-source ex-
tractor [CG88]. Since we will only use the inner product extractor, we do not define
the notion abstractly but simply present the concrete lemma that inner product is
a good two-source extractor. For ¥ = (71,...,2z,) € Fy and = (y1,...,yn) € Fy,

the inner product is defined as (7, %) = >.7, w;4;. We will state the average case
version of the lemma (analogous to the average case version of seeded extractors

defined by [DORS08)).

Lemma 4.1.4 (Inner Product Two-Source Extractor). Let X,Y,Z be correlated
random variables, where X,Y have their support in FJ' and are independent con-
ditioned on Z. Let U be uniform and independent over F,. Then

SD( (z.(X,Y)), (z.U)) <2

where s > 143 (kx +ky —(m+1)log(q)) for kx = Ho (X | 2), ky :=Hy(Y | Z).

The worst-case version of the lemma, where Z = z is fixed, is proved in [CG88]
(see [LLTTO5] for a very simple proof giving the above parameters). We now prove
the average-case version, where Z is arbitrary. The proof follows that of [DORS08]
showing that leftover-hash is a good average-case extractor.

Proof. Let (X,,Y,) = (X,Y|Z = z). Then

SD( (Z,(X,Y)), (z,U))
= E[SD((X..Y.), U)]

< %E [\/2_(Hw(Xz)+Hoo(Yz))qm+1]

< %\/E[2—(HOO(XZ)+HOO(YZ))qm+1]

< %\/ 9 (Floe (X12) + Bl (¥]2)) g1

where the first inequality follows from the worst-case version of the lemma and the
second inequality is Jensen’s inequality. This gives us the average case version of
the lemma. O
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4.2 Linear Algebra Notation

Linear Algebra. Let F be a field. We denote row vectors with v € F". If
U1, ..., 0 € F™ are m vectors we let span(#y, ..., 7,,) C F" denote the liner space
spanned by these vectors. We let (7,@) = - @' be the dot product of v, € Fy.
If A € F"™™ is a n X m matrix of scalars, we let colspan(A), rowspan(A) denote
the subspaces spanned by the columns and rows of A respectively. If YV C F”
is a subspace, we let V1 denote the orthogonal space of V, defined by V+ &
{wWeF, | (Wo)=0 VieV} Wewrite (04,...,0,)" as shorthand for
span (v, ..., Tn)" . We write V L W if V C W and therefore also W C V1. We
define the kernel of a matrix A to be ker(A) = rowspan(A)*.

Matrix-in-the-Exponent Notation. Let G be a group of prime order ¢ gen-
erated by an element g € G. We write the group operation as multiplication and
assume that it can be performed efficiently. and let A € F;*™ be a matrix. Then

we use the notation g4 € G™™ to denote the matrix (gA) & g@Wis of group

elements. Note that, given a matrix of group elements g? € G”X"L and a matrix
B € F™* of “exponents”, one can efficiently compute g#”. However, given g#
and gP it is (generally) not feasible to efficiently compute g#”. On the other
hand, assume G, Go, G are three groups of prime order g and e : Gy X Gy — Gy
is an efficient bilinear map satisfying e(g® h®) = e(g,h)®. Then, given g# and

h? for generators g € G;,h € Gy, one can efficiently compute e(g, h)4? via

(e(g,h)P);; = [T, e (g*, hBx3). We abuse notation and define gAg? = gA+5
and e(g?, h?) = e(g, h)*P for any appropriately sized matrices A, B.

Random Matrices. For integers d,n,m with 1 < d < min(n,m), we use the
notation Rky(Fy*™) to denote the set of all n x m matrices over Fy with rank d.
When W C F7" is a subspace, we also use the notation Rky(IF;*™ | row € W) to
denote the set of rank d matrices in Fy*™ whose rows come from the subspace W.
For V C I, we define Rky(IF;*™ | col € V) analogously. We prove several simple
properties of random matrices.

Lemma 4.2.1. Assume q is super-polynomial in the security parameter.

(I) For n > m the uniform distributions over Rk, (Fy*™) and Fy*™ are statistically
indistinguishable.

(II) For n,m > d and W C Fy' a subspace of dimension d, the uniform dis-
tributions over Rkq(Fp*™ | row € W) and W™ (seen as n rows) are statistically
indistinguishable.

Proof. Notice that (II) implies (I) with d = m and W = F*. The statistical
distance between the uniform distributions over Rky(IF;*™ | row € W) and W" is
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just the probability that n samples from WV span a sub-space of dimension < d.
Think of choosing the rows from W one-by-one. Then the probability that the ith
sample falls into the subspace of the previous ones is at most ¢"~!/q?. By union-
bound, the probability of this happening in the first d samples is upper-bounded

by 34 ¢ ¢ < 2/q. O

Lemma 4.2.2. Let d,n,m be integers with min(n,m) > d > 1.
(I) The uniform distribution over Rky(IFy*™) is equivalent to sampling C & Rkq(F7*9),
R& Rky(F2*™) and outputting A = CR. Notice

colspan(A) = colspan(C') , rowspan(A) = rowspan(R).

(IT) If W C F* is a fixed subspace of dimension > d, the uniform distribu-

tion over Rky(Fp>*™ | row € W) is equivalent to sampling C & Rkq(F*9), R &
Rkq(F2*™ | row € W) and outputting A = CR.

(II) If W C F* a uniformly random subspace of a fired dimension > d, the
uniform distribution over Rky(Fy™™ | row € W) is equivalent to the uniform dis-
tribution over Rky(IFp™™).

Proof. Notice that (II) implies (I) with W =T*. For (II), it suffices to show that
number of ways of writing A = C'R as a product of some C' and R is the same for
every A (for appropriate domains of A, C, R). In particular, it is equal the number
of ways of choosing such R so that its rows form a basis of rowspan(A), which is
Hf;ol(qd —¢'). For (III), we notice that for every A € Rky(F;*™) the number of
spaces W (of any fixed dimension) such that A € Rkq(Fy*™ | row € W) is just the
number of spaces W that rowspan(A) C W which is the same for every A. [

4.3 Computational Hardness Assumptions

Our results will require us to rely on hardness assumptions in prime-order
groups. We let such groups be defined via an abstract group generation algorithm
(G, g,q) < G(1"), where G is a (description of a) cyclic group of prime order ¢ with
generator g. We assume that the group operation, denoted by multiplication, can
be computed efficiently. We define several hardness assumptions on such groups.

Decisional Diffie-Hellman (DDH). The DDH assumption on G states that

comp

(G7 o, 81, g67 g{) ~ (Ga g0, 81, g607 g’{l)

where (G, g, q) < G(1*), g0, g1 & G, and r, 79,71 & F,.
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k-Linear. This assumption was proposed by [BBS04, HK07, Sha(07] as a gener-
alization /weakening of the DDH assumption. Let k& > 1 be constant. The k-Linear
assumption on G states that

E oy
(G7g07g17"'7gk7g?7gg27-..7gr[(k7g021=1 )

comp
~
~

(G7g07g17 QR 7gk7g1£17gg27 o e 7g;§7g60)

where (G, go,q) < G(1*), g1,...,8r < G, and ro,r,...,7 + F,. Notice that,
when k£ = 1, the k-linear assumptions is exactly the DDH assumption. It turns out
that, as k gets larger, the assumption becomes weaker. Therefore, even in groups
in which the DDH assumption does not hold, the k-linear assumptions may still
hold for k > 2.

k-linear (Matrix Form). It may be worth rewriting the k-linear assumption in
matrix form. This equivalent form of the assumption states that

. comp

(G,g%,g™) =~ (G,g*.g"

where we sample (G, g, q) < G(1%), x1,..., 2 & Fy, 7 & Fr, & FH and set
X e IF’;X(HI) be the matrix:

1 T 0 0

1 0 ) 0
X = )

10 0 ... x

Rank Hiding. This assumption was introduced by [NS09] and shown to be
implied by the k-linear assumption. The k-rank hiding assumption on G states
that for any constants k < i < j < min{m,n} we cannot distinguish rank i and j
matrices in the exponent of g:

comp

(G,g,g") =~ (G,g,g")

where (G, g, q) < G(1%), X & Rk;(Fy*™), Y & Rk, (F7>™).

To summarize, for any k > 1 and any group algorithm G, the k-linear assumption
is equivalent to the matriz-form k-linear assumption, it implies the k-rank-hiding
assumption, and it implies the (k + 1)-linear assumption.
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Bilinear Groups. Most of our results will rely on the above assumptions in
bilinear groups. We let such groups be defined via an abstract pairing generation
algorithm

(Gb G27 GT7 q7 67 g7 h) — gpaiT(l)\>

where G1, Go, G7 are (descriptions of) cyclic group of prime order ¢ with generators
g € Gy1,h € G, and ¢ is a description of a bilinear map e : Gy x Gy = Gp. We
require two properties:

Efficiency: The bilinear map e(-, ) and the multiplication operation in all three
groups G1, Go, Gy can be computed efficiently.

Non-Degenerate: The bilinear map is non-degenerate so that the element e(g, h)
is a generator of Gr.

We say that the pairing is symmetric if Gy = Gg, g = h and asymmetric otherwise.

We can define analogous versions of the DDH, k-linear and k-rank hiding as-
sumptions in such groups. In all cases the attacker is also given the full description
of the bilinear groups (Gi, Gy, Gr,q,e,g,h) and we will assume that the corre-
sponding hardness property holds in both groups Gy, Gs.

It turns out that the 1-linear (DDH) and 1-rank-hiding assumptions are false
for symmetric pairings where G; = G,. However, it is often reasonable to as-
sume DDH holds in some asymmetric pairings, and this is also called the external
Diffie-Hellman assumption SXDH [Sco02, BBS04, GR04, Ver04]. Since the SXDH
assumption is fairly strong, it is sometimes preferable to rely on k-linear (or rank-
hiding) assumptions for k > 2. The (k = 2)-linear assumption, also called deci-
stonal linear, is commonly believed to hold in symmetric and asymmetric pairings.

4.4 Public-Key Encryption

Recall that a public-key encryption scheme consists of three algorithms
KeyGen, Encrypt, Decrypt with the following syntax:

o (pk,sk) < KeyGen(1%) : Outputs a public/secret key pair.
The public key defines some efficiently samplable message space M.

e c < Encrypt,(m) : Given a message m € M and a public key pk, outputs a
ciphertext c.

e m’ « Decrypt,,(c) : Given a ciphertext ¢ and a secret key sk, outputs a
message m' € M or a value L.

Often, instead of just defining a single algorithm KeyGen, we break it up into
two separate procedures: ParamGen, KeyGen with the syntax:
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e prms < ParamGen(1%) generates public parameters prms which define some
message space M.

o (pk, sk) < KeyGen(prms) generates the public/secret key.

The advantage of this definition, over just thinking of prms as part of the public
key pk, is that the prms can be reused multiple times by different users and even
different schemes. For example, the public parameters could include the description
of a DDH group which can be reused many times. We will often just switch between
these two syntactic definitions. That is, when discussing security, we can always
just use the first definition but, when extra functionality requires it, we may specify
a distinction between the public parameters prms and the public key pk.

The scheme should satisfy correctness and security defined as follows.

Perfect Correctness: For all (pk, sk) < KeyGen(1*) with pk defining a message
space M, for all m € M, for all ¢ + Encrypt,; (m), we have Decrypt (c) = m.

Security: We will define two distinct notions of security. First, we start with
a weak notion which we call one-way security, where we only require that an
encryption of a random message makes the message hard to recover.

Definition 4.4.1 (One-Way Security). An encryption scheme

& = (KeyGen, Encrypt, Decrypt), is one-way secure if, for any PPT adversary A we
have:

(pk, sk) + KeyGen(1)m < M,

< [(A
¢ < Encrypt,, (m), m* < A(pk,c) | ~ negl(})

Pr {m* =m ‘
where the public-key pk defines the message-space M,y.

The stronger and more standard notion of security for encryption is semantic
security where the attacker cannot distinguish between the encryptions of any two
messages.

Definition 4.4.2 (Semantic Security). An encryption scheme
& = (KeyGen, Encrypt, Decrypt), is semantically secure, if for any PPT adversary
A we have | Pr[b* = b] — 5| < negl()) in the following game:

e Challenger samples (pk, sk) < KeyGen(1*) and gives pk to A.
Let M be the message space defined by pk.
e A chooses two values mg, m; € M.
e Challenger samples b < {0,1}, ¢ + Encrypt,,(msy) and gives ¢ to A.
o A outputs a bit b*.
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It is easy to see that the standard notion of semantic-security implies one-way
security if the size of the message-space M, is super-polynomial in the security
parameter.

4.5 Non-Interactive Zero Knowledge (NIZK)

Let R C Y x X be an NP relation on pairs (y, z) with corresponding language
Lr ={y | Jzst. (y,x) € R}. A non-interactive zero-knowledge (NIZK) argu-
ment for a relation R consists of PPT algorithms Setup, Prov, Ver with syntax:

e CRS + Setup(1): Creates a common reference string (CRS).
o 7 < Provegs(y,x): Creates an argument that “y € Lgr” using witness z.
e 0/1 < Vercus(y, m): Verifies whether or not the argument 7 is correct.

For security, we also require the PPT algorithms SetupSim, Sim with the syntax:
o (CRS, TK) ¢« SetupSim(1*): Creates a simulated CRS with a trapdoor TK.
e 7+ Simgs(y, TK): Creates a simulated argument for y € ).

For the sake of clarity, we write Prov, Ver, Sim without the CRS in the subscript
when the CRS can be inferred from the context.

Definition 4.5.1. We say that 11 = (Setup, Prov, Ver, SetupSim, Sim) is a NIZK
argument system for the relation R if the following three properties hold.

Completeness: For any (y,x) € R, if CRS < Setup(1?) , m + Prov(y,x), then
Ver(y,m) = 1.

Soundness: For any PPT adversary A,

Pr [ Ver(y,7*) =1 | CRS, <« Setup(1?)

(y,7*) « A(crs) | < "egl).

y & Lg

Composable Zero-Knowledge: We require two properties.
(1) CRS “~" CRS' where CRS « Setup(1*) and (CRS', TK) + SetupSim(1%).
(2) For any PPT adversary A we have |Pr[A wins ] — 1| < negl(\) in the
following game:

e Challenger samples (CRS, TK) < SetupSim(1%), gives (CRS, TK) to A.

e A chooses (y,r) € R and gives these to the challenger.

e Challenger samples my < Prov(y,x), m < Sim(y, TK),b < {0, 1},
gives m, to A.
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o A outputs a bit b, and wins if b = b.

We note that we include composability in our default notion of NIZK. By in-
sisting that real and simulated proofs look the same even given TK, it is easy to see
that they look the same even if an attacker can see many other simulated proofs.
The reason that we define two algorithms Setup and SetupSim, instead of just
always using SetupSim, is that soundness may not hold when the CRS is gener-
ated via SetupSim. In particular, there may be a strategy for picking statements
depending on the CRS and generating valid arguments, such that the statements
are false if the CRS is simulated but true otherwise. Therefore the attacker can-
not distinguish which type of CRS is being used, but may manage to prove false
statements only when the CRS is simulated.

Public Parameters. As with encryption, we can also talk about NIZK with
public parameters by defining three algorithms:

e prms < ParamGen(1%): generates the public parameters.
e CRS < Setup(prms): creates the CRS.
e (CRS, TK) « SetupSim(prms) generates a simulated CRS with a trapdoor.

Again, the main advantage over just thinking about prms as part of the CRS is that
the above definition makes it clear that prms can be reused by different schemes.
We will alternate between the above two definitions freely. As with encryption,
when discussing security we just think of the prms as part of the CRS (this is
without loss of generality) to simplify notation. But we will explicitly talk about
public parameters when the additional functionality requires it.
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Chapter 5

CLR One-Way Relations,
Signatures

5.1 Modeling Leakage.

We model leakage attacks (also called memory attacks in prior work) against
a cryptosystem with some secret state state via the notion of a leakage oracle.
The leakage oracle allows the attacker to learn information about the state of the
cryptosystem by submitting arbitrary “questions” about the state to the oracle.
Without loss of generality, we assume each question provides the attacker with
one bit of information, but the attacker can ask many such questions. We model
the attacker’s questions as predicates h : {0,1}%t — {0 1} and the leakage
oracle answers each question by providing the attacker with the corresponding
output h(state). In our definitions of leakage-resilient primitives, the adversary
can adaptively query the leakage oracle to learn information about the secret state
during an attack, but we will restrict the number of allowed queries (i.e. the
amount of leaked information) during various stages of the attack.

Definition 5.1.1 (Leakage Oracle). A leakage oracle Ogae(-) is parameterized by
the secret state state of publicly known length m := |state|. A query to the oracle
consists of a circuit computing some predicate h : {0,1}™ — {0,1}. The oracle
responds to the query by outputting the value h(state).

Note that a polynomial time attacker with access to a leakage oracle Ogate(+) can
only query the oracle on circuits of polynomial size (since it must write down the
entire circuit explicitly) and hence the queries can all be evaluated in polynomial
time as well.
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5.2 Defining CLR-OWR

5.2.1 One-Way Relations

A one-way relation (OWR) consists of two PPT algorithms: a key-generation
algorithm (pk, sk) < KeyGen(1}), and a verification algorithm b = Ver(pk, sk)
which outputs a bit b = 1 to indicate that a secret-key sk s wvalid for the
public-key pk, and b = 0 otherwise. Implicitly, this gives us the relation R =
{(pk, sk) : Ver(pk,sk)=1}.

Definition 5.2.1 (One-Way Relation (OWR)). We say that (KeyGen,Ver) is a
one-way relation if it satisfies:

Correctness: If (pk,sk) < KeyGen(1%), then Ver(pk,sk) = 1.
Security: For any PPT attacker A, we have

(pk, sk) < KeyGen(1?)

Pr |Ver(pk, sk*) = 1 sk* < A(pk)

< negl(\).

A one-way relation generalizes the concept of a one-way function (OWF). Of
course, we can always set sk to include all of the randomness of the KeyGen al-
gorithm, so that pk = KeyGen(sk) is a OWF. However, when defining leakage-
resilient one-wayness (which we do next), this equivalence might no longer hold — by
putting more information into the secret key we would also have to give the adver-
sary more information during key-leakage attacks. Therefore, we consider OWRs,
rather than OWFs, as the basic cryptographic primitive for leakage-resilience.

5.2.2 OWRs in the Bounded-Leakage Model

We first define security of OWRs against bounded leakage, where the overall
amount of leakage is bounded by ¢ bits. Although this definition will not be
required for any of the results in the paper, it is here as a warm-up exercise used
to to build up intuition towards our definition in the continual leakage model. We
define an (-leakage-resilient OWR (/-LR-OWR) by modifying Definition 5.2.2 so
that the adversary can learn up to ¢ bits of information about the secret sk after
seing the public value pk and before outputting the forgery sk*.

Definition 5.2.2 (-LR-OWR). We say that (KeyGen, Ver) is an (-leakage-resilient
OWR if it satisfies the correctness property of OWR and the following leakage-
resilient security property. For any polynomial p(-) and any PPT attacker A, we
have Pr[A wins | < negl()\) in the following game:

o Challenger chooses (pk, sk) < KeyGen(1%), gives pk to A, sets state = sk.
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o Attacker A can make up to € queries to the oracle Oguare(-) and wins if it
outputs sk™ s.t. Ver(pk, sk™) = 1.

We now show that any second-preimage resistant (SPR) function F' is also an
(-LR-OWR, where ¢ is roughly the number of bits by which F' shrinks its input.
This theorem was first shown formally in our works [ADW09b, DHLW10a] but was
also implicit in [ADW09a, KV09].

Definition 5.2.3 (Second Pre-Image Resistant Functions (SPR)). Let
{F : {0,1}"™ = {0,13"V}

be an ensemble of functions where n(-),m(:) are some polynomials. We say that
F' is second-preimage resistant (SPR) if F(x) is efficient to compute, and for any
PPT algorithm A,

Pr[’ # 2 AF(2') = F(z) | 2 & {0,11"W, 2/ « A(z)] < negl(\)

Theorem 5.2.4. Assume that F is SPR. Let (KeyGen,Ver) be a relation where
KeyGen(1*) samples sk < {0,1}*) and sets pk := F(sk), and Ver(sk, pk) outputs
1 iff pk = F(sk). Then this relation is an (-LR-OWR for any ((-) such that
() = n() — m(X) — w(iog(M)).

Proof. Assume otherwise, that there exists an attacker A that break -LW-OWR
security. That is, given pk = F(sk) and ¢ bits of leakage on sk, A and outputs sk™
such that F'(sk*™) = pk. Assume A succeeds with some non-negligible probability
€(A). Then we construct an attacker B that breaks SPR security with non-negligible
probability. The attacker B simply gets sk < 0,1}, computes pk = F(sk) and
runs the attacker A with pk. It simulates the leakage oracle and answers the leakage
queries made by A honestly using its knowledge of sk. The attacker B wins as long
as both of the following two events occur: (1) the attacker A wins and outputs a
key sk™ such that F(sk™) = pk, and (2) the keys are different sk™ # sk. Let us
denote the two events by Fj, E5 respectively. Then

Pr[E) A Ey] > Pr[Ey] — Pr[~Ey] > €(\) — Pr[Es] > ¢(\) — negl(A).  (5.1)

where, for the last inequality, we need to show Pr[—F5] = negl(\). But this we can
show information theoretically, relying on the fact that A just doesn’t have enough
information about sk to output it exactly. Let leak denote the leakage observed
by A (as a random variable over its randomness and that of sk). Then

H.(sk | pk,leak) > n(X\) — m(\) — £(X) > w(log(N))

where the first inequality follows from Lemma 4.1.1. Therefore the probability
that A outputs sk after observing pk, leak is bounded by 27«(°8%) = negl()\) as we
wanted to show. [
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Using the result of Rompel [Rom90] which shows how to construct SPR func-
tions with arbitrarily large stretch from any one-way function, we get the following
corollary.

Corollary 5.2.5. Assuming the existence of one-way functions, there exists an (-
LR-OWR for any polynomial £(\). Moreover, for any constant € > 0, there exists
an (-LR-OWR where the ratio of leakage € to the key size |sk| is (1 — €).

5.2.3 OWRs in the Continual Leakage Model

A continuous-leakage-resilient (CLR) one-way relation (OWR) consists of the
algorithms KeyGen and Ver as before, but also includes an update algorithm:

sk’ < Update ;. (sk) : Update the secret key sk to sk’. We will omit the subscript
pk, when clear from context.

For convenience, we also implicitly define the algorithm that performs ¢ > 0 con-
secutive updates via:

sk’ < Update(sk) : Let sko = sk, sk, « Update(sko),...sk; < Update(sk;_;).
Output sk’ = sk;.

On a high level, a OWR is continuous-leakage-resilient if an adversary can
observe / bits of leakage on each of arbitrarily many secret keys and the randomness
of the update, and still be unable to produce a valid secret key herself.

Definition 5.2.6 (CLR-OWR). We say that a scheme (KeyGen, Update, Ver) is an
(-continuous-leakage-resilient ((-CLR) one-way relation if it satisfies the following
correctness and security properties:

Correctness: For any polynomiali = i(A) > 0, if we sample (pk, sk) < KeyGen(1%),
sk; < Update'(sk), then Ver(pk, sk;) = 1.

Security: For any PPT A, we have Pr[A wins | < negl(\) in the following game:

o Challenger chooses (pk,sk) < KeyGen(1*) and gives pk to A. It samples
randomness w for the first update and sets state = (sk,w). It sets L = 0.
o A can adaptively make the following queries to the challenger:

— If L < { then A can query the leakage-oracle Ogiae(+) and get the ap-
propriate response. The challenger sets L := L + 1.

— A can make an update query. The challenger parses state = (sk,w),
sets sk’ := Update(sk;w) and samples fresh randomness w'. It updates
state := (sk’,w') and sets L := 0.

e A wins if at any point it produces a value sk* such that Ver(pk, sk*) = 1.
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We also define a weaker variant of the above definition, called security with leak
free updates, where the value state only includes the current secret key sk and
not the randomness w of the next update.

Remarks on Definition. By including the randomness w of the next update in
the state that the attacker can leak on, we are modeling leakage that occurs during
the update process itself. That is, consider a device that initially stores the value
sk generated by KeyGen, and then continually updates it to a new key every time
period (say, every couple of seconds). Then, at any point in time when an update
is not running, the secret state of the device is fully described by the secret key sk.
However, during the time that the update is running, the secret state of the device
is fully described by state = (sk,w) which includes the randomness w used to run
the update. Therefore the weaker notion of security with leak-free updates models
the case where the device is only leaking in between updates, but not during the
update process itself. This is already an interesting notion of security which is
(highly) non-trivial to achieve.

Why Prior LR Techniques Fail for CLR. All of the prior works on bounded-
leakage memory-leakage attacks crucially relied on an entropy argument: given
the leakage and the public-key, the secret-key sk still had some entropy left. For
example, this was the main step of our argument for the leakage-resilience of SPR
functions. However, it is unclear how to translate this type of argument to the
setting of continuous leakage-resilience, where the total amount of information seen
by the adversary is unbounded.

Organization. We begin by showing a novel strategy for reasoning about con-
tinuous leakage in the next section (Section 5.3). We then instantiate this strategy
based on generic components in Section 5.4 and finally instantiate these compo-
nents under the linear assumption in Section 5.5. In all these sections, we only
focus on the weaker security notion of CLR-OWR with leak-free updates.
Then, in Section 5.6, we show that this notion already generically implies the
stronger security notion, where the randomness of the updates may leak as well,
albeit with a security-loss exponential in the amount of leakage. Lastly, in Sec-
tion 5.7, we discuss how to use CLR-OWR to construct CLR signatures.

5.3 Construction (Part I):
Continuous Leakage from Bounded Leakage

We now define a new primitive, called a leakage-indistinguishable re-randomizable
relation (LIRR), and show that it can be used to construct a secure CLR-OWR
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with leak-free updates. Although the definition of the new primitive is fairly com-
plex with several security requirements, its main advantage is that it reduces the
problem of continuous-leakage resilience for OWR to a simpler bounded-leakage-
resilience property, which we can reason about more easily.

A LIRR allows one to sample two types of secret-keys: “good” keys and “bad”
keys. Both types of keys look valid and are acceptable by the verification procedure,
but they are produced in very different ways. In fact, given the ability to produce
good keys, it is hard to produce any bad key and vice-versa. On the other hand,
even though the two types of keys are very different, they are hard to distinguish
from each other. More precisely, given the ability to produce both types of keys,
and ¢ bits of leakage on a “challenge” key of an unknown type (good or bad), it is
hard to come up with a new key of the same type.

More formally, a LIRR consists of PPT algorithms (Setup, SampG, SampB,
Update, Ver, isGood) with the following syntax:

o (pk,samg,samp,dk) < Setup(1?) : Outputs a public-key pk, “good” and
“bad” sampling-keys sam¢, sampg, and a distinguishing-key dk.

e skg < SampG,(samg), skp < SampB,(samp): These algorithms sample
good/bad secret-keys using good/bad sampling keys respectively. We omit
the subscript pk when clear from context.

e b = isGood(pk, sk, dk): Uses dk to distinguish good/bad secret-keys sk.

e sk’ < Update,; (sk), b = Ver(pk, sk). These have the same syntax as in the
definition of CLR-OWR.

Definition 5.3.1 (LIRR). We say that the scheme (Setup, SampG, SampB, Update,
Ver, isGood) is an (-leakage-indistinguishable re-randomizable relation (¢-LIRR)
if it satisfies the following properties:

Correctness: If (pk,samg,samp,dk) < Setup(1?), skg < SampG(samg),
skp < SampB(sampg) then w.o.p. the following holds:

Ver(pk, skg) = 1, isGood(pk, skq,dk) =1

Ver(pk, skg) = 1, isGood(pk, skp,dk) =0
Re-randomization: We require that updates re-randomize the good keys:

(pk,samg, sko, sk1) =P (pk,samg, sk, sk}),

where
(pk,samg, samp, dk) < Setup(1*)

sko < SampG(samg), ski < SampG(samg), ski « Update(sk)
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Hardness of Bad Keys: Given samg, it’s hard to produce a valid “bad key”.
Formally, for any PPT adversary A:

Ver(pk, sk*) = 1 (pk,samg, samp, dk) < Setup(1?)
<
P [ i sGood(pk, sk*, dk) = 0 sk* — A(pk, same) < negl(})
Hardness of Good Keys: Given sampg, it’s hard to produce a “good key”. For-
mally, for any PPT adversary A:

(pk,samg, samp, dk) < Setup(1*)

Pr [isGood(p/{?,Sk? ,dk) =1 ' sk* «+ A(pk,samp)

} < negl(}\)

(-Leakage-Indistinguishability: Informally, this property says that given both
sampling keys samg,samp, and { bits of leakage on a secret-key sk (which
is either good or bad), it is hard to produce a secret-key sk* which is in
the same category as sk. Formally, for any PPT adversary A, we have
|Pr[A wins ] — 1 | < negl(X) in the following game:

e The challenger chooses (pk,samg,samp,dk) < Setup(1*) and gives
pk,samg,sampg to A. The challenger also chooses a random bit b &
{0,1}. If b = 1 then it samples sk <— SampG(sam¢), else it samples
sk <— SampB(samp). It sets state := sk.

e A can make up to { queries in total to the leakage-oracle Ogate(+).

o A outputs sk* and wins if isGood(pk, sk*,dk) = b.

An /-LIRR can be used to construct an (-CLR-OWR with leak-free updates,
where the Update, Ver algorithms are kept the same, while KeyGen samples pk and
a “good” secret key sk (see Figure 5.1). Note that the CLR-OWR completely
ignores the bad sampling algorithm SampB, the “bad” sampling key samp, the
distinguishing algorithm isGood, and the distinguishing key dk of the LIRR. These
are only used in the argument of security. Moreover, the “good” sampling key samg
is only used as an intermediate step during key-generation to sample the secret-key
sk, but is never explicitly stored afterwards.

KeyGen(1*): Sample (pk,samg, -, -) < Setup(1?), sk < SampG(samg).
Output (pk, sk).
Update, Ver: Same as for LIRR.

Figure 5.1: Constructing CLR-OWR from a LIRR
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Security Intuition. We argue that the above construction is secure. Assume
an adversary attacks the construction and, after several leakage-rounds, produces
a valid secret key sk*. Since the adversary does not see any information related
to the bad sampling key samp, we can use the hardness of bad keys property to
argue that sk* must be a “good” key. However, we then argue that the adversary
cannot notice if we start switching good keys to bad keys in the leakage rounds.
More precisely, we define several hybrid games, where each game differs from the
previous by replacing a good key with a bad key in one additional leakage round.
We argue that, by the (-leakage-indistinguishability property, the probability that
the adversary produces a good key sk* as her forgery does not change between
any two hybrids. Notice that this argument allows us to only analyze leakage in a
single round at a time, and thus avoids the main difficulty of analyzing continuous
leakage. In the last of the hybrids, the adversary only sees “bad keys”, yet still
manages to produce a good key sk* as her forgery. But this contradicts the hardness
of good keys property, and proves the security of the scheme.

Theorem 5.3.2. Given any (-LIRR scheme, the construction in Figure 5.1 is a
secure (-CLR-OWR.

Proof. The correctness properties of CLR-OWR follow from the correctness/re-
randomization of the LIRR. Let A be any polynomial-time attacker whose proba-
bility of winning the ¢-CLR-OWR security game (with leak-free updates) is e(\).
We use a series-of-games argument to argue that € is negligible:

Game 0: This is the original /-CLR Game from Definition 5.2.6. the challenger
initially samples (pk,samg,samp, dk) + Setup(1%), sk; + SampG(sam¢) and
gives pk to A. It sets state = sk;. At the end of each leakage round, it
pareses sk; = state, updates sk;,; < Update(sk;), and sets state = sk;; ;.

By assumption, the probability that A wins in this game is €(\).

Game 1: In this game, the challenger initially samples (pk,samg,samp,dk) <
Setup(1?) sk; <+ SampG(sam¢) and gives pk to A. The game them proceeds
as before with many leakage rounds, except that the secret key used in each
leakage-round 7 is chosen at fresh as sk; <— SampG(sam), and independently
of all previous rounds.

Games 0 and 1 are indistinguishable by the re-randomization property (ap-
plied ¢ times, where ¢ is the total number of leakage-rounds). Therefore,
Pr[A wins Game 1] > ¢(\) — negl()).

Game 2: Game 2 is the same as Game 1, except that we modify the winning-
condition to say that the adversary only wins if, at the end, it outputs a
“good” sk* such that isGood(pk,sk*,dk) = 1. Notice that the winning
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condition now cannot be checked by the attacker (since it does not know

dk).

Let E be the event that, at the end of Game 1, A ends up outputting a value
sk* which satisfies Ver(pk, sk*) = 1 A isGood(pk, sk*, dk) = 0. Then

Pr[Awins in Game 2| > Pr[Awins in Game 1] — Pr[£]

We argue that Pr[E] is negligible. This follows directly by the hardness of
bad keys and the observation that the entire view of the attacker in Game
1 can be simulated from pk,samg alone. Therefore Pr[A wins Game 2] >

e(A) — negl()).

Games 2.i - 3: Let g be the total number of leakage rounds for which A runs.
We define the Games 2.7 for ¢ = 0,1...,¢ as follows. The challenger ini-
tially samples (pk,samg,samp,dk) < KeyGen(1%) and gives pk to A. The
game then proceeds as before with many leakage rounds, except that the
secret keys in rounds j < ¢ are chosen randomly and independently via
sk; < SampB(samp), and in the rounds j > i, they are chosen randomly and
independently as sk; < SampG(sam¢). Note that Game 2.0 is the same as
Game 2, and we define Game 3 to be the same as Game 2.q.

We use the (-Leakage Indistinguishability property to argue that, for ¢ =
1,...,q, the winning probability of A is the same in Game 2.(i — 1) as in
Game 2.7, up to negligible factors:

Pr[A wins Game 2.i] > Pr[A wins Game 2.(i — 1)] — negl())

Assuming otherwise, we construct a reduction B which breaks leakage in-
distinguishability. The reduction simulates As view in leakage-rounds j < i
using samp and rounds j > ¢ using samg. For round i, the reduction sim-
ulates leakage by calling its own leakage-oracle, on the challenge secret-key.
At the end, B outputs the value sk* output by A. If B’s challenger uses a
good key then that corresponds to the view of A in game 2.(: — 1) and a
bad key corresponds to game 2.i. Therefore, letting b be the bit used by Bs
challenger:

Pr[B wins | — % ‘

1
Pr[isGood(pk, sk, dk) = b] — —‘

2

1’ Pr[isGood(pk, sk*,dk) = 1| b =1] ‘
2 | — Pr[isGood(pk, sk*,dk) =1 | b= 0]

1
2| P

r[A wins in Game 2.(i — 1)] — Pr[A wins in Game 2.7]
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Therefore, by applying the hybrid argument, we get Pr[.A wins in Game 3| >
e(A) — negl(\).

Can’t Win Game 3: We now argue that probability of A winning game 3 is
negligible, by the hardness of good keys. Notice that A’s view in Game 3
can be simulated entirely just given pk,sampg. Therefore, there is a PPT
algorithm which, given pk,samp as inputs, can run Game 3 with A and
output sk* such that isGood(pk, sk*,dk) = 1 whenever A wins.

So () —negl(A) is itself negligible, which implies that ¢(\) must be negligible
as well, as we wanted to show.

]

5.4 Construction (Part II): Generic Components

5.4.1 Syntax of Construction and Hardness Properties

We now instantiate an /-LIRR using two public-key encryption schemes and a
NIZK argument system. See Section 4.5 for a review of NIZKs.

Overview of Construction. We first start by describing the high level idea
and the syntax of the construction. Let & = (KeyGen', Encrypt', Decrypt'),

& = (KeyGenQ, Encrypt?, Decrypt2) be two public-key encryption schemes, with per-
fect correctness (we will define the security properties that we need from them later
on). We define the plaintezrt equality relation for the schemes &, &; by:

T = <m7T17 TQ) = Encrypt?)kg (ma TZ)

Re def {(y,x) ' y = (pk1, pka, c1, ¢2), <t C1 = Encrypt;kl(m; 1), } ‘

The corresponding language L., := {y : 3z,(y,x) € Rey}, is the language of
honestly generated ciphertext pairs that encrypt the same plaintext. Let 1I =
(Setup!, Prov!! Ver!!| SetupSim!, Sim™) be a NIZK argument system for R.,.
We will often omit the public-keys pki, pks from the descriptions of statements
Yy € Leq, when clear from context.

We will assume that the schemes &, &, Il can be “tied together” by sharing
some common system parameters prms < ParamGen(1*) (e.g. the description
of some group) which are implicitly used as inputs by all of the algorithms of
each of the schemes. The parameters define a common message-space M for the
schemes &, &. The basic syntax of our construction of LIRR, except for the re-
randomization algorithm, is shown in Figure 5.2. The main idea is to encrypt a
random message m using the scheme &;, and put the ciphertext ¢; in the public-
key. The secret key consists of a ciphertext/proof pair (¢, 7). In a good secret-key,
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co is a new random encryption of m under &, and 7 is a proof of plaintext-equality.
In a bad secret-key, ¢, is just an encryption of some fixed message Or¢, and 7 is a
simulated proof. The secret keys ski, sky of the encryption scheme can be used to
distinguish “good keys” from “bad keys”. Verification just checks that the proof
7 verifies as a valid proof of ciphertext equality for (cq, cz).

Setup(1*): Output pk = (prms, CRS, pk1, pkz, c1), samg = (m,71),
samp = TK, dk = (ski1, ske) where:

prms <— ParamGen(1%),
(CRS, TK) < SetupSim'(prms),
(pk1, sk1) + KeyGen!(prms), (pks, ska) <+ KeyGen?(prms)

m+— M, c1 Encryptlljk1 (m;ry)

SampG(samg): Output skg = (¢, m) where: cg < Encrypt,f,,,€2 (m;re),

T+ ProvH((cl, c2), (m,ri,ma)).

SampB(samp): Output skp = (c2,7) where: ¢ < EncryptikQ(OM),
7+ Sim'!((cy, ¢2), TK).

Ver(pk, sk): Parse sk = (co,7) and output Ver'!((cy, c2), 7).

isGood(pk, sk, dk): Parse sk = (ca,7),dk = (ski, ska).
Output 1 iff Decrypt}, (c1) = Decrypt?;, (c2).

Figure 5.2: Constructing LIRR

It is easy to see that the scheme satisfies the correctness property. The hardness
of bad keys, follows directly from the soundness of the NIZK argument system. The
hardness of good keys, on the other hand, follows is we assume that the encryption
scheme &; has one-way security (see ), which is weaker than semantic-security and
only requires that an encryption of a random message is hard to invert.

Lemma 5.4.1. Assume that £ is a one-way secure encryption scheme, & is
semantically secure, and Il @s a NIZK. Then the construction of LIRR in Figure 5.2
satisfies the correctness, hardness of good keys and hardness of bad keys properties
from Definition 5.3.1.

Proof. We prove correctness, hardness of good keys and hardness of bad keys one
at a time.

Correctness. Assume that we sample pk,samg,samp, dk, skq, skp as specified.
By the correctness of the encryption schemes, we have isGood(pk, skq,dk) = 1.
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On the other hand isGood(pk, skg,dk) = 0, unless the message m encrypted by
the ciphertext c; is the value m = 1, which only occurs with negligible probabil-
ity.! Finally, we show that Ver(pk, skg) = Ver(pk, skg) = 1 with overwhelming
probability. Assume otherwise. Letting E be the event that Ver(pk, skg) = 0 or
Ver(pk, skg) = 0, there is therefore a non-negligible probability of E occurring.
Let us switch how we generate the public-key pk and the values skg. Firstly, let us
choose the ciphertext ¢, in skp in the same way as sk¢, via cg <— Encryptzk2(m; Ts),
to be an encryption of the same message m as contained in ¢; instead of the value
0. Then the event E still has a non-negligible probability of occurring by seman-
tic security of £2. Secondly, let us choose the proof 7 in the key skp to be an
honestly generated proof of ciphertext equality m < Prov((cy,c); (m,ry,72)).
Thirdly, let us choose the value CRS in the public key to be honestly generated via
CRS < Setup'!(prms). Then the event E still has a non-negligible probability of
occurring by the zero-knowledge property of II. However, now this contradicts the
completeness of the NIZK since both keys skq, skp now contain honestly generated
proofs of true statements under an honestly generated CRS.

Hardness of bad keys. Assume that there is a poly-time attacker sk™ <
A(pk,sam¢) and that Pr [Ver(pk, sk*) = 1, isGood(pk, sk*, dk) = 0] is non-negligible.
Firstly, we argue that this probability remains non-negligible even if we change the
value CRS (contained in pk) to being chosen honestly via CRS < Setup(prms) in-
stead of using the simulator. This just follows by the ZK property of the NIZK
(and that the entire above experiment is independent of TK). But now A breaks
the soundness of the NIZK argument system II. That is, the value sk* = (co, 7)
defines the statement (¢, ¢y) such that:

1. (¢1,¢2) & Ly whenever isGood(pk, sk*,dk) = 0 (by the correctness of en-
cryption).

2. Ver((cy, o), m) = 1 whenever Ver(pk, sk*) = 1.

Therefore A gives a poly-time attack against the soundness of the NIZK.

Hardness of good keys. This property follows by the one-wayness of £. In
particular, assume we are given a one-wayness challenge pky,c;. Then we use an
attacker A that breaks hardness of good keys to recover the message m contained
in ¢;. We simply choose everything else CRS, TK, pks, sko ourselves (honestly) and
use these to create the values pk,samp for A, where the challenge ciphertext ¢;
is embedded in pk. The attacker A outputs sk* = (¢}, 7*) which has a non-
negligible probability of satisfying isGood(pk, sk*,dk) = 1 (we cannot check this

'The value m is chosen at random from the message space M, which must be super-polynomial
for one-way security to hold.
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since we do not know dk). Nevertheless, we can just use the key sky to decrypt
m* = Decrypt§k2(c§) and output it, thus breaking one-wayness with non-negligible

probability. O]

We are left to show (1) how to re-randomize secret keys, and (2) that the
leakage-indistinguishability property holds. We do so in the next two sections, by
requiring additional properties from the building-blocks &1, &, I1.

5.4.2 Re-randomization via Homomorphisms

We now show how to perfectly re-randomize the secret keys of our LIRR con-
struction. Recall that a secret-key consists of a pair (cg, ) where 7 is a proof of
plaintext-equality for the statement (c;, co). Therefore, to re-randomize the key, we
need to first re-randomize the ciphertext ¢y into a new ciphertext ¢ with the same
plaintext. We then need to update the proof 7 to look like a fresh new proof of a
new statement (cq, ¢b), for which we do not know the witness! We show that this is
indeed possible if the encryption schemes &, & and the argument-system II are all
homomorphic over some appropriate group. In particular, we define a new notion
of homomorphic NIZKs, which is influenced by the notions of re-randomizable
and malleable NIZKs from [BCCT09]. Throughout this section we assume that
the schemes €1, £2, 11 share system parameters prms <— ParamGen(1*) which define
some group structure over the message/randomness/ciphertext spaces. Through-
out, we denote abstract group operations as “+” (addition) and the identity ele-
ments as 0.

Definition 5.4.2 (Homomorphic Encryption). We say that an encryption scheme
(KeyGen, Encrypt, Decrypt) is homomorphic if the system-parameters of the scheme
define groups M, R,C for the message-space, randomness-space, and ciphertext-
space respectively, such that, for any m,m’ € M any r,r' € R:

¢ = Encrypt,, (m;r), ¢ = Encrypt,, (m’;7') = c+c = Encrypt, (m+m';r+17)

It is easy to see that for any homomorphic encryption scheme and any public-key
pk, we have Encrypt,; (Or; Or) = Oc (i.e. encryption of the identity -message under
identity-randomness gives an identity-ciphertext).

Definition 5.4.3 (Linear Relation). We say that a relation R C') x X is linear
if Y, X are groups and, for any (y,z), (y',2') € R, we have (y+vy',x+ ') € R.

Definition 5.4.4 (Homomorphic NIZK). We say that a NIZK argument-system
(Setup, Prov, Ver, Sim) for a linear-relation R C Y x X is homomorphic if there
are groups R, P for the randomness of the prover and the proof respectively, such
that for any (y,x), (v, ") € R, any r,r’ € R:

7w =Prov(y,z;r), @ =Prov(y,2’;r") = w+7 =Prov(y+y,x+a;r+1')
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where m, 7" € P.

We now connect the above definitions of homomorphic primitives to our construc-
tion in Figure 5.2, showing how to re-randomize the secret-keys if &, &, and 11
are homomorphic. First, we show that the plaintext-equality linear if we fix the
public-keys pky, pka. That is, for each pky, pks, define the relation RE™ 72 C Re,
where pky, pky are fixed and the statements only consist of (¢, c2). It is easy to
verify the following lemma.

Lemma 5.4.5. If £, & are homomorphic with a common message-group M, and
respective randomness-groups R, Rq, and ciphertext-groups Cy,Co, then for any

pk1, pko, the relation Réﬁkl’m) is a linear relation over Y = C; X Cy and X =

MXR1XR2.

Proof. Let (c1, ), (d},cy) € LEHP "2) he two statements with respective witnesses
(m,ry,r2) and (m/,r], ry) so that ¢; = Encryptzl)k1 (m;ry),co = Encryptf,,€2 (m;ry) and
A= Encryptlljk1 (m/;1]), cy = EncryptikQ (m;7}).

Then the statement (c; + ¢}, cs + ¢) € LE* ) ig a true statement having the
corresponding witness (m 4+ m/,ry + 7,79 + 1) since ¢; + ¢, = Encrypt’, (m +

pk1
m';r1 + 1)) and ¢ + ¢y = Encryptl,, (m +m/;ro + 15). -

To simplify the discussion, we will say that a proof-system II for R., is homo-
morphic if, for every fized choice of the public-keys pki, pko, it is homomorphic
for the linear relations Réﬂkl’p ") Now assume that &1, & are two homomorphic
encryption schemes satisfying the requirements of Lemma 5.4.5, and that II is a
homomorphic NIZK for R.,, with randomness-group R3 and proof-group P. In
Figure 5.3, we show how to re-randomize the secret keys of our LIRR construction
from Figure 5.2.

Update(sk): Parse sk = (co, 7). Choose (19, 1%) & Ry x Rs.
Set ¢ := Encryptsz(OM;ré), 7' := Provi((0c,, ), (Oa, Oy s 75)57%).
Output sk* = (¢4, 7+ 7).

Figure 5.3: Re-randomization

The main idea is to re-randomize the ciphertext ¢y in the secret key (without
modifying the encrypted message), by adding in a random encryption ¢}, of the
message 0. We then need to update the proof 7 in the secret key to look like a
fresh new proof of the new true statement (c1,co + ¢5) € Ley. We do so by adding
to m a randomly generated proof 7’ of the true statement (Oc,,c,) € L, (recall
that the 0 ciphertext encrypts the 0 message using the 0 randomness).

Lemma 5.4.6. The re-randomization method in Figure 5.3 satisfies the re-randomization

of LIRR (Definition 5.5.1).
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Proof. Fix any pk = (pky,pks,CRS,c1),samg = (m,r1) output by KeyGen and
ska = (cg, ™) output by SampG(sam¢). Then there exist some ry, 3 for which

1

ok (M T1) 5 Co = EncrythkQ(m;rg) , m=Prov((cy,c),(m,r1,72);73).

c1 = Encrypt >

If we sample sk* <— Update(skg), we have sk* = (b, 7*) with ¢§ = ¢y + &), 7" =
7w+ 7’ where:

¢; = ca+ ¢y =co+Encrypty, (Oa;7h) = Encrypty,, (m;ry +15)
™ = m+7 =7n+Prov((0c, ), (0p,0r,,75);75)

= PrOV((Cl, 05)7 (m7 r1, T2 + T/2)7 T3 + Té)

for some fresh random values rh, ry. Letting ry = ro 4+ and r} = r3 + 75, we see
that ¢} is a fresh new encryption of m under randomness 5 and 7* is a fresh proof of
ciphertext equality under randomness r;. Therefore, sampling sk* <— Update(sk)
is exactly the same as sampling sk* <— SampG(sam¢ ), even after fixing any choice of
pk,samg, skg. This shows that the re-randomization property holds with perfect
distributional equality.

O

5.4.3 Leakage-Indistinguishability

We are left to show the leakage-indistinguishability of our construction. To
do so, we need to define a new security property, called leakage-of-ciphertext non-
malleability, for the encryption scheme &. Intuitively, this property says that,
given ¢ bits of leakage on a ciphertext ¢, the adversary cannot produce a related
ciphertext c*.

Definition 5.4.7 (Leakage-of-Ciphertext Non-Malleable Encryption). A public-
key encryption scheme €& = (KeyGen, Encrypt, Decrypt) is (-leakage-of-ciphertext
non-malleable (/-LoC NM) if, for any PPT adversary A, we have

|Pr[A wins ] — 1| < negl(\) in the following game:

o Challenger samples (pk, sk) < KeyGen(1*) and gives pk to A.

o A chooses two messages mg, my € My, and gives these to the challenger.

e Challenger samples b < {0,1}, ¢ + Encrypt,,(ms), and sets state := ¢
A can make up to { queries to the leakage oracle Ogate(-).

o A chooses a single arbitrary value ¢* and the challenger responds with m* =
Decrypt,,(c*) to A.

o A outputs a bit b and wins if b = b.
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Remarks on the Definition. Note that, in the definition, the leakage is only
on the ciphertext ¢ and not on the secret-key sk. It is easy to see that even
1-LoC-NM security (i.e. adv. gets only 1 bit of leakage) already implies semantic-
security, since a 1-bit leakage function can run the distinguisher. On the other
hand, the standard notion of non-malleable encryption from [DDN91] implies ¢-
LoC-NM security where ¢ approaches the message-size of the scheme. This is
because an adversary that leaks less than ¢ bits about a ciphertext ¢ is unlikely to
be able to re-produce ¢ exactly, and the decryption of any other ciphertext ¢* # ¢
safely keeps the challenge message hidden. However, non-malleable encryption
is inherently not homomorphic while, as we will soon see, Leakage-of-Cipherext
Non-malleable encryption can indeed be homomorphic as well.

Application to Leakage-Indistinguishability. We now show that, if the scheme
&> in our construction is /-LoC-NM, then the construction satisfies f-leakage-
indistinguishability (Definition 5.3.1). This is because the ability to create a “re-
lated secret-key” which is in the same category as a challenge key on which we can
leak, requires the ability to create a “related ciphertext” which encrypts the same
message as another ciphertext on which we can leak.

Lemma 5.4.8. Assume that, in the construction of LIRR in Figure 5.2, the
scheme &y is £-LoC-NM and 11 is a secure NIZK. Then the construction satis-
fies the leakage-indistinguishability property of LIRR (Definition 5.5.1).

Proof. Assume A is a PPT adversary which has a non-negligible advantage in the
leakage-indistinguishability (LI) game of Definition 5.3.1.

Consider the following modification to the LI game. In the original LI game, if
the challenger’s bit is b = 1, then the challenger samples the challenge secret-key
sk = (¢, %) < SampG(sam¢). Therefore, ¢ is a random encryption of m, and 7 is an
honestly generated proof for the statement (c;,ce) € ngkl’p ") under the witness
(m,ry,72). In the modified-LI game, if the challenger’s bit is b = 1, then the
challenger samples ¢ as before, but uses a simulated proof 7 < Sim™((cy, ¢3), TK).

The adversary’s probability of winning in the modified LI game is the same
as that of the original game, up to negligible factors, by the (composable) NIZK
property of the proof system II (note that we need composable NIZK, since the
adversary sees samp which includes the trapdoor TK for the proof system II).

We now show how to use any adversary A that attacks the modified LI game
to construct a reduction B that attacks the LoC-NM game.

1. The reduction B initially gets a challenge public-key, which it sets as pk-.
In addition B samples and the values (pki, ski), (CRS, TK), samg = (m, ),
samp = TK and ¢; = Encrypt,;, (m;7) just as the honest key-generation algo-
rithm of the LIRR construction. It gives pk = (CRS, pky, pke, c1),samg, samp
to A.
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2. The reduction B chooses challenge messages mo = O, m; = m and gives
these to its challenger.

3. The adv. A expects to make up to ¢ calls to a leakage-oracle (simulated
by B) on a secret key sk = (¢,7). The reduction B initially chooses some
randomness r for a NIZK simulator. Then, for each function h chosen by A
(recall h expects a value sk = (& 7) as input), the adv. B creates a function
h' (which expects only ¢ as input, and contains TK, r hard-coded) such that
h'(¢) computes T = Sim((¢q, ¢), tk; r) and then outputs h(¢, 7). The reduction
B then passes ' to its own leakage-oracle on the challenge ciphertext ¢. 2

4. When A outputs sk* = (c*,7*), the reduction B gives c* to its challenger
and, if it gets back the message m, it outputs b = 1. Else it outputs b = 0.

We now argue that the reduction B wins the /-LoC game with the exact same
probability that A wins in the modified-LI game, which concludes the proof. This
is because, no matter what bit b is chosen by the challenger in the ¢-LoC-NM
game, the simulated view of A above is ezactly that of the modified LI game with
challenge-bit b. Moreover, B wins (outputs b = b) whenever A wins (outputs sk*
such that isGood(pk, sk*,dk) = b). O

5.4.4 Summary of Component Requirements

The following theorem follows directly from Lemmata 5.4.1, 5.4.6 and 5.4.8 and
Theorem 5.3.2.

Theorem 5.4.9. For any function ((-) such that £(\) > 1, the construction in
Figure 5.2, with the re-randomization procedure in Figure 5.3, is a secure (-LIRR
as long as the components &1, E, Il satisfy:

e &1, are homomorphic encryption schemes with perfect correctness and a
common message-space M.

e & 1s one-way secure and &y is {-LoC-NM secure.

o Il is a homomorphic NIZK for the plaintexst-equality relation Re,.

Therefore, the existence of such £, &, Il implies the existence of a (-CLR-OWR.

For clarity, we also provide a stripped-down construction of (just) the CLR-OWR
from the schemes &, &, I, without the additional layer of abstraction provided by
LIRR. This construction is shown in Figure 5.4.

2Essentially, we are saying that B can correctly simulate £ bits of leakage on sk = (¢, 7) given
¢ bits of leakage on ¢ alone, by having the leakage-functions simulate 7.
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KeyGen(11): Output pk = (prms, CRS, pky, pka, c1), sk = (c2,7) where:

prms < ParamGen (1), (CRS, -) < Setup'!(prms)

(pk1,-) < KeyGen!(prms), (pks,-) < KeyGen?(prms)

m<— M, ¢+ Encrypt})kl(m; 1)

2

pka (m; 7‘2), T PI‘OVH((Cl, 02)7 (ma T1, TQ))

co <+ Encrypt

Ver(pk, sk): Parse sk = (co,7) and output Ver''((cy, ), 7).

Update(sk): Parse sk = (ca, 7). Choose (r},74) & Ro X Rs.
Set ¢ := EncryptikQ(OM;ré), n' :=Prov((0c,, ch), (Opm, ORr,,75);75).
Output sk* = (ca + &y, ™+ 7).

Figure 5.4: CLR-OWR from Components &, &, 11

5.5 Construction (Part III):
Instantiating the Components

In this section, we now show how to instantiate the homomorphic encryption
and NIZK schemes &1, &, I1 so as to satisfy the requirements of Theorem 5.4.9.
We will do so under the k-linear assumption in Bilinear Groups. The main tool
here will be the Groth-Sahai (GS) NIZK argument system, which we notice to be
homomorphic. Below, we present the concrete constructions of all three schemes.
It is useful to review the linear-algebra and matriz-in-the-exponent notation from
the Preliminaries cahapter.

5.5.1 The encryption scheme &

Let k € ZT. Let prms = (¢, G, g) where (p,G,g) + G(1%).

KeyGen(prms): Choose (z1,zg,...,x}) F’;. Set £ :=g®, ... £ == gg*.
Output sk = (z1,...,x), pk = (f1,..., ).

Encrypt,,(m): Choose (r1,...,7%) IE";. Output ¢ := (m - ngﬂ”,f{l, S 0

Decrypt,(c): Parse ¢ = (co,c1,...,cx). Output co/ (H?Zl cil/xi).

Figure 5.5: Generalized k-linear ElGamal

For the encryption scheme &;, we can use any homomorphic one-way secure
encryption. We simply choose to use a generalization of the ElGamal encryption
scheme to the k-linear assumption, as shown in Figure 5.5.
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Theorem 5.5.1. For any K > 1, the generalized ElGamal scheme (Figure 5.5)
18 semantically-secure and one-way secure under the k-linear assumption. Fur-

thermore, it is homomorphic over the message-group M = G, randomness-group
R =F¥ and ciphertext-group C = G**.

Proof. Follows directly from the k-linear a}s{sumption, which shows that given pk =
(fi,...,fx) and f]*, ... £}X, the value g2=1"" is indistinguishable from uniformly
random. O

5.5.2 The encryption scheme &,

Let k,n € Z*. Let prms = (¢, G, g) where (¢, G, g) < G(1*).

KeyGen(prms): Choose uy, ..., u; & F, and define
up 0 ... O
0 u9 0
A= .
1 0 0 U

Choose ¥y <i ]F"(;Jrl7 X ($; F((]k"rl)Xn.
Output pk = (g, g% , g4%), sk = (&, X).

Encrypt,;(m): Parse pk = (g4, gg, gB). To encrypt a message m € G:
Choose 7 <& ]FI;. Output ¢ := (g™, gF'bTm, g™B).

Decrypt,.(c): Parse ¢ = (g%, h, g”) (without knowing the exponents ¢/, ).

Use component X of sk to verify g#¥ a8 g and output L if this fails.

Else use Zy to compute m = hg*y"’foT.

Figure 5.6: Generalized CS-Lite Scheme

For the scheme &, we need a homomorphic encryption satisfying ¢-LoC-NM
security. Our scheme is shown in Figure 5.6. For those familiar with Cramer-
Shoup -encryption [CS98] and and hash-proof systems [CS02], we observe that
our scheme is a generalization of the “Cramer-Shoup Lite” (CS-Lite) encryption
scheme. There are two main differences in our scheme. Firstly, the scheme is
generalized to be secure under the k-linear assumption for any & > 1 (we note that
similar generalizations of Cramer-Shoup to the k-linear assumption were already
shown in [Sha07, CCS09]). Secondly, we can make the “verification element”
arbitrarily long, consisting of n group elements for any n > 1 (we recover CS-Lite
by setting £ = 1,n = 1). Implicitly, we will show that ¢-LoC-NM security can
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be constructed from any “l-universal hash proof system” (of which CS-Lite is an
example), with sufficiently long proofs, where the leakage ¢ is proportional to the
size of the proof. But, since we will need a scheme based on k-linear to make
it work with Groth-Sahai NIZKs, we restrict ourselves to the concrete scheme in
Figure 5.6 and do not discuss the greater generalization to hash proof systems
any further. The discussion here is self-contained and does not require any prior
knowledge of CS-Lite or of hash-proof systems.

Proof intuition. The high level idea of the proof goes as follows. By the k-linear
assumption (matrix form), the adversary cannot distinguish a correctly generated
challenge ciphertext from one computed as (g7, gg'fg m, g¥*) where g¥ is uniformly
random and the other components are efficiently computable from it and the secret
key. This is true even if the attacker gets the ciphertext in full, let alone if it
can only leak on it. With the above modification, the second component of the
challenge ciphertext is uniformly random over the randomness of the secret vector
Ty (even conditioned on the public-key), and hence m is statistically hidden by the
ciphertext and the public-key. We only have to argue that the decryption query
does not reveal any further information on Zy and therefore keeps m hidden. Let
the ciphertext ¢* in the decryption query be denoted by c¢* = (g7, h*,g”). If
y* = 7 A for some 7™ (i.e. is in the row-span of A), then the decrypted message
m* is completely determined by the public-key exponent AZ{ alone, and does not
reveal any additional information about Zy. On the other hand, if * is not in the
row-span of A, we argue that ¢* decrypts to L with overwhelming probability and
hence the response to the query does not reveal any information either. Consider
the value g7 ¥, used during decryption to check “well-formedness” of ¢*. This value
is uniformly random over the randomness of the secret matrix X, even conditioned
on the public value g4X. Unfortunately, it is not independent of the challenge-
ciphertext component g¥*. For example, if the attacker chooses g7 = g for some
known constant b, then g¥ X = g"¥X is completely determined from g¥%. However,
since the adversary only sees ¢ bits of leakage on the challenge ciphertext, the value
g” X has sufficient entropy even conditioned on everything that the attacker sees,
that the attacker cannot guess it with anything better than negligible probability.
Therefore, the attacker will be unable to produce a valid ciphertext of this latter
form.

Theorem 5.5.2. For any k > 1, n > 1, the generalized CS-Lite scheme (Fig-
ure 5.6) is an {-LoC-NM secure encryption under the k-linear assumption with
¢ = nlog(q) — A, where q is the group size. Furthermore it is a homomorphic
over the message-group M = G, randomness-group R = IF’;, and ciphertext-group

C = Gn+k+2.

Proof. The scheme satisfies perfect correctness since, for an honestly generated
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encryption ¢ := (g¥ h,g%) = (g™, g% m, g™X ) of the message m we have:

TAX

e The verification check passes since ¢"X = g =g

e The decrypted message is hg 7% = mg™% g% = m,

For security, we first prove the following simple claim.

Claim 5.5.3. Fixz any matriz A matching the form of Figure 5.6 and assume
that u; # 0 for all i. Fiz any ij € FF\ rowspan(A). Then, over a random

e FEHL the distribution of (AZT, 5~ Z") uniformly random over FE*!.

Proof. This follows from the fact that the rows of A, together with the vector

— — =T

i/, span all of IF’;H and so the linear map fa 7(%) = (AZT, - &7) is bijective. [

Returning to the proof of Theorem 5.5.2, we now do a series-of-games argument
to show that the scheme satisfies (-LoC-NM security.

Game 0: Let Game 0 be the original /-LoC-NM game from Definition 5.3.1.

Game 1: In this game, the challenge ciphertext is distributed incorrectly. Instead
of honestly encrypting my, the challenger chooses i & ]F";Jr1 and sets

= (g7, 7% m, g7)

Notice that ¢ is computed efficiently using knowledge of the secret key Zp, X.
The only difference is that, instead of ¢ being random over rowspan(A), it is
now uniformly random over all of IF’;“.

We argue that the probability of A winning in Games 0 and 1 differs by
at most negligible factors or else A4 breaks the k-linear assumption (matrix
form). Assume we are given a k-linear challenge (g, g, g¥), where either (1)
§ = A is uniform over rowspan(A) or (2) i is uniform over F/*'. Then we
can choose sk = (Zy, X) honestly and use these to define the public-key pk
which we give to A. We define the ciphertext ¢ := (g7, g% my, ghX ) for a
random b < {0, 1} that we choose. This allows us to simulate the rest of the
game to the attacker, including the responses to the leakage and decryption
queries, so that if the challenge is of type (I) the distribution is as in Game 0,
and otherwise it is as in Game 1. Since we can also test whether the attacker
wins b = b, an attacker that has a non-negligibly different probability of
winning in Games 0 and 1 can be used to break the k-linear assumption.
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Game’ 1: In this game, when choosing A, we choose u; < F,\ {0} instead of F,.
This is statistically indistinguishable from the previous game.

Game 2: In this game, the challenger will run in exponential-time. When the ad-
versary submits the “decryption query” c¢* = (g% ,h*,g”"), the challenger
first checks if there is a 7 such that y* = 7™A (by computing discrete
logarithms in exponential time) and outputs L if not. Otherwise, it runs
the original decryption check g X = g and, if this passes, it outputs
m = h*g " (4%) Note that the decryption procedure does not depend
on Zp beyond AZx.

We show that games 1 and 2 are statistically indistinguishable, even if the
adversary A is computationally unbounded.

Case 1: If the decryption query has * € rowspan(A) then the challenger’s
response is identical in Games 1 and 2.

Case 2: If the decryption query has y* ¢ rowspan(A), then we argue that
the response in Game 1 is 1 with overwhelming probability (over the
choice of the matrix X). To see this, we just apply Claim 5.5.3 to each
column Z; of the matrix X to see that the values AX, y* X are mutually
uniform. Therefore

FL.(7°X | A, AX) = nlog(q)

On the other hand, the challenge-ciphertext ¢ (as computed in Game 1)
can reveal additional information about X and therefore also * X. How-
ever, the adversary only gets ¢ bits of information about the challenge
ciphertext c. Let leak be a random variable for the leakage observed by
the attacker. Then (by Lemma 4.1.1)

H. (7" X | A, AX, leak) > nlog(q) — ¢

So, in Game 1, the probability of the attacker making a decryption
query of this type and not getting a response _L is the probability of the
attacker guessing v* = * X given the public key and the leakage on the
challenge ciphertext, which is at most 2/7"1°8(@) = negl(\).

So the probability of A winning Game 2 differs at most negligibly from that
of A winning Game 0.

We now argue that, in Game 2, the challenger’s bit b is perfectly hidden (even for
a computationally unbounded adversary A). This follows by applying Claim 5.5.3
to the vector 7y to see that the (AZ], ¥ - &, ) is mutually uniform. Therefore, even
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given AZ, as part of pk, the challenge ciphertext hides the message the message
m, since it is “one-time-padded” with a fresh uniform value ¢ - Zj . Moreover, the
answer to the decryption query in Game 2 can now be (inefficiently) simulated
given AZ] and hence they do not reveal any more information about Zj.

So the adversary’s probability of winning in Game 2 is ezactly % and, by the
hybrid argument, the probability of winning in Game 0 must therefore be at most
negligibly close to %, as we wanted to show. O

We notice that, in the proof of Theorem 5.5.2, we never made use of the fact
that the adversary only submits one decryption query at the end of the game.
Indeed, we achieve a stronger notion then just ¢-LoC-NM security (closer to ¢-LoC
CCA-2 security). Even if the adversary can adaptively access a decryption oracle
arbitrarily many times during the game, before and after leaking up to ¢ bits on
the challenge ciphertext, the challenger’s bit stays hidden.

5.5.3 Homomorphic NIZKs

Linear Equations in Exponent. We consider the language of satisfiable sys-
tems of linear equations, over some group G of primer order ¢ with a generator
g. A system of m equations over n variables consists of a matrix of coefficient
gB € G™™ and a vector of target values g € G™. We say that the system
(gP, g% is satisfiable if there exists a vector ¥ € [y, such that gB‘ET =g We
call the vector &, the satisfying assignment. We define the language Lj;peq, Of sat-
isfiable systems (gB, gg). We define the relation Ryj,eqr as consisting of all pairs
((g?,g%), ¥), where the system (g, g°) is satisfiable and 7 is satisfying assignment.
The system acts as a statement and the assignment acts as a witness in the sense
that we can efficiently check that the statement is true given the witness. If we fiz
the coefficients g?, and define the relation

Rl?near = {(gé” f) : ((gB7gE)7f) € Rlinear}
then Rf .. is a linear relation with the group operation
(g€7 f) + (g€’7a—:»/> _ (g€+6”f+ f’),

For simplicity, we will say that a NIZK argument system for Rj;,eq, is homomorphic
if, for every fixed choice of B, it is homomorphic for the (linear) relations RS .

Groth-Sahai NIZKs. The Groth-Sahai (GS) [GS08] NIZK argument system is
(among other things) an argument system for the relation Rjeqr-. For complete-
ness, we give simple and short but self-contained description of GS NIZKs for this
relation. The construction is shown below and relies on the matrix-in-the-exponent
notation introduced in the Preliminaries. Let k& € Z be a parameter of the system.
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prms <— ParamGen(1%): Choose prms = (G1, G2, g, h, e, q) + Gpuir(1?).

Setup(prms): Choose uy, ..., ug & F, and define
1 0 U9 0
v=1|. . .
1 0 0 ... u

Choose 7 < F*+1 and output crs = (hY, h?).
SetupSim(1*): Chooses U as in honest Setup.
Choose 7 ¢ F* and output crs = (hY, h™), TK = 7"

5T

Provess((g”,g%), 7): Assume g” € G™*", g% € G™, 7 € F} and that gBt’ = g
Select R <& IFZX'“ and output

o ( Wi ThRU | gBR )

Note that 7 can be efficiently computed using the inputs and R (without

knowing any of the exponents B, ¢, U, v)

Simers((g?,g%), tk): Assume g? € G™*" g € G™. Parse TK =1 € F.
Select R & FZX’“ and output:

Ti= ( hfv gBRg_( ert) )

Veres((g?,gc),n): Parse 7 = (h?, g”) and output 1 iff

e(g?, hP) = e(g® ,h?)e(g”, hY)

Theorem 5.5.4. Fix a constant k > 1, and assume that the k-linear assumption
holds for Gpeir. Then the above construction is a homomorphic NIZK for the
relation Rinear-

Proof. We analyze the properties of homomorphic NIZKs one by one.

Correctness. Assume that CRS < Setup(1}) and 7 < Proves((g?,g°),7)
where gB%" = g . Then 7 = (h?, gf) for D =" -7+ RU, P = BR, where R is
some matrix. Therefore
e(g” h?) = e(g h)PF TR
= e(g,h)” T = e(g”  h7)e(g", ")
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(Statistical) Soundness. Let CRS = (hY h?) < Setup(1}). Let (g g°) be
some statement and let 7 = (h”, g®) some proof such that Verqxs((g?,g°),7) = 1.
Then, since the proof verifies, we have

BsziMPU:FWPw 2}
y

ability over the choice of the CRS. Let M = [—L ]71 be its inverse. Then

BDM = [¢" | P] and therefore, letting ¥ be the first column of DM, we have
BZ = ¢", which shows that (g7, g°) is a true statement.

It is easy to see that the matrix [ } is invertible with overwhelming prob-

Zero Knowledge. Firstly, the fact that the distributions of the CRS produced
by Setup and SetupSim are indistinguishable follows directly from the k-linear as-
sumption (matrix form). Secondly, we show that for any fixed choice of (CRS, TK) <
SetupSim(prms), honest and simulated proofs are distributed identically (over the
coins of the prover/simulator). Let crs = (hY,h?) and TK = ¢ such that ¢ = 7U.
Let (gB,g° be some true statement and ¥ a witness so that B¥' = ¢'. Let
7 = (h”,g") be an honestly generated proof. Then the distribution of 7 is defined
by:

D=7"-9+RU =2"(7U)+ RU = (F'7+ R)U
P =BR

where R is uniformly random. Let us define R’ := (Z77 + R). Then the distri-
bution of R’ is just uniformly random (over the choice of R). Therefore the joint
distribution of D, P above can be re-written as

D=RU
P=B(R —-#'7)=BR -7

for a uniformly random R’. But this is exactly how simulated proofs are chosen!

Homomorphism. Fix any crs = (g¥,g?) and any gf € G™*". Let the pairs

T

— —y = = wil
(g°, @) and (g7, 7) be such that gB% =g and gBP” =g . Let

o= Prove((g”,g). % R) = (b7 R, ght)

= PrOVCRS((gB7gEY)7f,§ R/) = ( hf’T.ghR,U ) gBR/ >

o8



Then we can define the group operation:

i — (th-ﬁhRUhf’TﬂhR’U | gPRgBR )
( R @ +3 7)o (R+R)U gB

= Proves((g?, g€+3), T+7; R+ R)

(R+R') )

Therefore the NIZK is homomorphic for the relation Ryeqr- O

Proving Plaintext Equality. We now show how to use GS NIZKs for prov-
ing satisfiability of linear equations to prove plaintext equality for the encryption
schemes &, & presented earlier in this section (see Figure 5.5, and Figure 5.6 re-
spectively). That is, we now show that the corresponding language for plaintext-
equality L., can be expressed in terms of a satisfiable set of linear equations.

Let (p, Gy, Gy, Gr,e,8,h) < Gpuir(1*) be the common system parameters. Let
pki,c; be a public-key and ciphertext of £ and pks, co be a public-key and cipher-
text of &, which we can write as:

pkl = (ga17 o 7gak> C = (gcjgﬂ) .
pks = (g*,8",8%) = (g".g% 8.

(where the exponents are unknown to us). Moreover, (¢, ca) € Le, if and only if

there exist vector 7= (rqy,...,ry), 7 = (1], ..., ) such that:
(g(ﬂﬁ, . 7gakrk — g:lj
gt = g
g8 — gf
gl g (o g gt = gXitim g€ = g™ m)

But the above is just a system of linear equations in the exponent, and therefore
can be expressed as a statement in the langllage Liinear. Moreover, the coefficient on
the left-hand side (g, ...,g%),g”, g?, g’ only depend on (and can be efficiently
computed from) pky, pko, while the target values on the right only depend on (and
can be efficiently computed from) the ciphertexts ¢y, co. Lastly, the witness (7, 7)
only depends on (and can be efficiently computed from) the randomness used to
generate the two ciphertexts.

Theorem 5.5.5. Let &1, & be the encryption schemes from Figure 5.5, and Fig-
ure 5.6 respectively. Then, GS NIZKs provide a homomorphic NIZK II for the
plaintext equality relation Re,.

29



Proof. From the above discussion, for every statement st = (pky, pks, c1, c2) there
is an efficiently computable statement st = f(st) = (g?,g°) such that st € L,
satisfies plaintext equality iff st € Ljnear is a satisfiable set of linear equations.
Moreover if w = (m,ry,79) is the witness for st then there is an efficiently com-
putable witness @ = g(w) = & for st. Therefore, we can use GS NIZKs for
linear-equations in the exponent Rjneqr as NIZK for plainest equality Re,.

Lastly, the coefficients g? in st’ only depend on pk;, pks and the target g€ only
depends on ¢, c;. Furthermore, if we fix pk;, pks and the corresponding g?, the
maps f and g become homomorphic so that, if st = (¢1,¢2),st’ = (¢}, c,) then
f(st+ st') = f(st) + f(st'