
CS-7810 Graduate Cryptography March 1, 2025

Problem Set 4

Lecturer: Daniel Wichs Due: March 17, 2021

Problem 1 (Better Collision Resistance from DL) 10 pts

Let (G, g, q)← GroupGen(1n) be a group generation algorithm that generates a cyclic group G = ⟨g⟩
with generator g of order |G| = q where q is a prime. In class we showed that, under the discrete
log assumption, Hg,h(x1, x2) = gx1hx2 is a collision resistant hash function mapping Z2

q → G when
h ← G is a random group element. Let’s define a much more compressing function that maps
Zm
q → G for any m as follows:

Hg1,g2,...,gm(x1, . . . , xm) =
m∏
i=1

gxi
i

where g1 . . . , gm ← G are random group elements. Show that, under the discrete log assumption,
the above is a collision resistant hash function meaning that for all PPT A:

Pr

 x⃗ ̸= x⃗′ ∈ Zm
q

Hg⃗(x⃗) = Hg⃗(x⃗
′)

:
(G, g, q)← GroupGen(1n)
g⃗ = (g1, . . . , gm)← Gm

(x⃗, x⃗′)← A(G, g, , q, g⃗)

 = negl(n)

Hint: given a discrete log challenge g, h = gx where your goal is to find x, define gi = gaihbi for
random ai, bi ← Zq.

Problem 2 (Worse Collision Resistance from DL) 10 pts

Let (G, g, q) ← GroupGen(1n) be a group generation algorithm that generates the cyclic group
G = Z∗

p for some prime p, along with generator g of G. The order of the group is q = p−1, which is
not prime. Consider the hash function we studied in class defined by Hg,h(x1, x2) = gx1hx2 where
h← G is a random group element. Show that this is NOT a collision resistant hash function. (In
contrast, in class we showed that it is collisions resistant in groups of primer order q under the
discrete log assumption.)

Problem 3 (Playing with ElGamal Ciphertexts) 10 pts

Let (G, g, q)← GroupGen(1n) be a group generation algorithm that generates a cyclic group G = ⟨g⟩
with generator g of order |G| = q where q is a prime. Recall that the ElGamal encryption scheme
has public key pk = (g, h = gx) and sk = x. The encryption procedure computes Enc(pk,m) =
(gr, hr ·m) where r ← Zq.

PS4, Page 1

� (Re-randomization) Given a public key pk and an ElGamal ciphertext c encrypting some
unknown messages m ∈ G show how to create a ciphertext c′ which encrypts the same
message m under pk but with fresh independent randomness (i.e., given c, the ciphertexts c′

should have the same conditional distribution as a fresh encryption of m under pk).

� (Plaintext Multiplication) Show that given a public key pk and any two independently gener-
ated ElGamal ciphertexts c1, c2 encrypting some unknown messages m1,m2 ∈ G respectively
under the public key pk, we can efficiently create a new ciphertext c∗ encrypting m∗ = m1 ·m2

under pk without needing to know sk,m1,m2.

Problem 4 (A Better PRG from DDH) 10 pts

Let (G, g, q)← GroupGen(1n) be a group generation algorithm that generates a cyclic group G = ⟨g⟩
with generator g of order |G| = q where q is a prime.

In class we saw that under the DDH assumption

PRG(x, y) = (gx, gy, gxy)

is a pseudorandom generator over G3

Consider the generalized PRG:

PRG(x, y1, . . . , yℓ) = (gx, gy1 , gxy1 , gy2 , gxy2 , . . . , gyℓ , gxyℓ)

Show that under the DDH assumption this is a pseudorandom generator over G2ℓ+1.
Hint: As a first step try to do a simple proof consisting of ℓ hybrids. This implicitly shows that

if an adversary can break the PRG with advantage ε then it can also be used to solve DDH with
advantage ε/ℓ. For extra credit, try to do a direct reduction (no hybrids) that shows how to use
any adversary on the PRG that has advantage ε to break DDH with the same advantage ε. For
this more challenging proof, use a randomized procedure that R(gx, gy, gz) that outputs a random
value in the range of the PRG if z = xy or a truly random value if z is random.

Problem 5 (Public Key Encryption – Decryption Query) 10 pts

The security definition of public-key encryption that we gave in class gives the adversary the public
key which allows him to encrypt arbitrary messages himself. However, it doesn’t consider that an
adversary might be able to see how ciphertexts are decrypted. In this problem, you’re to show that
in general this can make a cryptosystem completely insecure.

A. Show that, if there exists any secure public key encryption scheme E = (KeyGen,Enc,Dec)
according to the definition we gave in class then you can modify it to get an encryption scheme
E ′ = (KeyGen′,Enc′,Dec′) such that:

� E ′ is a secure encryption scheme according to the definition we gave in class.

� E ′ has the property that, if the attacker can query the decryption function Dec′(sk, ·) even
on a single ciphertext c of his choosing and sees the output m = Dec(sk, c) then the attacker
can completely recover the secret key sk.

PS4, Page 2

This is a very undesirable property - if the attacker can learn a single decrypted value for a
ciphertext of his choosing he can completely break security of the scheme!

B. You solution in part A might have been a “contrived” scheme which is not very “natural”.
But there are natural schemes that are completely insecure if an adversary can see decryptions of
chosen messages – for example, schemes based on the Rabin trapdoor permutation. Let N = pq
be a product of two primes and let f : QRN → QRN be the Rabin trapdoor permutation defined
by f(x) = x2 mod N . We know this permutation is easily invertible given p, q. Show that if an
adversary can query f−1(y) for a single value y of its choosing than it can efficiently factor N with
non-negligible probability.

PS4, Page 3

