
Graduate Cryptography January 13, 2025

Problem Set 1

Lecturer: Daniel Wichs Due: Jan 27, 2025

You are allowed to discuss the problems with each other, but are encour-
aged to try solving each problem on your own first. In either case, you must
write down the solution on your own and should not share written solutions
with each other. If you discussed a problem with someone else, make sure
to explicitly say this in your solution.

Problem 1 (Independence, Perfect Secrecy) 5 pts

Let X,Y be random variables. Show the following three statements are
equivalent:

1. X,Y are independent

2. for every x, y such that Pr[Y = y] > 0 we have Pr[X = x|Y = y] =
Pr[X = x]

3. for every x, y, y′ s.t. Pr[Y = y] > 0,Pr[Y = y′] > 0: we have

Pr[X = x|Y = y] = Pr[X = x|Y = y′].

Then, use this to show that the three definitions of perfect secrecy given on
the class slides are equivalent.

Problem 2 (t-wise independent hash) 10 pts

A hash function h : K × U → V is t-wise independent if for all t distinct
values x1, . . . , xt ∈ U and any y1, . . . , yt ∈ V we have

Pr[h(K,x1) = y1, . . . , h(K,xt) = yt] =

t∏
i=1

Pr[h(K,xi) = yi] =
1

|V|t

where K is a random variable that’s uniform over K.
Use the ideas we saw in class about polynomials over a finite field F in

the construction of Shamir secret sharing to construct such a scheme for any
t with K = Ft and U = V = F.
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Show how to use the above to construct a message authentication code
(MAC) which can be securely used to authenticate up to (t− 1) messages.

Problem 3 (Statistical Distance) 10 pts

We define the statistical distance between two distributionsX,Y as SD(X,Y ) =
maxT |Pr[X ∈ T ]− Pr[Y ∈ T ]| where the max is over all sets T .

Part A: Consider a computationally unbounded adversary A who gets a
sample from either X or Y and wants to distinguish between by outputting
1 if it gets a sample from X, but not if it gets a sample from Y . Show that
if SD(X,Y ) ≤ ε then the adversary cannot distinguish with better than ε
probability:

|Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ ε.

First show this for a deterministic A and then extend your argument to
a randomized A.

Part B: Show that for any function G : {0, 1}n → {0, 1}n+1 the
statistical distance between G(Un) and Un+1 is at least 1/2 where Uℓ denotes
the uniform distribution over {0, 1}ℓ.

Part C: Show that statistical distance obeys the triangle inequality: for
any X,Y, Z it holds that SD(X,Z) ≤ SD(X,Y ) + SD(Y,Z).

Part D: Show that for any (even inefficient, randomized) function f and
any random variables X,Y we have SD(f(X), f(Y )) ≤ SD(X,Y ).

Part E: Let X be uniformly random over {1, . . . , n} and let Y be uni-
formly random over {1, . . . , n+1}. What’s the statistical distance SD(X,Y )?

Problem 4 (Relaxing Perfect Secrecy) 15 points

Recall that perfect secrecy says that for every pair of messages m0,m1 ∈ M
and every ciphertext c ∈ C we have Pr[Enc(K,m0) = c] = Pr[Enc(K,m1) =
c]. Shannon’s lower bound on perfect secrecy lead us to consider computa-
tional security against a polynomial-time attacker. Let’s go back and try to
relax the definition of perfect secrecy in other more statistical ways and see
what we get.

� Idea 1: Define “weak ε-statistical security” if for for every pair of
messages m0,m1 ∈ M and every ciphertext c ∈ C we have

|Pr[Enc(K,m0) = c]− Pr[Enc(K,m1) = c]| ≤ ε.
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Show that this notion does not provide any real guarantee of security
even when ε is small, by constructing a scheme that achieves this no-
tion of security with (say) ε = 2−128, but every ciphertext completely
reveals the message.

� Idea 2: Define “ε-statistical security” if for every pair of messages
m0,m1 ∈ M and every subset T ⊆ C we have:

|Pr[Enc(K,m0) ∈ T ]− Pr[Enc(K,m1) ∈ T ]| ≤ ε.

In the terminology of the previous problem, this says:

SD(Enc(K,m0),Enc(K,m1)) ≤ ε.

Show that, unfortunately, “strong ε-statistical security” will not let
us beat the Shannon bound on key size by much. In particular show
that any scheme with |K| ≤ |M|/2 (i.e., key is only 1-bit shorter than
message) there is some m0,m1 ∈ M and T ⊆ C such that

|Pr[Enc(K,m0) ∈ T ]− Pr[Enc(K,m1) ∈ T ]| ≥ 1

2
.

You can assume that encryption is deterministic for simplicity; for an
extra challenger, generalize to randomized encryption.

Problem 5 (Two-time Security?) 15 pts

Part A: Here is a natural way to define perfectly secret encryption for two
messages. For any two pairs of messages (m0,m1) and (m′

0,m
′
1) and for any

ciphertexts c0, c1 we have

Pr[Enc(K,m0) = c0,Enc(K,m1) = c1] = Pr[Enc(K,m′
0) = c0,Enc(K,m′

1) = c1]

Show that no encryption scheme with a deterministic encryption procedure
can satisfy this definition. Then generalize to the case where encryption is
a randomized algorithm (i.e., has access to additional randomness beyond
the secret key K).

Part B: To overcome the limitation in part A, we first relax the problem
by considering statistical security as in the previous problem. We require
that for all (m0,m1), (m

′
0,m

′
1) ∈ M×M and all functions A that output 1

bit:

Pr[A(Enc(K,m0),Enc(K,m1)) = 1]−Pr[A(Enc(K,m′
0),Enc(K,m′

1)) = 1] ≤ ε.
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Show that, even with this relaxation, no encryption scheme with a deter-
ministic encryption procedure can satisfy the above with ε < 1.

Part C: We relax the problem further by considering randomized en-
cryption schemes where, for a fixed k,m the encryption procedure Enc(k,m)
can use additional randomness to create the ciphertext. We require perfect
correctness so that for all m ∈ M, k ∈ K : Pr[Dec(k,Enc(k,m)) = m] = 1
where the probability is over the randomness of the encryption procedure.
Show that there exists a randomized encryption scheme that achieves sta-
tistical security (as in part B) for arbitrarily small ε.

(Hint: Use t-wise independent hash functions from problem 2 with t = 2.
Think of using the hash function to generate a one-time pad.)

Part D: Another idea to overcome the limitation in part A is to aug-
ment the encryption/decryption procedures so that they also takes the in-
dex b ∈ {0, 1} of the message as an input - to encrypt m0,m1 we compute
Enc(K,m0, 0),Enc(K,m1, 1) and to decrypt c0, c1 we compute Dec(k, c0, 0),Dec(k, c1, 1).
We define pefect security as:

Pr[Enc(K,m0, 0) = c0,Enc(K,m1, 1) = c1] = Pr[Enc(K,m′
0, 0) = c0,Enc(K,m′

1, 1) = c1].

Construct a simple scheme that meets the above notion of security.

Problem 6 (Refreshing Secret Sharing) 10 pts

A secret is shared across n computers using Shamir Secret Sharing with
a threshold t ≥ 2 (t parties learn nothing, t + 1 can recover the secret).
Every morning, a determined hacker can choose to compromise any one of
the computers. The computer stays compromised for an entire day meaning
that the adversary can see everything that happens on it during that day.
However, by the following morning the hack is guaranteed to be discovered
and the attacker is booted off from the computer. The attacker can then
hack a new computer that morning (potentially the same one as the previous
morning) and so it goes day after day for ever.

We want to make sure the attacker never learns the shared secret. To
do so, we want to have a protocol that the n computers can run once a day
to “refresh” their shares. The attacker sees everything that happens on the
compromised computer during the run of the protocol. Design a protocol to
solve this problem and argue that it is secure.
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