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1 Topics Covered

• CCA Security

• CCA2-Secure Scheme in the RO Model

• CCA1-Secure Scheme: Cramer-Shoup

In this lecture we introduce the concept of Chosen Ciphertext Attack (CCA) Security.
We give a construction in the ideal world with random oracles. Then we start to construt
a CCA1-secure scheme, called “Cramer-Shoup”, from DDH via Hash Proof Systems.

2 CCA Security

In the CCA Game we will allow the adversary to choose ciphertext and get its plaintext. For
a public key encryption scheme (KeyGen,Enc,Dec), we define its CCA game CCAGameb(n)
to be the following game for b ∈ {0, 1}:

1. Challenger samples key pairs (pk, sk)← KeyGen, and sends PK− only to Adversary;

2. Adversary sends query ciphertext cti to Challenger and receives from Challenger mi =
Decsk(cti) for any number of rounds as Adversary wants;

3. Adversary sends challenge massages m∗0,m
∗
1 to Challenger and receives the challenge

ciphertext ct∗ = Encpk(m∗b);

4. Adversary then continue to send query ciphertext cti 6= ct∗ and gets its mi for any
number of rounds;

5. Adversary output a number b′ ∈ {0, 1}.

The value of this game is defined as the b′ the Adversary outputs at last.
We call an encryption scheme is CCA2 secure if CCAGame0 ≈ CCAGame1 for any PPT

adversary. If we remove the 4-th step in this game, we get the corresponding definition of
CCA1 security.

Obviously Rabin scheme is not CCA1 secure. For ElGamal scheme, notice that we can
“rerandomize” the ciphertext so that we can get a queried ciphertext cti 6= ct∗ but still
encrypting the same message. It is not clear if it is CCA1 secure.

Conceptually speaking, CCA security means that after seeing that Bob sends the cipher-
text Encpk(m) to Alice, Eve cannot come up with a ciphertext of a message that is related
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to m, say Encpk(m + 1), to send to Alice. In symmetric key settings, this can be achieved
by authentication combining with CPA security; Bob authenticate his own message then
encrypt so Eve cannot counterfeit the ciphertext of a message related to Bob’s. But this
idea doesn’t work in public key encryption.

3 Construction in the RO Model

Generally, we don’t know how to convert a CPA secure scheme into a CCA secure scheme.
But we can do this in the random oracle model. Intuitively we are using the random oracle
to authenticate the messages, similar to the aforementioned case in symmetric key settings.

Given a CPA secure scheme (KeyGen,Enc,Dec), we get the following scheme (KeyGen′,Enc′,Dec′):

• KeyGen′ = KeyGen;

• Enc′pk(m): samples x← {0, 1}n, returns ct = Encpk((m,x);RO(m,x));

• Dec′sk(ct): gets (m,x) ← Decsk(ct), checks if Encpk((m,x);RO(m,x)) = ct, if so
outputs m, otherwise outputs ⊥.

We define the following hybrids to prove its CCA security:

• Hb
0: CCAGameb

• Hb
1: In Dec′sk(ct), instead of Decsk(ct), try all previous RO queries (mj , xj), check if

Encpk((m,x);RO(m,x)) = ct holds, if so output mj ; Note that after this hybrid we
get rid of sk;

• Hb
2: If adversary calls (m∗b , x) to RO, then independently sample a result at random.

Then intuition is that the adversary must use Enc′ to get the query ciphertexts so it learns
nothing from these queries. We can prove:

• Hb
1 ≈ Hb

0: if there exists RO query (m,x) and ciphertext ct such that Pr[Encpk(m,x) =
ct] 6= negl(n), then the original scheme is not CPA secure;

• Hb
2 ≈ Hb

1: by CPA security, there is no way for the adversary to figure out (m∗b , x
∗);

• H0
2 ≈ H1

2 : by CPA security, we can safely switch from ciphertext of m∗0 to that of m∗1;

4 Cramer-Shoup Scheme

We can construct a CCA1 secure scheme under DDH assumption via “Hash Proof Systems”
(HPS). The idea is that in the query rounds the adversary need to prove to the challenger
that it knows the plaintexts of those query ciphertexts. This idea looks like Non-Interactive
Zero-Knowledge Proofs (NIZK), but we don’t know how to built NIZK from DDH.

As usual, we can sample (G, g, q) ← GroupGen(1n) and h ← G, and these parameters
(G, g, q, h) is publicly shared. Now we define a language L = {(gr, hr) : r ∈ Zq} ∈ NP,
and another language L = {(gr1 , hr2) : r1 6= r2 ∈ Zq} ∈ NP. Let UL, UL be the uniform
distribution over L and L respectively, then we have the following property:
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Claim 1 (Property I) Under DDH, UL ≈ UL even given g, h.

Proof: (g, h, gy, hy) = (g, gx, gy, gxy) ≈ (g, gx, gy, gz) ≡ (g, h, gy, hz) ≈ (g, h, gx, hz|x 6= z).

We define our HPS as follows:

• HPSGen(1n): (x, y)← Z2
q , set sk = (x, y), pk = gxhy = f ;

• Hpk((c1, c2), r) = f r;

• Hsk(c1, c2) = cx1c
y
2.

Then we have the following two properties. Property II, the completeness property, means
that the proof reveals nothing about r; Property III, the soundedness property, means that
the adversary has no idea of the hash even though knowing pk.

Claim 2 (Property II, Completeness) ∀(c1, c2) ∈ L with unique witness r, we have

Hpk((c1, c2), r) = f r = Hsk(c1, c2).

Claim 3 (Property III, Soundedness) ∀pk, ∀(c1, c2) ∈ L, Hsk(c1, c2) ≡ UG condi-
tioned on pk.

Proof: Property II is obvious; we prove property III. Let a ∈ Zq such that h = ga. Then
(c1, c2) = (gr1 , hr2) = (gr1 , har2). Thus pk = ga+ay, Hsk(c1, c2) = gr1x+ar2y. As r1 6= r2,
x+ ay and r1x+ ar2y are linearly independent. Thus conditioned on pk, Hsk(c1, c2) is still
uniform.

Finally we can describe the Cramer-Shoup Scheme:

• KeyGen(1n): (pk1, sk1)← HPSGen(1n), (pk2, sk2)← HPSGen(1n), set pk = (pk1, pk2),
sk = (sk1, sk2);

• Encpk(m): (gr, hr)← L, return (gr, hr, Hpk1((gr, hr), r) ·m,Hpk2((gr, hr), r));

• Decsk(c1, c2, h1, h2): check that h2 = Hsk2(c1, c2), if so output h1/Hsk1(c1, c2), other-
wise output ⊥.

We will see the proof of its CCA1 security in the next lecture.
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