
CS 7880 Graduate Cryptography November 13th 2017

Lecture : Zero Knowledge Proofs

Lecturer: Daniel Wichs Scribe: Lucianna Kiffer

1 Topics Covered

• Zero knowledge proofs

• Interactive proofs

• Commitment schemes

2 Informal Example of Zero Knowledge Proofs

Imagine you want to prove to someone you know where Waldo is on a page without revealing
his location. You do this because you don’t want the proof to be transferable: if you prove
to someone you found Waldo, you don’t want them using your proof to claim that they
were who found Waldo first. You can do this by taking a piece of cardboard 4x the size of
the page from the Where’s Waldo book, then cutting out just the outline of Waldo’s face
in the middle of the cardboard. This way you can place the book behind the cardboard
exactly where Waldo’s face meets the cutout and show to anyone Waldo’s face without
revealing where the book is placed behind it. Thus anyone can see Waldo, but not where
he is, and only someone who knows where Waldo is can place the book correctly behind the
cardboard.

Informally, zero-knowledge proofs are proofs that carry no information except for the
validity of what you are trying to prove. In this lecture we will see that all NP-languages
have zero-knowledge proofs, meaning for each element in the language, we can provide a
proof that a certificate exists for that element without revealing the certificate.

3 Zero-knowledge proof model

Definition 1 Zero-knowledge proofs are interactive proofs with a PPT prover and verifier
(P, V).
Syntax: NP relation R = R(x,w) or NP language L where x is an element of L and w a
witness for x ∈ L.
P has inputs x,w and V has input x. P is given the witness w otherwise it might not
efficient for P to find w. P and V interact and then V outputs either accept or reject. The
properties we want the proof to satisfy are as follows:

(1)Completeness: honest provers can convince honest verifiers of honest claims

∀x ∈ L w/ witness w, Pr[< P (x,w), V (x) >= acc] = 1

Lecture , Page 1

where < P (x,w), V (x) > is V ’s output.

(2)Soundness: If x is not in the language, no prover can convience the verifier that x is
in the language.

∀x 6∈ L,∀(possibly malicious, possibly unbounded) P ∗, Pr[< P ∗(x), V (x). = acc] ≤ 1

3

♦
(1)(2) so far have defined an interactive proof. The idea of an interactive proof is to

save on time (both for the prover who needs to find a proof and the verifier who needs to
read and verify the proof). Interactive proofs capture the class of all languages that you
can prove and use polynomial space (I=PSPACE). The main point being that if you have
interaction, you can save on computation. We can amplify soundness by re-running the
proof and get the probability bound down to negligible. You can always do this as long as
you start with a non-negligible bound).

(3)Zero-knowledge(zk): Imagine an ideal world where we start by knowing x is in L and
anything the verifier sees during the proof you could generate just by knowing x ∈ L.
V iewV ∗(x,w) = view of V ∗(x) when interacting with a prover P (x,w). ∀ possibly malicious
PPT verifiers V ∗, ∃ PPT Sim s.t.∀x ∈ L,

Sim(x) ≈ V iewV ∗(x,w)

In this lecture we consider an honest verifier zero-knowledge (HVZK) proof model, meaning
we want to guarantee that honest verifiers learn nothing. A stronger statement would be
to show that there is a single simulator that ∀V ∗ satisfies the proof. Note that we write
V iewV ∗(x,w) as the view of the verifier V ∗ though the verifier does not see w, the view is
dependent on both x and w.

4 Commitment Schemes

Before we proceed with the main theorem of this lecture, we first cover an import tool
called commitment schemes. We want these schemes to have 3 propers: perfect binding,
computational hiding, and be for bits. We are only interested in committing to single bits
since once we can do that, we can extend it for arbitrary length messages. We are not trying
to optimize for number of rounds or communication as long as its all PPT.

In the commitment scheme we have a PPT Com. protocol and a polynomial verifier
V er. Com. has inputs b, 1λ, and outputs a commitment and decommitment (c, d). V er. has
inputs b, 1λ, c, d and outputs acc./rej.. The scheme should satisfy the following properties:

(1)Correctness ∀b ∈ {0, 1}

Pr[V er(b, 1λ, c, d) = acc : (c, d)← Com(b, 1λ)] = 1

Note that the randomness comes from the commitment scheme since the verifier is deter-
ministic.

Lecture , Page 2

(2)Computational hiding :

EXPb(λ) = run (c, d)← Com(b, 1λ), output c

{EXP0(λ)} ≈ {EXP1(λ)}

(3)Perfect binding : 6 ∃c∗, d∗0, d∗1

V er(0, 1λ, c∗, d∗0) = V er(1, 1λ, c∗, d∗1) = acc

i.e. the same commitment cannot have two decommitments for two different values.

5 zk-proof for NP

Again, the main goal of this lecture is to prove the following theorem:

Theorem 1 (GMM) all NP languages have zk-proofs

We will prove this by showing a proof for a specific NP language (since any other
language can be reduced to it). We prove the theorem for the graph 3-coloring problem
(G3C).

LG3C = {graph G : ∃coloring ϕ of G in 3 colors}

Proof Idea: If there is a coloring, no matter what edge you wish to see of the coloring, it
must be valid. If the prover commits to all colors of each edge and the verifier asks for the
color of a random edge, it should be valid. This alone is an interactive proof. To make it
zk we add in that the prover permutes the colors.

The proof proceeds with the following steps,

zk-proof: G = (V ert, E), ϕ = 3 coloring

(1) P picks a random permutation

Π : {1, 2, 3} → {1, 2, 3} and computes ϕ′ = Π ◦ ϕ

(2) ∀v ∈ V ert, P computes
(cv, dv)← Com(ϕ(v), 1λ)

(3) P sends {cv : v ∈ V ert} to V

(4) V picks a random edge e = (u, v) ∈ E and sends it to P

(5) P sends ϕ′(u), ϕ′(v), du, dv to V

(6) V checks: ϕ′(u), ϕ′(v),∈ {1, 2, 3} and ϕ′(u) 6= ϕ′(v)

V er(ϕ′(u), 1λ, cu, du) = V er(ϕ′(v), 1λ, cv, dv) = acc

Lecture , Page 3

if it all works out then output acc, otherwise rej

Proof
(1)Completeness: if ϕ is a 3-color, then ϕ′ is also a 3 color and (cv, dv) ← Com(ϕ(v), 1λ)
and we can show all V checks acc with probability 1.

(2)Soundness: Let G be a graph with no 3-coloring, we have some prover P ∗ which be-
haves arbitrarily but must send some c∗v such that ∀v ∈ V ert in step (3). Because of perfect
binding, each commitment opens at most 1 value, thus ∃ a single ϕ∗(v) that c∗v can be
decommited to. This gives a coloring ϕ∗ and it is not a valid 3-color of G by definition.

Thus ∃ some edge e that violates the coloring

e = (u, v) ∈ E s.t. ϕ∗(u) = ϕ∗(v) or ϕ∗(u) 6∈ {1, 2, 3} or ϕ∗(v) 6∈ {1, 2, 3}

if V chooses e in step (4), then V rejects

Pr[V accepts] ≤ Pr[V doesn’t choose e] ≤ 1− 1

|E|
6= negl

The probability of V accepting on a graph G 6∈ 3COLOR has a noticeable gap to the
probability V accepts a G ∈ 3COLOR. To get the probability that V accepts wrongfully to
negl(λ), repeat entire protocol λ|E| times.

We now prove for the special case an honest verifier (but the proof stands for all mali-
cious verifiers). We construct a Sim for the honest verifier, but because we claim it’ll work
for all verifiers, the Sim needs to interact with the verifier so it can simulate the probability
the verifier requests each edge.

Sim :
(1) pick e = (u, v) ∈R E and random ϕ′(u) = ϕ′(v) (2) w ∈ {u, v}

(cw, dw)← Com(ϕ′(w), 1λ)
if w 6∈ {u.v} :

(cw, dw)← Com(1, 1λ)
Sim is betting it’s money that the verifier will ask for e, otherwise Sim looses.
(3) Sim sends {cw : w ∈ V ert.} to V and gets e′ = (u′, v′).
(4) if e = e′, then output {cw : w ∈ vert}, e, du, dv, ϕ′(u,ϕ(v), otherwise Sim reruns (2-4).
Sim can rewind the verifier polynomial times.
(5) if e 6= e′,go back to (1) and try again
(6) after ϕ|E| iterations, if there is still no success, give up.

Analysis:
If ∃ a successful iteration, (e, ϕ′(u), ϕ′(v)) is identical to the real world distribution because
e is random and the two end points have 2 different colors that are random due to the
permutation. Because of hiding of the commitment scheme {cw : w ∈ V ert}, du, dv is com-
putationally indistinguishable from real world.

If not, Sim has no Com and we reach (6) with negligible probability,

Pr[reaching (6)] ≤ (1− 1

|E|
)λ|E| = negl(λ)

Lecture , Page 4

